ggml-webgpu: improve flastAttention performance by software pipelining (#19151)
* webgpu : pipeline flash_attn Q/K loads in WGSL * ggml-webgpu: unroll Q*K accumlation inner loop * ggml-webgpu: vectorization * ggml-webgpu: unrolling * ggml-webgpu: remove redundant unrolling * ggml-webgpu: restore the config * ggml-webgpu: remove redundant comments * ggml-webgpu: formatting * ggml-webgpu: formatting and remove vectorization * ggml-webgpu: remove unnecessary constants * ggml-webgpu: change QKV buffer to read_write to pass validation * ggml-webgpu: add explanation for the additional bracket around Q K accumulate * Indentation and for -> if for tail * Kick off CI on wgsl only commits --------- Co-authored-by: Reese Levine <reeselevine1@gmail.com>
This commit is contained in:
parent
ce38a4db47
commit
bd90fc74c3
|
|
@ -21,7 +21,8 @@ on:
|
|||
'**/*.m',
|
||||
'**/*.metal',
|
||||
'**/*.comp',
|
||||
'**/*.glsl'
|
||||
'**/*.glsl',
|
||||
'**/*.wgsl'
|
||||
]
|
||||
|
||||
pull_request:
|
||||
|
|
@ -42,7 +43,8 @@ on:
|
|||
'**/*.m',
|
||||
'**/*.metal',
|
||||
'**/*.comp',
|
||||
'**/*.glsl'
|
||||
'**/*.glsl',
|
||||
'**/*.wgsl'
|
||||
]
|
||||
|
||||
concurrency:
|
||||
|
|
|
|||
|
|
@ -114,7 +114,7 @@ struct Params {
|
|||
#define PARAMS_BINDING 4
|
||||
#endif
|
||||
|
||||
@group(0) @binding(DST_BINDING) var<storage, read_write> dst: array<f32>;
|
||||
@group(0) @binding(DST_BINDING) var<storage, read_write> dst: array<vec4<f32>>;
|
||||
@group(0) @binding(PARAMS_BINDING) var<uniform> params: Params;
|
||||
|
||||
// Just a very small float value.
|
||||
|
|
@ -160,14 +160,21 @@ fn calc_softmax_term(kv_idx: u32, q_tile_row: u32, slope: f32) -> f32 {
|
|||
return v;
|
||||
}
|
||||
|
||||
fn load_f32x4(buf: ptr<storage, array<vec4<f32>>, read_write>, scalar_index: u32) -> vec4<f32> {
|
||||
return (*buf)[scalar_index >> 2u];
|
||||
}
|
||||
|
||||
fn load_kvx4(buf: ptr<storage, array<vec4<KV_TYPE>>, read_write>, scalar_index: u32) -> vec4<KV_TYPE> {
|
||||
return (*buf)[scalar_index >> 2u];
|
||||
}
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
||||
@builtin(local_invocation_id) local_id: vec3<u32>,
|
||||
@builtin(subgroup_id) subgroup_id: u32,
|
||||
@builtin(subgroup_size) subgroup_size: u32,
|
||||
@builtin(num_subgroups) num_subgroups: u32,
|
||||
@builtin(subgroup_invocation_id) sg_inv_id: u32) {
|
||||
@builtin(local_invocation_id) local_id: vec3<u32>,
|
||||
@builtin(subgroup_id) subgroup_id: u32,
|
||||
@builtin(subgroup_size) subgroup_size: u32,
|
||||
@builtin(num_subgroups) num_subgroups: u32,
|
||||
@builtin(subgroup_invocation_id) sg_inv_id: u32) {
|
||||
|
||||
// initialize row max for online softmax
|
||||
for (var i = local_id.x; i < Q_TILE; i += WG_SIZE) {
|
||||
|
|
@ -231,9 +238,9 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
|
||||
for (var kv_tile = 0u; kv_tile < params.seq_len_kv; kv_tile += KV_TILE) {
|
||||
// clear inter_shmem to ensure zero-initialized accumulators
|
||||
for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
|
||||
inter_shmem[elem_idx] = 0.0;
|
||||
}
|
||||
for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
|
||||
inter_shmem[elem_idx] = 0.0;
|
||||
}
|
||||
|
||||
// load k tile into shared memory
|
||||
#if defined(KV_Q4_0)
|
||||
|
|
@ -309,48 +316,77 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
|
||||
// accumulate q block * k block into registers across the entire KV tile
|
||||
// TODO: this loop seems to be the current largest bottleneck
|
||||
for (var kv_block = subgroup_id; kv_block < KV_BLOCKS; kv_block += num_subgroups) {
|
||||
let inter_offset = kv_block * SG_MAT_N;
|
||||
var acc: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<
|
||||
subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(&inter_shmem, inter_offset, false, KV_TILE);
|
||||
// this bracket exists to scope the lifetime of variables, reducing register pressure
|
||||
{
|
||||
#ifdef KV_DIRECT
|
||||
let k_block_row = kv_tile + kv_block * SG_MAT_N;
|
||||
let k_global_offset = k_head_offset + k_block_row * params.stride_k1;
|
||||
let k_block_row = kv_tile + subgroup_id * SG_MAT_N;
|
||||
var k_global_offset = k_head_offset + k_block_row * params.stride_k1;
|
||||
#else
|
||||
let k_block_offset = kv_block * SG_MAT_N * HEAD_DIM_QK;
|
||||
var k_block_offset = subgroup_id * SG_MAT_N * HEAD_DIM_QK;
|
||||
#endif
|
||||
for (var head_dim_block = 0u; head_dim_block < HEAD_DIM_QK; head_dim_block += SG_MAT_K) {
|
||||
// load q submatrix from shared memory
|
||||
var q_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
|
||||
&q_shmem,
|
||||
head_dim_block,
|
||||
false,
|
||||
HEAD_DIM_QK
|
||||
);
|
||||
for (var kv_block = subgroup_id; kv_block < KV_BLOCKS; kv_block += num_subgroups) {
|
||||
let inter_offset = kv_block * SG_MAT_N;
|
||||
var acc: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(&inter_shmem, inter_offset, false, KV_TILE);
|
||||
|
||||
var q_cur = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(&q_shmem, 0u, false, HEAD_DIM_QK);
|
||||
|
||||
// load k submatrix from device or shared memory
|
||||
#ifdef KV_DIRECT
|
||||
var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
|
||||
&K,
|
||||
k_global_offset + head_dim_block,
|
||||
true,
|
||||
params.stride_k1
|
||||
);
|
||||
var k_cur = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&K, k_global_offset + 0u, true, params.stride_k1);
|
||||
#else
|
||||
var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
|
||||
&kv_shmem,
|
||||
k_block_offset + head_dim_block,
|
||||
true,
|
||||
HEAD_DIM_QK
|
||||
);
|
||||
var k_cur = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&kv_shmem, k_block_offset + 0u, true, HEAD_DIM_QK);
|
||||
#endif
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_sg_mat, k_sg_mat, acc);
|
||||
|
||||
var t: u32 = 1u;
|
||||
for (; t + 1u < HEAD_DIM_QK / SG_MAT_K; t += 2u) {
|
||||
let h0 = t * SG_MAT_K;
|
||||
var q0 = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(&q_shmem, h0, false, HEAD_DIM_QK);
|
||||
#ifdef KV_DIRECT
|
||||
var k0 = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&K, k_global_offset + h0, true, params.stride_k1);
|
||||
#else
|
||||
var k0 = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&kv_shmem, k_block_offset + h0, true, HEAD_DIM_QK);
|
||||
#endif
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_cur, k_cur, acc);
|
||||
q_cur = q0;
|
||||
k_cur = k0;
|
||||
|
||||
let h1 = (t + 1u) * SG_MAT_K;
|
||||
var q1g = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(&q_shmem, h1, false, HEAD_DIM_QK);
|
||||
#ifdef KV_DIRECT
|
||||
var k1g = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&K, k_global_offset + h1, true, params.stride_k1);
|
||||
#else
|
||||
var k1g = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&kv_shmem, k_block_offset + h1, true, HEAD_DIM_QK);
|
||||
#endif
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_cur, k_cur, acc);
|
||||
q_cur = q1g;
|
||||
k_cur = k1g;
|
||||
}
|
||||
|
||||
// handle odd tail
|
||||
if (t < HEAD_DIM_QK / SG_MAT_K) {
|
||||
let h = t * SG_MAT_K;
|
||||
var qn = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(&q_shmem, h, false, HEAD_DIM_QK);
|
||||
#ifdef KV_DIRECT
|
||||
