* wip
* ggml-hexagon: add vectorized dot product function for FP32 and FP16 accumulation
* ggml-hexagon: optimize dot product functions for FP16 and FP32 with new vectorized implementations
* wip
* ggml-hexagon: optimize hvx_vec_dump_f32_n and hvx_vec_reduce_sum_qf32x2 functions for improved performance
* ggml-hexagon: refactor dot product functions to use a common loading function for improved readability
* optimize vector dot product functions to use unified reduction for improved performance
* wip
* ggml-hexagon: add vectorized dot product function for FP32 and FP16 accumulation
* ggml-hexagon: optimize dot product functions for FP16 and FP32 with new vectorized implementations
* wip
* ggml-hexagon: optimize hvx_vec_dump_f32_n and hvx_vec_reduce_sum_qf32x2 functions for improved performance
* ggml-hexagon: refactor dot product functions to use a common loading function for improved readability
* optimize vector dot product functions to use unified reduction for improved performance
* hexagon: optimize reduce-sum for v75+
* hexagon: always keep row_sums in sf/fp32
* ggml-hexagon: enhance directory checks for HEXAGON_SDK_ROOT and HEXAGON_TOOLS_ROOT
* fix compiling error after rebase
---------
Co-authored-by: Max Krasnyansky <maxk@qti.qualcomm.com>
* Add Q8_0 OpenCL kernel
Co-authored-by: yunjie <yunjie@qti.qualcomm.com>
* opencl: fix build for non-adreno
* opencl: refactor q8_0
* opencl: enforce subgroup size of 64 for adreno for q8_0
* For A750 and older generations, subgroup size can be 64 or 128.
This kernel assumes subgroup size 64.
* opencl: suppress warning when adreno kernels are disabled
---------
Co-authored-by: yunjie <yunjie@qti.qualcomm.com>
Co-authored-by: Li He <lih@qti.qualcomm.com>
* sycl: add softplus unary op implementation
* sycl: add softplus unary op implementation
* docs(ops): mark SYCL SOFTPLUS as supported
* docs: update SYCL status for SOFTPLUS
* vulkan: use coopmat for flash attention p*v matrix multiplication
* fix P loading issue
* fix barrier position
* remove reduction that is no longer needed
* move max thread reduction into loop
* remove osh padding
* add bounds checks and padding
* remove unused code
* fix shmem sizes, loop duration and accesses
* don't overwrite Qf, add new shared psh buffer instead
* add missing bounds checks
* use subgroup reductions
* optimize
* move bounds check, reduce barriers
* support other Bc values and other subgroup sizes
* remove D_split
* replace Of register array with shared memory Ofsh array
* parallelize HSV across the rowgroups
* go back to Of in registers, not shmem
* vectorize sfsh
* don't store entire K tile in shmem
* fixes
* load large k tiles to shmem on Nvidia
* adapt shared memory host check function to shader changes
* remove Bc 32 case
* remove unused variable
* fix missing mask reduction tmspsh barrier
* fix mask bounds check
* fix rowmax f16 under/overflow to inf
* fix flash_attn_cm2 BLOCK_SIZE preprocessor directives
The syclcompat/math.hpp is not used anymore. The change that intrduced it was successfuly reverted (https://github.com/ggml-org/llama.cpp/pull/17826).
This include path will become obsolete and dropped in oneAPI 2026.0 effectively breaking ggml-sycl builds.
Deduplication here relied on the fact that vulkan would return unique
UUID for different physical GPUs. It is at the moment not always the case.
On Mac Pro 2019 running Mac OS, with 2 Vega II Duo cards (so, 4 GPU total),
MotlenVK would assign same UUID to pairs of GPUs, unless they
are connected with Infinity Fabric.
See more details here: KhronosGroup/MoltenVK#2683.
The right way is to fix that in MoltenVK, but until it is fixed,
llama.cpp would only recognize 2 of 4 GPUs in such configuration.
The deduplication logic here is changed to only filter GPUs if UUID is
same but driver is different.
* Boilerplate for q6_K repack
* q6_K repack to q6_Kx8 implementation
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* q6_K generic gemv and gemm
* wip, gemm_q6_K 8x8
* Still WIP: loading of q8s, q6h and q6l
* first working version of q6_K gemm
* Moved q6 loads outside of sb block, Unrolled inner loop
* Replaced modulo with mask
* First implementation of GEMV
* ggml_vdotq_s32 -> vdotq_s32
* Reduce width of accumulators in q6_K gemv
* Bsums instead of calc bias. Preload scales to use vget_lane. Unroll.
* Reuse scales in GEMM (same GEMV opt)
* Added todos for bsum and different qh repack
* Arch fallback
* VSLIQ for merging qh adn ql
* Removed TODO, already tested
* Apply suggestions
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Removed unused import
---------
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* [CUDA] Reduce CPU-side stalls due to the CUDA command buffer being full
With pipeline parallelism, during prompt processing, the CPU-side CUDA command buffer gets full, stalling the CPU. Due to this, enough work doesn't get submitted to the GPU, causing bubbles in the GPU timeline.
Fix this by setting the CUDA environment variable CUDA_SCALE_LAUNCH_QUEUES to 4x to increase the command buffer size.
* Set the env variable in the CUDA backend registry allocation
* Add link to PR in code comment
* Remove warning logs and update documentation
* opencl: flatten `q6_K` and add `kernel_mul_mv_q6_K_f32_flat`
* opencl: clean up
* opencl: refactor q6_K mv - put loop body in `block_q_6_K_dot_y_flat`
* opencl: tweak the workgroup size a bit
* opencl: output 4 values per subgroup for `kernel_mul_mv_q6_K_f32_flat`
* opencl: proper alignment for q6_K
* opencl: boundary handling for flattened q6_K mv
* opencl: rename q6_K mv kernel file
* opencl: put flattened q6_K mv in its own file
* opencl: use lower k in file name
* opencl: use K in variable names
* ggml-cpu: Use tiled FA for prompt-processing
the FA performance is gimped on CPU on long contexts because it essentially uses a vector kernel. This PR adds a tiled FA for PP. Perf tuning for tile sizes done on a AMD EPYC single-socket 64-c machine.
* fix out of bounds for mask
* skip rows where there are all masks
* skip tile if mask is inf
* store mask in worksize
* check inf tile earlier
* Boilerplate for q5_Kx8 REPACK on ARM and fallback
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* Implements make_block_q5_Kx8 by extending make_block_q4_Kx8
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* q5_K repack gemm and gemv generics
* Gemm and Gemv ARM implementations (i8mm)
* Improved qh manipulation looking at non-repack vec_dot implementation
* Full unroll
* Apply Q5_K Gemv vand and vshl optimizations to gemm. Improve comments.
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* Fix wrong fallback definitions of Q5_K
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* Fixed comments. Reverted unnecessary formatting
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* Fixed typo in generic definitions
* Switching AND + Shift with Shift Insert. Better op interleaving.
* Vectorize + unroll the block scales
* Apply gemm optimizations to gemv
* Improve bias calculation
---------
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* mla : pass V as a view of K to the FA op
* cuda : adjust mla logic to new layout
* kv-cache : fix rope shift
* tests : remove comment
* cuda : fix reusable_cutoff
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* opencl: add `copy_to_contiguous` and utilize mm kernels
* opencl: only copy to cont for f32 and f16 tensors
* opencl: use cont mm for fallback when dst is large
* opencl: use nb local to copy-to-cont
* opencl: use local offset as well
* vulkan: Remove transfer_ctx, do everything in compute_ctx.
We had a bug where a set_tensor_async (using transfer_ctx) didn't get
submitted before the graph_compute (using compute_ctx) that came after
it. To avoid this sort of issue, just do everything in compute_ctx.
Remove transfer_cmd_pool, which was already unused.
* fix crash with perf logger
Change ggml_vk_mul_mat_vec_id_q_f16 to loop over the batch dimension and
update the indexing calculations in get_offsets.
Mat-vec is faster than mat-mat for small values of n. We don't get the same
reuse of the weights as in the non-ID path, but with this the cost is linear
in n rather than n>1 being far slower than n==1.
I've had issues loading models with llama-server:
[44039] E gguf_init_from_file: failed to open GGUF file 'mistral-7b-v0.1.Q8_0.gguf'
and I was sure it could access the file. Seems like --models-dir and
--models-presets dont interact like I thought they would but I salvaged
this snippet that helps troubleshooting
[44039] E gguf_init_from_file: failed to open GGUF file 'mistral-7b-v0.1.Q8_0.gguf' (errno No such file or directory)
* CUDA: Replace `init_offsets` with iterators in argsort
This is a QOL improvement, saving us the cost of materializing the
iterator
* Remove unnecessary include from top-k.cu
* CANN: fix an issue where get_env was not fully renamed
* ci: add cann with acl group
* ci: define use_acl_graph using GitHub Action
* ci: update cann dockerfile with acl graph
* CANN: support gated linear attn
This change adds support for the GGML_OP_GATED_LINEAR_ATTN operator.
The feature was implemented by YushengZhao. Because the previous
submission was based on an outdated codebase, this PR was rebased to
merge.
Co-authored-by: YushengZhao <yusheng.chao@outlook.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
* CANN: optimize OP gla
Optimize gla for high preformance
* Remove unused comments
---------
Co-authored-by: 赵禹昇 <2501112001@cninfer02.localdomain>
Co-authored-by: YushengZhao <yusheng.chao@outlook.com>
* hexagon: disable repack buffers if host buffers are disabled, improved handling of env vars
* hexagon: add support for OP_CPY fp16/fp32 -> fp16/fp32
Factore out all hvx_copy functions into hvx-copy.h header and reduced code duplication.
Update HTP ops infra to support OP_CPY
* hexagon: cleanup and refactor hex/hvx/htp headers and helper libs
hex is basically all scalar/core platform stuff (L2, DMA, basic utils)
hvx is all hvx related utils, helpers, etc
htp is higher level stuff like Ops, etc
hvx-utils library got a nice round of cleanup and refactoring to reduce duplication
use hvx_vec_store_a where possible
* hexagon: refactor HVX sigmoid functions to hvx-sigmoid.h
Moved sigmoid and tanh vector functions from hvx-utils.h to a new header
hvx-sigmoid.h. Implemented aligned and unaligned variants for sigmoid
array processing using a macro pattern similar to hvx-copy.h. Updated
act-ops.c to use the new aligned variant hvx_sigmoid_f32_aa. Removed
unused hvx-sigmoid.c.
* hexagon: factor out hvx-sqrt.h
* hexagon: mintor update to hvx-utils.h
* hexagon: remove spurios log
* hexagon: factor out and optimize hvx_add/sub/mul
* hexagon: remove _opt variants of add/sub/mul as they simply fully aligned versions
* hexagon: refactor reduction functions to hvx-reduce.h
Moved `hvx_self_max_f32` and `hvx_self_sum_f32` from `hvx-utils.h`/`.c` to `hvx-reduce.h`.
Renamed them to `hvx_reduce_max_f32` and `hvx_reduce_sum_f32`.
Added aligned (`_a`) and unaligned (`_u`) variants and used macros to unify logic.
Updated `softmax-ops.c` to use the new functions.
* hexagon: refactor the rest of arithmetic functions to hvx-arith.h
Moved `hvx_sum_of_squares_f32`, `hvx_min_scalar_f32`, and `hvx_clamp_scalar_f32` from `hvx-utils.c/h` to `hvx-arith.h`. Implemented aligned/unaligned variants (`_aa`, `_au`, etc.) and used macros to reduce code duplication. Updated `hvx_min_scalar_f32` and `hvx_clamp_scalar_f32` to use `dst, src, ..., n` argument order. Updated call sites in `act-ops.c`.
Refactor Hexagon HVX arithmetic functions (min, clamp) to hvx-arith.h
Moved `hvx_min_scalar_f32` and `hvx_clamp_scalar_f32` from `hvx-utils.c/h` to `hvx-arith.h`. Implemented aligned/unaligned variants (`_aa`, `_au`, etc.) and used macros to reduce code duplication. Updated these functions to use `dst, src, ..., n` argument order and updated call sites in `act-ops.c`. `hvx_sum_of_squares_f32` remains in `hvx-utils.c` as requested.
* hexagon: refactor hvx_sum_of_squares_f32
- Modify `hvx_sum_of_squares_f32` in `ggml/src/ggml-hexagon/htp/hvx-reduce.h` to use `dst, src` signature.
- Implement `_a` (aligned) and `_u` (unaligned) variants for `hvx_sum_of_squares_f32`.
- Update `hvx_reduce_loop_body` macro to support both returning and storing results via `finalize_op`.
- Update existing reduction functions in `hvx-reduce.h` to use the updated macro.
- Update `rms_norm_htp_f32` in `ggml/src/ggml-hexagon/htp/unary-ops.c` to match the new signature.
* hexagon: use hvx_splat instead of memset
* hexagon: consistent use of f32/f16 in all function names to match the rest of GGML
* hexagon: fix hvx_copy_f16_f32 on v75 and older
* hexagon: update readme to include GGML_HEXAGON_EXPERIMENTAL
* scripts: update snapdragon/adb scripts to enable host param
* CUDA: Refactor and expose two_stage_warp_reduce_* function
* Use `two_stage_warp_reduce` also in softmax kernel, move smem out of it
Moving smem out of `__device__` function to `__global__` function
allows for explicit smem reuse, as either compiler or cuda rt seem to not
free it afterwards (`cudaFuncSetAttribute` fails when not accounting for
it once for each call to two_stage_warp_reduce)
* Update ggml/src/ggml-cuda/common.cuh
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
* Use two_stage_warp_reduce in group_norm_f32
* Use two_stage_warp_reduce in rms_norm_f32
* Fix smem calculation which expects bytes
* Make `two_stage_warp_reduce` accept all values warp_reduce accepts
Also integrate it into norm_f32 function
* Use two_stage_warp_reduce in l2_norm_f32
* Use type traits for block reduction for better legibility
Also adresss other requests by @am17an such as variable renaming
* Make norm tests cover all cuda paths
* Mark columns % WARP_SIZE !=0 as supported for RMS_NORM_BACK
Unit-tests passed locally, let's see if they pass in the CI as well
* Use `enum class` for `block_reduce_method`
This is more type-safe than plain enum
* Rename variables as suggested in code review by @am17an
* Rename two_stage_warp_reduce -> block_reduce
* Fix trailing whitespace in common.cuh
* Make condition of static_assert type-dependent
This delays evaluation until the template is actually instantiated.
Otherwise, some compilers may evaluate the assert when parsing the
template, resulting in build errors as observed here:
https://github.com/ggml-org/llama.cpp/actions/runs/20960323123/job/60235530068?pr=18785
* Inline definitions
---------
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
This fixes incoherent output in Llama-4-Maverick-17B-128E-PAB-Q8_0, which
has a mul_mat_id with an A matrix that's Q8_0 8192 x 5120 x 128.
This should work when the number of blocks in the A matrix is less than 2^32
(for mul_mat_vec or mul_mm_cm2), or for mul_mm I think the limit is like
2^32*LOAD_VEC_A elements.
- Divide batch_stride by QUANT_K earlier, so the block index calculation works in 32b.
- Each vk_pipeline_struct has a linked list of pipelines that will allow it to handle
variants. So far this change just adds a single use case for this, compiling with the
e64BitIndexingEXT flag.
- Use the 64b indexing variant when the A matrix is larger than maxStorageBufferRange.
64-bit indexing has some cost - around 3-5% in MoE models, so it's worth the effort
to avoid enabling it unconditionally.
* vulkan: Enable and optimize large matmul parameter combination for AMD
* limit tuning to AMD GPUs with coopmat support
* use tx_m values instead of _l
* FlashAttention (#13)
* Add inplace softmax
* Move rms_norm to split row approach
* Update debug for supports_op
* clean up debug statements
* neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though
* neg passes backend test
* unary operators pass ggml tests
* rms_norm double declaration bug atoned
* abides by editor-config
* removed vestigial files
* fixed autoconfig
* All operators (inlcluding xielu) working
* removed unnecesarry checking if node->src[1] exists for unary operators
* responded and dealt with PR comments
* implemented REPL_Template support and removed bug in unary operators kernel
* formatted embed wgsl and ggml-webgpu.cpp
* Faster tensors (#8)
Add fast matrix and matrix/vector multiplication.
* Use map for shader replacements instead of pair of strings
* Wasm (#9)
* webgpu : fix build on emscripten
* more debugging stuff
* test-backend-ops: force single thread on wasm
* fix single-thread case for init_tensor_uniform
* use jspi
* add pthread
* test: remember to set n_thread for cpu backend
* Add buffer label and enable dawn-specific toggles to turn off some checks
* Intermediate state
* Fast working f16/f32 vec4
* Working float fast mul mat
* Clean up naming of mul_mat to match logical model, start work on q mul_mat
* Setup for subgroup matrix mat mul
* Basic working subgroup matrix
* Working subgroup matrix tiling
* Handle weirder sg matrix sizes (but still % sg matrix size)
* Working start to gemv
* working f16 accumulation with shared memory staging
* Print out available subgroup matrix configurations
* Vectorize dst stores for sg matrix shader
* Gemv working scalar
* Minor set_rows optimization (#4)
* updated optimization, fixed errors
* non vectorized version now dispatches one thread per element
* Simplify
* Change logic for set_rows pipelines
---------
Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>
* Comment on dawn toggles
* Working subgroup matrix code for (semi)generic sizes
* Remove some comments
* Cleanup code
* Update dawn version and move to portable subgroup size
* Try to fix new dawn release
* Update subgroup size comment
* Only check for subgroup matrix configs if they are supported
* Add toggles for subgroup matrix/f16 support on nvidia+vulkan
* Make row/col naming consistent
* Refactor shared memory loading
* Move sg matrix stores to correct file
* Working q4_0
* Formatting
* Work with emscripten builds
* Fix test-backend-ops emscripten for f16/quantized types
* Use emscripten memory64 to support get_memory
* Add build flags and try ci
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* Remove extra whitespace
* Move wasm single-thread logic out of test-backend-ops for cpu backend
* Disable multiple threads for emscripten single-thread builds in ggml_graph_plan
* Refactored pipelines and workgroup calculations (#10)
* refactored pipelines
* refactored workgroup calculation
* removed commented out block of prior maps
* Clean up ceiling division pattern
---------
Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>
* Start work on flash attention
* Shader structure set up (many bugs still)
* debugging
* Working first test
* Working with head grouping, head sizes to 128, logit softcap, mask/sinks enabled, f32
* Generalize softmax to work with multiple subgroups, f16 accumulation, mask shared memory tiling
* Start work on integrating pre-wgsl
* Separate structs/initial shader compilation library into separate files
* Work on compilation choices for flashattention
* Work on subgroup matrix/tile size portability
* subgroup size agnostic online softmax
* Cleanups, quantization types
* more cleanup
* fix wasm build
* Refactor flashattention to increase parallelism, use direct loads for KV in somce cases
* Checkpoint
* formatting
* Update to account for default kv cache padding
* formatting shader
* Add workflow for ggml-ci webgpu
* Try passing absolute path to dawn in ggml-ci
* Avoid error on device destruction, add todos for proper cleanup
* Fix unused warning
* Forgot one parameter unused
* Move some flashattn computation to f32 for correctness
* ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH
* makes the min_batch_size for triggering op offload configurable via env var, defaulting to the prior hardcoded value of 32
* ggml: read GGML_OP_OFFLOAD_MIN_BATCH once and store to dev ctx
* cann: forward declaration of device context struct
* cann: move offload op check after device context declaration
* cuda: fix whitespace
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
---------
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
* modify warptile tuning for xe3
* intel vendor check w/ coopmat support
* fix back formatting
* fix formatting change 2
* move intel check to chip specific tuning part
* Change to support both windows and linux
* modify m_warptile to l_warptile for intel
* modify warptile tuning for bf16 matmuls to fix regression (m_warptile to l_warptile)
* Code style changes
* Code style changes (2)
* Code style changes (3)
In #18624, get_env in ggml-cann was renamed to get_env_as_lowercase
to accurately reflect the function’s behavior and reduce the chance
of misuse. However, the update missed renaming call sites in other
files. This commit fixes that oversight.
* hexagon: improve fp16 matmul and add fp32/fp16 flash-attention
* hexagon: add support for set-rows fp32 -> fp16 with i32/i64 row-idx
* hexagon: add support for SCALE fp32
* hexagon: replace scalar fp32 -> fp16 copy with HVX
* hexagon: optimize flash_atten_ext with aligned VTCM buffers and DMA
- Implements double-buffered DMA prefetching for K, V, and Mask tensors.
- Ensures K and V rows in VTCM are padded to 128 bytes to support aligned HVX operations.
- Correctly synchronizes DMA transfers to prevent race conditions.
- Uses `FLASH_ATTN_BLOCK_SIZE` of 128 for efficient chunking.
* hexagon: use aligned mad_f16
* hexagon: flash_atten more aligned ops
* hexagon: optimize scale_f32 hvx helpers
* hexagon: unroll fa loops
* hexagon: remove unused set-rows log
* hexagon: flash_attn_ext add support for DMAing Q
- Update `op_flash_attn_ext` to include Q row size in scratchpad allocation.
- Pad Q row size to 128 bytes for alignment.
- Implement DMA transfer for Q tensor in `flash_attn_ext_f16_thread`.
- Update dot product computations to use VTCM-buffered Q data.
* hexagon: fix handling of NANs hvx dotproducts
* hexagon: cleanup spad allocation in flash-atten
* hexagon: improve fp16/fp32 matmul
- Introduced `vec_dot_f16_f16` and `vec_dot_f16_f16_rx2` kernels using efficient HVX dot product intrinsics.
- Added `quantize_fp32_f16` to copy/convert weights from DDR to VTCM
- Updated `op_matmul` to use the optimized path when VTCM capacity allows and broadcasting requirements are compatible.
- Implemented fallback logic to the original implementation for complex broadcasting scenarios.
* hexagon: fix HVX_ARCH check
* hexagon: matmul cleanup and fp16 fixes
Use aligned vec_dot_f16 for 2d matmuls and unaligned version for 4d.
* hexagon: fix fp16 x fp16 matmuls and some minor refactoring
* hexagon: add support for GET_ROWS f32 -> f32
Also optimize SET_ROWS threading a bit when we have just a few rows to process.
* hexagon: optimize set-rows threading
* hexagon: update adb/run-bench.sh to properly support experimental and verbose options
* hexagon: flash_atten use aligned vectors for dot products