ggml-cuda: enable cuda-graphs for `n-cpu-moe` (#18934)

* ggml-cuda: add split-wise cuda graph

* add n-cpu-moe compare_llama_bench.py

* fix hip/musa builds
This commit is contained in:
Aman Gupta 2026-01-24 14:25:20 +08:00 committed by GitHub
parent 8af1f5f430
commit 81ab64f3c8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 105 additions and 51 deletions

View File

@ -1327,10 +1327,44 @@ struct ggml_backend_cuda_context {
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
std::unique_ptr<ggml_cuda_graph> cuda_graph;
int curr_stream_no = 0;
#ifdef USE_CUDA_GRAPH
// Map from first_node_ptr to cuda_graph - allows multiple graphs per context
// when the computation is split across CPU/GPU (e.g., with --n-cpu-moe)
std::unordered_map<const void *, std::unique_ptr<ggml_cuda_graph>> cuda_graphs;
ggml_cuda_graph * cuda_graph(const void * first_node_ptr) {
auto it = cuda_graphs.find(first_node_ptr);
if (it == cuda_graphs.end()) {
cuda_graphs[first_node_ptr] = std::make_unique<ggml_cuda_graph>();
return cuda_graphs[first_node_ptr].get();
}
return it->second.get();
}
// Check if any CUDA graph is enabled for this context (used by kernels that need to know
// if graphs are in use without having access to the specific graph key)
bool any_cuda_graph_enabled() const {
for (const auto & [key, graph] : cuda_graphs) {
if (graph && graph->is_enabled()) {
return true;
}
}
return false;
}
// Check if any CUDA graph has an instance for this context
bool any_cuda_graph_has_instance() const {
for (const auto & [key, graph] : cuda_graphs) {
if (graph && graph->instance != nullptr) {
return true;
}
}
return false;
}
#endif // USE_CUDA_GRAPH
explicit ggml_backend_cuda_context(int device) :
device(device),
name(GGML_CUDA_NAME + std::to_string(device)) {

View File

@ -2969,18 +2969,25 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_
return true;
}
static const void * ggml_cuda_graph_get_key(ggml_cgraph * cgraph) {
return cgraph->nodes[0];
}
static bool ggml_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
bool res = false;
if (cuda_ctx->cuda_graph->instance == nullptr) {
const void * graph_key = ggml_cuda_graph_get_key(cgraph);
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
if (graph->instance == nullptr) {
res = true;
}
// Check if the graph size has changed
if (cuda_ctx->cuda_graph->props.size() != (size_t)cgraph->n_nodes + cgraph->n_leafs) {
if (graph->props.size() != (size_t)cgraph->n_nodes + cgraph->n_leafs) {
res = true;
cuda_ctx->cuda_graph->props.resize(cgraph->n_nodes + cgraph->n_leafs);
graph->props.resize(cgraph->n_nodes + cgraph->n_leafs);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
@ -2988,37 +2995,38 @@ static bool ggml_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx
for (int i = 0; i < cgraph->n_nodes; i++) {
bool props_match = true;
if (!res) {
props_match = ggml_cuda_graph_node_properties_match(cgraph->nodes[i], &cuda_ctx->cuda_graph->props[i]);
props_match = ggml_cuda_graph_node_properties_match(cgraph->nodes[i], &graph->props[i]);
}
if (!props_match) {
res = true;
}
ggml_cuda_graph_node_set_properties(&cuda_ctx->cuda_graph->props[i], cgraph->nodes[i]);
ggml_cuda_graph_node_set_properties(&graph->props[i], cgraph->nodes[i]);
}
for (int i = 0; i < cgraph->n_leafs; i++) {
bool props_match= true;
bool props_match = true;
if (!res) {
props_match = ggml_cuda_graph_node_properties_match(cgraph->leafs[i], &cuda_ctx->cuda_graph->props[cgraph->n_nodes + i]);
props_match = ggml_cuda_graph_node_properties_match(cgraph->leafs[i], &graph->props[cgraph->n_nodes + i]);
}
if (!props_match) {
res = true;
}
ggml_cuda_graph_node_set_properties(&cuda_ctx->cuda_graph->props[cgraph->n_nodes + i], cgraph->leafs[i]);
ggml_cuda_graph_node_set_properties(&graph->props[cgraph->n_nodes + i], cgraph->leafs[i]);
}
return res;
}
static void ggml_cuda_graph_update_executable(ggml_backend_cuda_context * cuda_ctx) {
static void ggml_cuda_graph_update_executable(ggml_backend_cuda_context * cuda_ctx, const void * graph_key) {
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
#if CUDART_VERSION >= 12000
cudaGraphExecUpdateResultInfo result_info;
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
cudaError_t stat = cudaGraphExecUpdate(graph->instance, graph->graph, &result_info);
#else
cudaGraphNode_t errorNode;
cudaGraphExecUpdateResult result_info;
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &errorNode, &result_info);
cudaError_t stat = cudaGraphExecUpdate(graph->instance, graph->graph, &errorNode, &result_info);
#endif // CUDART_VERSION >= 12000
if (stat == cudaErrorGraphExecUpdateFailure) {
@ -3029,14 +3037,14 @@ static void ggml_cuda_graph_update_executable(ggml_backend_cuda_context * cuda_c
// The pre-existing graph exec cannot be updated due to violated constraints
// so instead clear error and re-instantiate
(void)cudaGetLastError();
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
cuda_ctx->cuda_graph->instance = nullptr;
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
CUDA_CHECK(cudaGraphExecDestroy(graph->instance));
graph->instance = nullptr;
CUDA_CHECK(cudaGraphInstantiate(&graph->instance, graph->graph, NULL, NULL, 0));
} else {
GGML_ASSERT(stat == cudaSuccess);
}
}
#endif
#endif // USE_CUDA_GRAPH
static bool ggml_cuda_should_fuse_rope_set_rows(const ggml_tensor * rope,
const ggml_tensor * view,
@ -3241,7 +3249,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, const bool use_cuda_graph, const bool cuda_graph_update_required) {
static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, const bool use_cuda_graph, const bool cuda_graph_update_required, const void * graph_key) {
bool graph_evaluated_or_captured = false;
// flag used to determine whether it is an integrated_gpu
@ -3695,13 +3703,14 @@ static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cud
}
#ifdef USE_CUDA_GRAPH
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
if (cuda_ctx->cuda_graph->graph != nullptr) {
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
cuda_ctx->cuda_graph->graph = nullptr;
if (graph->graph != nullptr) {
CUDA_CHECK(cudaGraphDestroy(graph->graph));
graph->graph = nullptr;
}
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &graph->graph));
graph_evaluated_or_captured = true; // CUDA graph has been captured
std::lock_guard<std::mutex> lock(ggml_cuda_lock);
@ -3714,40 +3723,39 @@ static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cud
}
if (use_cuda_graph) {
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
if (graph->instance == nullptr) { // Create executable graph from captured graph.
CUDA_CHECK(cudaGraphInstantiate(&graph->instance, graph->graph, NULL, NULL, 0));
}
if (cuda_graph_update_required) { // Update graph executable
ggml_cuda_graph_update_executable(cuda_ctx);
ggml_cuda_graph_update_executable(cuda_ctx, graph_key);
}
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
CUDA_CHECK(cudaGraphLaunch(graph->instance, cuda_ctx->stream()));
#else
graph_evaluated_or_captured = true;
#endif // USE_CUDA_GRAPH
}
}
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx) {
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, const void * graph_key) {
#ifdef USE_CUDA_GRAPH
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
if (!cuda_ctx->cuda_graph->disable_due_to_gpu_arch) {
if (!graph->disable_due_to_gpu_arch) {
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
}
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
graph->disable_due_to_gpu_arch = true;
}
}
return cuda_ctx->cuda_graph->is_enabled();
return graph->is_enabled();
#else
GGML_UNUSED(cuda_ctx);
GGML_UNUSED(graph_key);
return false;
#endif // USE_CUDA_GRAPH
}
@ -3759,15 +3767,19 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
const void * graph_key = nullptr;
#ifdef USE_CUDA_GRAPH
use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx);
graph_key = ggml_cuda_graph_get_key(cgraph);
if (cuda_ctx->cuda_graph->is_enabled()) {
use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx, graph_key);
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
if (graph->is_enabled()) {
cuda_graph_update_required = ggml_cuda_graph_update_required(cuda_ctx, cgraph);
use_cuda_graph = ggml_cuda_graph_check_compability(cgraph);
cuda_ctx->cuda_graph->record_update(use_cuda_graph, cuda_graph_update_required);
graph->record_update(use_cuda_graph, cuda_graph_update_required);
}
#endif // USE_CUDA_GRAPH
@ -3781,7 +3793,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
ggml_cuda_graph_evaluate_and_capture(cuda_ctx, cgraph, use_cuda_graph, cuda_graph_update_required);
ggml_cuda_graph_evaluate_and_capture(cuda_ctx, cgraph, use_cuda_graph, cuda_graph_update_required, graph_key);
return GGML_STATUS_SUCCESS;
}
@ -3814,7 +3826,14 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
const bool use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx);
#ifdef USE_CUDA_GRAPH
const void * graph_key = ggml_cuda_graph_get_key(cgraph);
const bool use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx, graph_key);
#else
const bool use_cuda_graph = false;
GGML_UNUSED(cuda_ctx);
GGML_UNUSED(cgraph);
#endif
static bool enable_graph_optimization = [] {
const char * env = getenv("GGML_CUDA_GRAPH_OPT");

View File

@ -31,14 +31,15 @@ void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
#endif // USE_CUDA_GRAPH
if ((nrows == 1) &&
#ifdef USE_CUDA_GRAPH
// CUDA_GRAPHS_DISABLED
((ncols > 65536) &&
((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
ctx.cuda_graph->is_enabled())) ||
// CUDA_GRAPHS ENABLED
((ncols > 32768) &&
!((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
ctx.cuda_graph->is_enabled()))) {
// Determine if CUDA graphs are effectively disabled for this context
// (no graph instance exists and we're not capturing, OR graphs are explicitly enabled)
(((ncols > 65536) &&
(((!ctx.any_cuda_graph_has_instance()) && (iscapturing == cudaStreamCaptureStatusNone)) ||
ctx.any_cuda_graph_enabled())) ||
// CUDA graphs are enabled - use lower threshold
((ncols > 32768) &&
!(((!ctx.any_cuda_graph_has_instance()) && (iscapturing == cudaStreamCaptureStatusNone)) ||
ctx.any_cuda_graph_enabled())))) {
#else
(ncols > 65536)) {
#endif // USE_CUDA_GRAPH

View File

@ -29,7 +29,7 @@ LLAMA_BENCH_DB_FIELDS = [
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
"use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth",
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts", "n_cpu_moe"
]
LLAMA_BENCH_DB_TYPES = [
@ -38,7 +38,7 @@ LLAMA_BENCH_DB_TYPES = [
"TEXT", "INTEGER", "INTEGER", "TEXT", "TEXT", "INTEGER",
"TEXT", "INTEGER", "INTEGER", "INTEGER", "TEXT", "TEXT",
"INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
"TEXT", "INTEGER", "INTEGER", "REAL", "REAL",
"TEXT", "INTEGER", "INTEGER", "REAL", "REAL", "INTEGER",
]
# All test-backend-ops SQL fields
@ -59,7 +59,7 @@ assert len(TEST_BACKEND_OPS_DB_FIELDS) == len(TEST_BACKEND_OPS_DB_TYPES)
# Properties by which to differentiate results per commit for llama-bench:
LLAMA_BENCH_KEY_PROPERTIES = [
"cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
"cpu_info", "gpu_info", "backends", "n_gpu_layers", "n_cpu_moe", "tensor_buft_overrides", "model_filename", "model_type",
"n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
"use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
]