var kn = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&K, k_global_offset + h, true, params.stride_k1);
|
||||
#else
|
||||
var kn = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&kv_shmem, k_block_offset + h, true, HEAD_DIM_QK);
|
||||
#endif
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_cur, k_cur, acc);
|
||||
q_cur = qn;
|
||||
k_cur = kn;
|
||||
}
|
||||
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_cur, k_cur, acc);
|
||||
|
||||
#ifdef KV_DIRECT
|
||||
k_global_offset += num_subgroups * SG_MAT_N * params.stride_k1;
|
||||
#else
|
||||
k_block_offset += num_subgroups * SG_MAT_N * HEAD_DIM_QK;
|
||||
#endif
|
||||
subgroupMatrixStore(&inter_shmem, inter_offset, acc, false, KV_TILE);
|
||||
}
|
||||
|
||||
// store acc to shared memory for softmax (S matrix from paper)
|
||||
subgroupMatrixStore(&inter_shmem, inter_offset, acc, false, KV_TILE);
|
||||
}
|
||||
|
||||
|
||||
#ifdef MASK
|
||||
// load mask tile into shared memory for this KV block
|
||||
// TODO: optimize and skip if mask is -INF for the entire tile
|
||||
|
|
@ -495,7 +531,6 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
false,
|
||||
HEAD_DIM_V
|
||||
);
|
||||
|
||||
for (var kv_block = 0u; kv_block < KV_BLOCKS; kv_block++) {
|
||||
let p_offset = kv_block * SG_MAT_N;
|
||||
var p_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
|
||||
|
|
@ -527,11 +562,9 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
// O += P * V
|
||||
o_sg_mat = subgroupMatrixMultiplyAccumulate(p_sg_mat, v_sg_mat, o_sg_mat);
|
||||
}
|
||||
|
||||
// store O back to shared memory
|
||||
subgroupMatrixStore(&o_shmem, head_dim_block, o_sg_mat, false, HEAD_DIM_V);
|
||||
}
|
||||
|
||||
workgroupBarrier();
|
||||
}
|
||||
|
||||
|
|
@ -566,26 +599,38 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
o_shmem[idx] = f16(val);
|
||||
}
|
||||
}
|
||||
|
||||
workgroupBarrier();
|
||||
#endif
|
||||
|
||||
// write output back to global memory
|
||||
for (var q_tile_row = subgroup_id;
|
||||
q_tile_row < Q_TILE;
|
||||
q_tile_row += num_subgroups) {
|
||||
let global_q_row = q_row_start + q_tile_row;
|
||||
if (global_q_row >= params.seq_len_q) {
|
||||
break;
|
||||
}
|
||||
q_tile_row < Q_TILE;
|
||||
q_tile_row += num_subgroups) {
|
||||
|
||||
let exp_sum = exp_sum_shmem[q_tile_row];
|
||||
let scale = select(0.0, 1.0 / exp_sum, exp_sum != 0);
|
||||
let global_q_row = q_row_start + q_tile_row;
|
||||
if (global_q_row >= params.seq_len_q) { break; }
|
||||
|
||||
for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
|
||||
let o_val = o_shmem[q_tile_row * HEAD_DIM_V + elem_idx];
|
||||
let scaled = f32(o_val) * scale;
|
||||
dst[dst_global_offset + q_tile_row * dst2_stride + elem_idx] = scaled;
|
||||
}
|
||||
let exp_sum = exp_sum_shmem[q_tile_row];
|
||||
let scale = select(0.0, 1.0 / exp_sum, exp_sum != 0.0);
|
||||
|
||||
let row_base: u32 = dst_global_offset + q_tile_row * dst2_stride;
|
||||
|
||||
for (var elem_base = sg_inv_id * 4u;
|
||||
elem_base < HEAD_DIM_V;
|
||||
elem_base += subgroup_size * 4u) {
|
||||
|
||||
let i0 = q_tile_row * HEAD_DIM_V + (elem_base + 0u);
|
||||
let i1 = q_tile_row * HEAD_DIM_V + (elem_base + 1u);
|
||||
let i2 = q_tile_row * HEAD_DIM_V + (elem_base + 2u);
|
||||
let i3 = q_tile_row * HEAD_DIM_V + (elem_base + 3u);
|
||||
|
||||
let v = vec4<f32>(
|
||||
f32(o_shmem[i0]) * scale,
|
||||
f32(o_shmem[i1]) * scale,
|
||||
f32(o_shmem[i2]) * scale,
|
||||
f32(o_shmem[i3]) * scale
|
||||
);
|
||||
|
||||
let dst_vec_index: u32 = (row_base + elem_base) >> 2u;
|
||||
dst[dst_vec_index] = v;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue