[CUDA] Reduce CPU-side stalls due to the CUDA command buffer being full (#19042)
* [CUDA] Reduce CPU-side stalls due to the CUDA command buffer being full With pipeline parallelism, during prompt processing, the CPU-side CUDA command buffer gets full, stalling the CPU. Due to this, enough work doesn't get submitted to the GPU, causing bubbles in the GPU timeline. Fix this by setting the CUDA environment variable CUDA_SCALE_LAUNCH_QUEUES to 4x to increase the command buffer size. * Set the env variable in the CUDA backend registry allocation * Add link to PR in code comment * Remove warning logs and update documentation
This commit is contained in:
parent
fc3cdf32ce
commit
a83c73a18a
|
|
@ -248,6 +248,14 @@ You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda
|
|||
CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
|
||||
```
|
||||
|
||||
#### CUDA_SCALE_LAUNCH_QUEUES
|
||||
|
||||
The environment variable [`CUDA_SCALE_LAUNCH_QUEUES`](https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/environment-variables.html#cuda-scale-launch-queues) controls the size of CUDA's command buffer, which determines how many GPU operations can be queued before the CPU must wait for the GPU to catch up. A larger buffer reduces CPU-side stalls and allows more work to be queued on a GPU.
|
||||
|
||||
**Default behavior:** llama.cpp automatically sets `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
|
||||
|
||||
See PR [#19042](https://github.com/ggml-org/llama.cpp/pull/19042) for performance benchmarks and technical details.
|
||||
|
||||
### Unified Memory
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted. In Windows this setting is available in the NVIDIA control panel as `System Memory Fallback`.
|
||||
|
|
|
|||
|
|
@ -4876,6 +4876,16 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
|||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (!initialized) {
|
||||
// Set CUDA_SCALE_LAUNCH_QUEUES before any CUDA API call to improve multi-GPU pipeline parallelism performance
|
||||
// PR: https://github.com/ggml-org/llama.cpp/pull/19042
|
||||
if (getenv("CUDA_SCALE_LAUNCH_QUEUES") == nullptr) {
|
||||
#ifdef _WIN32
|
||||
_putenv_s("CUDA_SCALE_LAUNCH_QUEUES", "4x");
|
||||
#else
|
||||
setenv("CUDA_SCALE_LAUNCH_QUEUES", "4x", 0); // don't overwrite if already set
|
||||
#endif // _WIN32
|
||||
}
|
||||
|
||||
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
|
||||
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue