ggml webgpu: initial flashattention implementation (#18610)

* FlashAttention (#13)

* Add inplace softmax

* Move rms_norm to split row approach

* Update debug for supports_op

* clean up debug statements

* neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

* neg passes backend test

* unary operators pass ggml tests

* rms_norm double declaration bug atoned

* abides by editor-config

* removed vestigial files

* fixed autoconfig

* All operators (inlcluding xielu) working

* removed unnecesarry checking if node->src[1] exists for unary operators

* responded and dealt with PR comments

* implemented REPL_Template support and removed bug in unary operators kernel

* formatted embed wgsl and ggml-webgpu.cpp

* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings

* Wasm (#9)

* webgpu : fix build on emscripten

* more debugging stuff

* test-backend-ops: force single thread on wasm

* fix single-thread case for init_tensor_uniform

* use jspi

* add pthread

* test: remember to set n_thread for cpu backend

* Add buffer label and enable dawn-specific toggles to turn off some checks

* Intermediate state

* Fast working f16/f32 vec4

* Working float fast mul mat

* Clean up naming of mul_mat to match logical model, start work on q mul_mat

* Setup for subgroup matrix mat mul

* Basic working subgroup matrix

* Working subgroup matrix tiling

* Handle weirder sg matrix sizes (but still % sg matrix size)

* Working start to gemv

* working f16 accumulation with shared memory staging

* Print out available subgroup matrix configurations

* Vectorize dst stores for sg matrix shader

* Gemv working scalar

* Minor set_rows optimization (#4)

* updated optimization, fixed errors

* non vectorized version now dispatches one thread per element

* Simplify

* Change logic for set_rows pipelines

---------

Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Comment on dawn toggles

* Working subgroup matrix code for (semi)generic sizes

* Remove some comments

* Cleanup code

* Update dawn version and move to portable subgroup size

* Try to fix new dawn release

* Update subgroup size comment

* Only check for subgroup matrix configs if they are supported

* Add toggles for subgroup matrix/f16 support on nvidia+vulkan

* Make row/col naming consistent

* Refactor shared memory loading

* Move sg matrix stores to correct file

* Working q4_0

* Formatting

* Work with emscripten builds

* Fix test-backend-ops emscripten for f16/quantized types

* Use emscripten memory64 to support get_memory

* Add build flags and try ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* Remove extra whitespace

* Move wasm single-thread logic out of test-backend-ops for cpu backend

* Disable multiple threads for emscripten single-thread builds in ggml_graph_plan

* Refactored pipelines and workgroup calculations (#10)

* refactored pipelines

* refactored workgroup calculation

* removed commented out block of prior maps

* Clean up ceiling division pattern

---------

Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Start work on flash attention

* Shader structure set up (many bugs still)

* debugging

* Working first test

* Working with head grouping, head sizes to 128, logit softcap, mask/sinks enabled, f32

* Generalize softmax to work with multiple subgroups, f16 accumulation, mask shared memory tiling

* Start work on integrating pre-wgsl

* Separate structs/initial shader compilation library into separate files

* Work on compilation choices for flashattention

* Work on subgroup matrix/tile size portability

* subgroup size agnostic online softmax

* Cleanups, quantization types

* more cleanup

* fix wasm build

* Refactor flashattention to increase parallelism, use direct loads for KV in somce cases

* Checkpoint

* formatting

* Update to account for default kv cache padding

* formatting shader

* Add workflow for ggml-ci webgpu

* Try passing absolute path to dawn in ggml-ci

* Avoid error on device destruction, add todos for proper cleanup

* Fix unused warning

* Forgot one parameter unused

* Move some flashattn computation to f32 for correctness
This commit is contained in:
Reese Levine 2026-01-08 08:23:39 -08:00 committed by GitHub
parent 2524c26164
commit 15bff84bf5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 1838 additions and 47 deletions

View File

@ -152,13 +152,13 @@ jobs:
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.zip"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
mkdir dawn
unzip artifact.zip
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.tar.gz -C dawn --strip-components=1
tar -xvf ${DAWN_ASSET_NAME}.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
@ -532,13 +532,13 @@ jobs:
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.zip"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
mkdir dawn
unzip artifact.zip
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.tar.gz -C dawn --strip-components=1
tar -xvf ${DAWN_ASSET_NAME}.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
@ -1704,6 +1704,34 @@ jobs:
run: |
GG_BUILD_METAL=1 bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
ggml-ci-mac-webgpu:
runs-on: [self-hosted, macOS, ARM64]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dawn Dependency
id: dawn-depends
run: |
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
mkdir dawn
unzip artifact.zip
tar -xvf ${DAWN_ASSET_NAME}.tar.gz -C dawn --strip-components=1
- name: Test
id: ggml-ci
run: |
GG_BUILD_WEBGPU=1 GG_BUILD_WEBGPU_DAWN_PREFIX="$GITHUB_WORKSPACE/dawn" \
bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
ggml-ci-mac-vulkan:
runs-on: [self-hosted, macOS, ARM64]

View File

@ -105,7 +105,20 @@ if [ ! -z ${GG_BUILD_VULKAN} ]; then
fi
if [ ! -z ${GG_BUILD_WEBGPU} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1 -DGGML_METAL=OFF -DGGML_BLAS=OFF"
if [ ! -z "${GG_BUILD_WEBGPU_DAWN_PREFIX}" ]; then
if [ -z "${CMAKE_PREFIX_PATH}" ]; then
export CMAKE_PREFIX_PATH="${GG_BUILD_WEBGPU_DAWN_PREFIX}"
else
export CMAKE_PREFIX_PATH="${GG_BUILD_WEBGPU_DAWN_PREFIX}:${CMAKE_PREFIX_PATH}"
fi
fi
# For some systems, Dawn_DIR needs to be set explicitly, e.g., the lib64 path
if [ ! -z "${GG_BUILD_WEBGPU_DAWN_DIR}" ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DDawn_DIR=${GG_BUILD_WEBGPU_DAWN_DIR}"
fi
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then

View File

@ -0,0 +1,169 @@
#ifndef GGML_WEBGPU_SHADER_LIB_HPP
#define GGML_WEBGPU_SHADER_LIB_HPP
#include "ggml.h"
#include "pre_wgsl.hpp"
#include <string>
#include <vector>
#define GGML_WEBGPU_F16_SIZE_BYTES 2
#define GGML_WEBGPU_F32_SIZE_BYTES 4
#define GGML_WEBGPU_FLASH_ATTN_PREFERRED_KV_SG_TILES 8u
#define GGML_WEBGPU_FLASH_ATTN_PREFERRED_WG_SIZE 128u
// Matches GGML_PAD(..., 256) in src/llama-context.cpp for KV cache sizing.
#define GGML_WEBGPU_KV_SEQ_PAD 256u
struct ggml_webgpu_flash_attn_shader_lib_context {
ggml_type kv_type;
uint32_t head_dim_qk;
uint32_t head_dim_v;
bool kv_direct;
bool has_mask;
bool has_sinks;
bool uses_logit_softcap;
uint32_t sg_mat_m;
uint32_t sg_mat_n;
uint32_t sg_mat_k;
size_t wg_mem_limit_bytes;
uint32_t max_subgroup_size;
};
struct ggml_webgpu_flash_attn_shader_decisions {
uint32_t q_tile = 0;
uint32_t kv_tile = 0;
uint32_t wg_size = 0;
};
struct ggml_webgpu_processed_shader {
std::string wgsl;
std::string variant;
ggml_webgpu_flash_attn_shader_decisions decisions;
};
// This is exposed because it's necessary in supports_op
inline size_t ggml_webgpu_flash_attn_wg_mem_bytes(uint32_t q_tile,
uint32_t kv_tile,
uint32_t head_dim_qk,
uint32_t head_dim_v,
bool has_mask,
bool kv_direct) {
const uint32_t max_head_dim = std::max(head_dim_qk, head_dim_v);
size_t f16_elems = 0;
size_t f32_elems = 0;
f16_elems += q_tile * head_dim_qk; // q_shmem
if (!kv_direct) {
f16_elems += kv_tile * max_head_dim; // kv_shmem
}
f16_elems += q_tile * head_dim_v; // o_shmem
if (has_mask) {
f16_elems += q_tile * kv_tile; // mask_shmem
}
f16_elems += q_tile * kv_tile; // inter_shmem
f32_elems += q_tile; // row_max_shmem
f32_elems += q_tile; // exp_sum_shmem
return f16_elems * GGML_WEBGPU_F16_SIZE_BYTES + f32_elems * GGML_WEBGPU_F32_SIZE_BYTES;
}
static uint32_t ggml_webgpu_flash_attn_max_kv_tile(const ggml_webgpu_flash_attn_shader_lib_context & context) {
const size_t limit_bytes = context.wg_mem_limit_bytes;
const size_t q_tile = context.sg_mat_m;
const size_t base_q_bytes = (context.head_dim_qk + context.head_dim_v) * q_tile * GGML_WEBGPU_F16_SIZE_BYTES +
2 * q_tile * GGML_WEBGPU_F32_SIZE_BYTES;
size_t bytes_per_kv = 0;
if (!context.kv_direct) {
bytes_per_kv += std::max(context.head_dim_qk, context.head_dim_v);
}
if (context.has_mask) {
bytes_per_kv += q_tile;
}
bytes_per_kv += q_tile;
bytes_per_kv *= GGML_WEBGPU_F16_SIZE_BYTES;
const uint32_t max_kv_tile = (limit_bytes - base_q_bytes) / bytes_per_kv;
return (max_kv_tile / context.sg_mat_n) * context.sg_mat_n;
}
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_flash_attn_shader(
pre_wgsl::Preprocessor & preprocessor,
const char * shader_src,
const ggml_webgpu_flash_attn_shader_lib_context & context) {
std::vector<std::string> defines;
std::string variant = "flash_attn";
switch (context.kv_type) {
case GGML_TYPE_F32:
defines.push_back("KV_F32");
break;
case GGML_TYPE_F16:
defines.push_back("KV_F16");
break;
case GGML_TYPE_Q4_0:
defines.push_back("KV_Q4_0");
break;
case GGML_TYPE_Q8_0:
defines.push_back("KV_Q8_0");
break;
default:
GGML_ABORT("Unsupported KV type for flash attention shader");
}
variant += std::string("_") + ggml_type_name(context.kv_type);
if (context.has_mask) {
defines.push_back("MASK");
variant += "_mask";
}
if (context.has_sinks) {
defines.push_back("SINKS");
variant += "_sinks";
}
if (context.uses_logit_softcap) {
defines.push_back("LOGIT_SOFTCAP");
variant += "_lgsc";
}
if (context.kv_direct) {
defines.push_back("KV_DIRECT");
variant += "_kvdirect";
}
defines.push_back(std::string("HEAD_DIM_QK=") + std::to_string(context.head_dim_qk));
variant += std::string("_hsqk") + std::to_string(context.head_dim_qk);
defines.push_back(std::string("HEAD_DIM_V=") + std::to_string(context.head_dim_v));
variant += std::string("_hsv") + std::to_string(context.head_dim_v);
// For now these are not part of the variant name
defines.push_back(std::string("SG_MAT_M=") + std::to_string(context.sg_mat_m));
defines.push_back(std::string("SG_MAT_N=") + std::to_string(context.sg_mat_n));
defines.push_back(std::string("SG_MAT_K=") + std::to_string(context.sg_mat_k));
// Add chosen Q/KV tile sizes
uint32_t q_tile = context.sg_mat_m;
uint32_t kv_tile = std::min(ggml_webgpu_flash_attn_max_kv_tile(context),
context.sg_mat_n * GGML_WEBGPU_FLASH_ATTN_PREFERRED_KV_SG_TILES);
if (context.kv_direct) {
GGML_ASSERT(kv_tile <= GGML_WEBGPU_KV_SEQ_PAD);
// Avoids having to use bounds-checks and decreasing performance for direct KV loads
while (GGML_WEBGPU_KV_SEQ_PAD % kv_tile != 0) {
kv_tile -= context.sg_mat_n;
}
}
defines.push_back(std::string("Q_TILE=") + std::to_string(q_tile));
defines.push_back(std::string("KV_TILE=") + std::to_string(kv_tile));
// workgroup size
uint32_t wg_size = std::max(context.max_subgroup_size, GGML_WEBGPU_FLASH_ATTN_PREFERRED_WG_SIZE);
defines.push_back(std::string("WG_SIZE=") + std::to_string(wg_size));
ggml_webgpu_processed_shader result;
result.wgsl = preprocessor.preprocess(shader_src, defines);
result.variant = variant;
result.decisions.q_tile = q_tile;
result.decisions.kv_tile = kv_tile;
result.decisions.wg_size = wg_size;
return result;
}
#endif // GGML_WEBGPU_SHADER_LIB_HPP

View File

@ -7,7 +7,9 @@
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
#include "ggml-webgpu-shader-lib.hpp"
#include "ggml-wgsl-shaders.hpp"
#include "pre_wgsl.hpp"
#ifdef __EMSCRIPTEN__
# include <emscripten/emscripten.h>
@ -30,7 +32,7 @@
#ifdef GGML_WEBGPU_DEBUG
# define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
# define WEBGPU_DEBUG_BUF_ELEMS 32
# define WEBGPU_DEBUG_BUF_ELEMS 512
#else
# define WEBGPU_LOG_DEBUG(msg) ((void) 0)
#endif // GGML_WEBGPU_DEBUG
@ -251,6 +253,7 @@ struct webgpu_gpu_profile_buf_pool {
struct webgpu_pipeline {
wgpu::ComputePipeline pipeline;
std::string name;
void * context = nullptr;
};
struct webgpu_command {
@ -263,6 +266,46 @@ struct webgpu_command {
#endif
};
struct flash_attn_pipeline_key {
int q_type;
int kv_type;
int dst_type;
uint32_t head_dim_qk;
uint32_t head_dim_v;
bool kv_direct;
bool has_mask;
bool has_sinks;
bool uses_logit_softcap;
bool operator==(const flash_attn_pipeline_key & other) const {
return q_type == other.q_type && kv_type == other.kv_type && dst_type == other.dst_type &&
head_dim_qk == other.head_dim_qk && head_dim_v == other.head_dim_v && kv_direct == other.kv_direct &&
has_mask == other.has_mask && has_sinks == other.has_sinks &&
uses_logit_softcap == other.uses_logit_softcap;
}
};
// Same hash combine function as in boost
template <typename T> inline void ggml_webgpu_hash_combine(size_t & seed, const T & value) {
seed ^= std::hash<T>{}(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
struct flash_attn_pipeline_key_hash {
size_t operator()(const flash_attn_pipeline_key & key) const {
size_t seed = 0;
ggml_webgpu_hash_combine(seed, key.q_type);
ggml_webgpu_hash_combine(seed, key.kv_type);
ggml_webgpu_hash_combine(seed, key.dst_type);
ggml_webgpu_hash_combine(seed, key.head_dim_qk);
ggml_webgpu_hash_combine(seed, key.head_dim_v);
ggml_webgpu_hash_combine(seed, key.kv_direct);
ggml_webgpu_hash_combine(seed, key.has_mask);
ggml_webgpu_hash_combine(seed, key.has_sinks);
ggml_webgpu_hash_combine(seed, key.uses_logit_softcap);
return seed;
}
};
// All the base objects needed to run operations on a WebGPU device
struct webgpu_context_struct {
wgpu::Instance instance;
@ -271,12 +314,12 @@ struct webgpu_context_struct {
wgpu::Queue queue;
wgpu::Limits limits;
uint32_t subgroup_size;
uint32_t max_subgroup_size;
#ifndef __EMSCRIPTEN__
bool supports_subgroup_matrix = false;
wgpu::SubgroupMatrixConfig subgroup_matrix_config;
#endif
bool supports_subgroup_matrix = false;
uint32_t sg_mat_m;
uint32_t sg_mat_n;
uint32_t sg_mat_k;
std::recursive_mutex mutex;
std::atomic_uint inflight_threads = 0;
@ -284,20 +327,24 @@ struct webgpu_context_struct {
webgpu_buf_pool param_buf_pool;
webgpu_buf_pool set_rows_error_buf_pool;
pre_wgsl::Preprocessor p;
std::map<int, webgpu_pipeline> memset_pipelines; // variant or type index
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> mul_mat_pipelines; // src0_type, src1_type, vectorized
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>>
mul_mat_vec_pipelines; // src0_type, src1_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> set_rows_pipelines; // dst_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
std::unordered_map<flash_attn_pipeline_key, webgpu_pipeline, flash_attn_pipeline_key_hash> flash_attn_pipelines;
std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> set_rows_pipelines; // dst_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
std::map<int, webgpu_pipeline> rms_norm_pipelines; // inplace
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> rope_pipelines; // type, ff, inplace
@ -361,8 +408,6 @@ struct ggml_backend_webgpu_buffer_context {
label(std::move(lbl)) {}
};
/* End struct definitions */
/* WebGPU object initializations */
// Process a WGSL shader string, replacing tokens of the form {{KEY}} with
@ -484,14 +529,9 @@ static void ggml_backend_webgpu_debug(webgpu_context & ctx) {
encoder.CopyBufferToBuffer(ctx->debug_dev_buf, 0, ctx->debug_host_buf, 0, ctx->debug_host_buf.GetSize());
wgpu::CommandBuffer commands = encoder.Finish();
ctx->queue.Submit(1, &commands);
ggml_backend_webgpu_map_buffer(ctx, ctx->debug_host_buf, wgpu::MapMode::Read, 0, ctx->debug_host_buf.GetSize());
const uint32_t * debug_data = (const uint32_t *) ctx->debug_host_buf.GetConstMappedRange();
std::cout << "debug data:";
for (size_t i = 0; i < WEBGPU_DEBUG_BUF_ELEMS; i++) {
std::cout << " " << i << ": " << debug_data[i];
}
std::cout << "\n";
const float * debug_data = (const float *) ctx->debug_host_buf.GetConstMappedRange();
std::cout << "debug[0]: " << debug_data[0] << "\n";
ctx->debug_host_buf.Unmap();
}
#endif
@ -673,6 +713,7 @@ static const char * ggml_backend_webgpu_name(ggml_backend_t backend) {
return ctx->name.c_str();
}
// TODO: implement proper cleanup
static void ggml_backend_webgpu_free(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context;
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")");
@ -730,12 +771,12 @@ static wgpu::Buffer ggml_webgpu_tensor_buf(const ggml_tensor * tensor) {
return ctx->buffer;
}
static size_t ggml_webgpu_tensor_misalignment(webgpu_context & ctx, ggml_tensor * t) {
static size_t ggml_webgpu_tensor_misalignment(webgpu_context & ctx, const ggml_tensor * t) {
size_t offset = ggml_webgpu_tensor_offset(t);
return offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
}
static size_t ggml_webgpu_tensor_align_offset(webgpu_context & ctx, ggml_tensor * t) {
static size_t ggml_webgpu_tensor_align_offset(webgpu_context & ctx, const ggml_tensor * t) {
size_t offset = ggml_webgpu_tensor_offset(t);
return offset & ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
}
@ -964,12 +1005,10 @@ static webgpu_command ggml_webgpu_mul_mat(webgpu_context & ctx,
#ifndef __EMSCRIPTEN__
if (ctx->supports_subgroup_matrix) {
// The total number of subgroups/workgroups needed per matrix.
uint32_t wg_m_sg_tile =
WEBGPU_MUL_MAT_SUBGROUP_M * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M * ctx->subgroup_matrix_config.M;
wg_m = CEIL_DIV(dst->ne[0], wg_m_sg_tile);
uint32_t wg_n_sg_tile =
WEBGPU_MUL_MAT_SUBGROUP_N * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N * ctx->subgroup_matrix_config.N;
wg_n = CEIL_DIV(dst->ne[1], wg_n_sg_tile);
uint32_t wg_m_sg_tile = WEBGPU_MUL_MAT_SUBGROUP_M * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M * ctx->sg_mat_m;
wg_m = CEIL_DIV(dst->ne[0], wg_m_sg_tile);
uint32_t wg_n_sg_tile = WEBGPU_MUL_MAT_SUBGROUP_N * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N * ctx->sg_mat_n;
wg_n = CEIL_DIV(dst->ne[1], wg_n_sg_tile);
} else {
#endif
uint32_t tile_m_s = WEBGPU_MUL_MAT_TILE_M * WEBGPU_MUL_MAT_WG_SIZE_M;
@ -986,6 +1025,146 @@ static webgpu_command ggml_webgpu_mul_mat(webgpu_context & ctx,
return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x, wg_y);
}
static webgpu_command ggml_webgpu_flash_attn(webgpu_context & ctx,
ggml_tensor * Q,
ggml_tensor * K,
ggml_tensor * V,
ggml_tensor * mask,
ggml_tensor * sinks,
ggml_tensor * dst) {
float scale = *(float *) dst->op_params;
float max_bias;
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
float logit_softcap;
memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}
float n_head_log2 = float(1u << (uint32_t) floor(log2(Q->ne[2])));
float m0 = powf(2.0f, -(max_bias) / n_head_log2);
float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const int has_mask = (mask != nullptr);
const int has_sinks = (sinks != nullptr);
std::vector<uint32_t> params = {
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, Q) / ggml_type_size(Q->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, K) / ggml_type_size(K->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, V) / ggml_type_size(V->type)),
has_mask ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, mask) / ggml_type_size(mask->type)) : 0,
has_sinks ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, sinks) / ggml_type_size(sinks->type)) : 0,
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
(uint32_t) Q->ne[2], // number of heads
(uint32_t) Q->ne[1], // sequence length (Q)
(uint32_t) K->ne[1], // sequence length (K/V)
(uint32_t) (Q->nb[1] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 1
(uint32_t) (Q->nb[2] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 2
(uint32_t) (Q->nb[3] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 3
(uint32_t) (K->nb[1] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 1
(uint32_t) (K->nb[2] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 2
(uint32_t) (K->nb[3] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 3
(uint32_t) (V->nb[1] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 1
(uint32_t) (V->nb[2] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 2
(uint32_t) (V->nb[3] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 3
has_mask ? (uint32_t) (mask->nb[3] / ggml_type_size(mask->type)) : 0, // stride of mask dim 3
(uint32_t) (Q->ne[2] / K->ne[2]), // repeat factor for K/V in dim 2 (MHA/MQA/GQA)
*(uint32_t *) &scale, // scale (possibly adjusted for logit softcap)
*(uint32_t *) &max_bias,
*(uint32_t *) &logit_softcap,
*(uint32_t *) &n_head_log2,
*(uint32_t *) &m0,
*(uint32_t *) &m1
};
std::vector<wgpu::BindGroupEntry> entries = {
{ .binding = 0,
.buffer = ggml_webgpu_tensor_buf(Q),
.offset = ggml_webgpu_tensor_align_offset(ctx, Q),
.size = ggml_webgpu_tensor_binding_size(ctx, Q) },
{ .binding = 1,
.buffer = ggml_webgpu_tensor_buf(K),
.offset = ggml_webgpu_tensor_align_offset(ctx, K),
.size = ggml_webgpu_tensor_binding_size(ctx, K) },
{ .binding = 2,
.buffer = ggml_webgpu_tensor_buf(V),
.offset = ggml_webgpu_tensor_align_offset(ctx, V),
.size = ggml_webgpu_tensor_binding_size(ctx, V) }
};
uint32_t binding_index = 3;
if (has_mask) {
entries.push_back({ .binding = binding_index++,
.buffer = ggml_webgpu_tensor_buf(mask),
.offset = ggml_webgpu_tensor_align_offset(ctx, mask),
.size = ggml_webgpu_tensor_binding_size(ctx, mask) });
}
if (has_sinks) {
entries.push_back({ .binding = binding_index++,
.buffer = ggml_webgpu_tensor_buf(sinks),
.offset = ggml_webgpu_tensor_align_offset(ctx, sinks),
.size = ggml_webgpu_tensor_binding_size(ctx, sinks) });
}
entries.push_back({ .binding = binding_index++,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
.size = ggml_webgpu_tensor_binding_size(ctx, dst) });
bool kv_direct =
(K->type == GGML_TYPE_F16) && (Q->ne[0] % ctx->sg_mat_k == 0) && (K->ne[1] % GGML_WEBGPU_KV_SEQ_PAD == 0);
flash_attn_pipeline_key key = {
.q_type = Q->type,
.kv_type = K->type,
.dst_type = dst->type,
.head_dim_qk = (uint32_t) Q->ne[0],
.head_dim_v = (uint32_t) V->ne[0],
.kv_direct = kv_direct,
.has_mask = static_cast<bool>(has_mask),
.has_sinks = static_cast<bool>(has_sinks),
.uses_logit_softcap = logit_softcap != 0.0f,
};
webgpu_pipeline pipeline;
ggml_webgpu_flash_attn_shader_decisions decisions = {};
auto it = ctx->flash_attn_pipelines.find(key);
if (it != ctx->flash_attn_pipelines.end()) {
pipeline = it->second;
decisions = *static_cast<ggml_webgpu_flash_attn_shader_decisions *>(pipeline.context);
} else {
std::lock_guard<std::recursive_mutex> lock(ctx->mutex);
it = ctx->flash_attn_pipelines.find(key);
if (it != ctx->flash_attn_pipelines.end()) {
pipeline = it->second;
decisions = *static_cast<ggml_webgpu_flash_attn_shader_decisions *>(pipeline.context);
} else {
ggml_webgpu_flash_attn_shader_lib_context shader_lib_ctx = { .kv_type = K->type,
.head_dim_qk = (uint32_t) Q->ne[0],
.head_dim_v = (uint32_t) V->ne[0],
.kv_direct = kv_direct,
.has_mask = static_cast<bool>(has_mask),
.has_sinks = static_cast<bool>(has_sinks),
.uses_logit_softcap = logit_softcap != 0.0f,
.sg_mat_m = ctx->sg_mat_m,
.sg_mat_n = ctx->sg_mat_n,
.sg_mat_k = ctx->sg_mat_k,
.wg_mem_limit_bytes =
ctx->limits.maxComputeWorkgroupStorageSize,
.max_subgroup_size = ctx->max_subgroup_size };
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_flash_attn_shader(ctx->p, wgsl_flash_attn, shader_lib_ctx);
pipeline = ggml_webgpu_create_pipeline(ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = new ggml_webgpu_flash_attn_shader_decisions(processed.decisions);
ctx->flash_attn_pipelines.emplace(key, pipeline);
decisions = processed.decisions;
}
}
uint32_t wg_per_head = CEIL_DIV(Q->ne[1], decisions.q_tile);
uint32_t wg_x = wg_per_head * Q->ne[2] * Q->ne[3]; // wg per head * number of heads * number of batches
return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x);
}
static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
uint32_t ne = (uint32_t) ggml_nelements(dst);
ggml_unary_op unary_op = ggml_get_unary_op(dst);
@ -1397,6 +1576,8 @@ static std::optional<webgpu_command> ggml_webgpu_encode_node(webgpu_context ctx,
return ggml_webgpu_get_rows(ctx, src0, src1, node);
case GGML_OP_MUL_MAT:
return ggml_webgpu_mul_mat(ctx, src0, src1, node);
case GGML_OP_FLASH_ATTN_EXT:
return ggml_webgpu_flash_attn(ctx, src0, src1, src2, node->src[3], node->src[4], node);
case GGML_OP_ADD:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
@ -1466,6 +1647,7 @@ static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, str
webgpu_submission_futures new_futures = ggml_backend_webgpu_submit(ctx, commands);
futures.push_back(new_futures);
}
ggml_backend_webgpu_wait(ctx, futures);
ctx->inflight_threads--;
WEBGPU_CPU_PROFILE_TOTAL_END(graph_compute, ctx);
@ -1808,15 +1990,15 @@ static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context & webgpu_ctx) {
#ifndef __EMSCRIPTEN__
if (webgpu_ctx->supports_subgroup_matrix) {
std::map<std::string, std::string> sg_matrix_repls;
sg_matrix_repls["WEBGPU_MAX_SUBGROUP_SIZE"] = std::to_string(webgpu_ctx->subgroup_size);
sg_matrix_repls["WEBGPU_MAX_SUBGROUP_SIZE"] = std::to_string(webgpu_ctx->max_subgroup_size);
sg_matrix_repls["WEBGPU_TILE_K"] = std::to_string(WEBGPU_MUL_MAT_TILE_K);
sg_matrix_repls["WEBGPU_SUBGROUP_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_M);
sg_matrix_repls["WEBGPU_SUBGROUP_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_N);
sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M);
sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N);
sg_matrix_repls["WEBGPU_SG_MAT_M_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.M);
sg_matrix_repls["WEBGPU_SG_MAT_N_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.N);
sg_matrix_repls["WEBGPU_SG_MAT_K_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.K);
sg_matrix_repls["WEBGPU_SG_MAT_M_SIZE"] = std::to_string(webgpu_ctx->sg_mat_m);
sg_matrix_repls["WEBGPU_SG_MAT_N_SIZE"] = std::to_string(webgpu_ctx->sg_mat_n);
sg_matrix_repls["WEBGPU_SG_MAT_K_SIZE"] = std::to_string(webgpu_ctx->sg_mat_k);
proc_mul_mat_f32_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f32_f32, sg_matrix_repls);
proc_mul_mat_f32_f32_vec =
@ -2328,6 +2510,7 @@ static void ggml_webgpu_init_soft_max_pipeline(webgpu_context & webgpu_ctx) {
webgpu_ctx->device, wgsl_soft_max_f32_mask_f16_sink_inplace, "soft_max_f32_mask_f16_sink_inplace", constants);
}
// TODO: move most initialization logic here
static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
@ -2489,6 +2672,29 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const
}
break;
}
case GGML_OP_FLASH_ATTN_EXT:
{
if (!webgpu_ctx->supports_subgroup_matrix) {
break;
}
// Head dimensions must fit in workgroup memory with minimum tile sizes
size_t limit_bytes = webgpu_ctx->limits.maxComputeWorkgroupStorageSize;
const bool has_mask = op->src[3] != nullptr;
const bool kv_direct = src1->type == GGML_TYPE_F16 && (src0->ne[0] % webgpu_ctx->sg_mat_k) == 0 &&
(src1->ne[1] % GGML_WEBGPU_KV_SEQ_PAD) == 0;
const size_t min_bytes = ggml_webgpu_flash_attn_wg_mem_bytes(
webgpu_ctx->sg_mat_m, webgpu_ctx->sg_mat_n, (uint32_t) src0->ne[0], (uint32_t) src2->ne[0],
has_mask, kv_direct);
if (min_bytes > limit_bytes) {
break;
}
supports_op = src0->type == GGML_TYPE_F32 &&
(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 ||
src1->type == GGML_TYPE_Q4_0 || src1->type == GGML_TYPE_Q8_0) &&
src2->type == src1->type && op->type == GGML_TYPE_F32;
break;
}
case GGML_OP_RMS_NORM:
supports_op = op->type == GGML_TYPE_F32 && src0->type == GGML_TYPE_F32;
break;
@ -2606,6 +2812,7 @@ static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) {
}
// TODO: Does this need to be thread safe? Is it only called once?
// TODO: move most logic to device_init function so backend can be freed/initialized properly
// Only one device is supported for now
static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
@ -2665,7 +2872,9 @@ static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t
if (config.M == config.N && config.N == config.K && (config.K == 8 || config.K == 16) &&
config.componentType == wgpu::SubgroupMatrixComponentType::F16 &&
config.resultComponentType == wgpu::SubgroupMatrixComponentType::F16) {
ctx->subgroup_matrix_config = config;
ctx->sg_mat_m = config.M;
ctx->sg_mat_n = config.N;
ctx->sg_mat_k = config.K;
valid_subgroup_matrix_config = true;
break;
}
@ -2676,7 +2885,7 @@ static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t
#endif
// For subgroup matrix code to be the most efficient, we would like the subgroup size to be consistent and accurate.
// Unfortunately, that is not possible, so we use the maximum subgroup size reported by the adapter.
ctx->subgroup_size = info.subgroupMaxSize;
ctx->max_subgroup_size = info.subgroupMaxSize;
// Initialize device
std::vector<wgpu::FeatureName> required_features = { wgpu::FeatureName::ShaderF16 };
@ -2701,8 +2910,11 @@ static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t
wgpu::CallbackMode::AllowSpontaneous,
[](const wgpu::Device & device, wgpu::DeviceLostReason reason, wgpu::StringView message) {
GGML_UNUSED(device);
GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason),
std::string(message).c_str());
GGML_UNUSED(reason);
GGML_UNUSED(message);
//TODO: uncomment once proper free logic is in place
//GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason),
//std::string(message).c_str());
});
dev_desc.SetUncapturedErrorCallback(
[](const wgpu::Device & device, wgpu::ErrorType reason, wgpu::StringView message) {

View File

@ -0,0 +1,778 @@
#ifndef PRE_WGSL_HPP
#define PRE_WGSL_HPP
#include <cctype>
#include <fstream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <string_view>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace pre_wgsl {
//==============================================================
// Options
//==============================================================
struct Options {
std::string include_path = ".";
std::vector<std::string> macros;
};
//==============================================================
// Utility: trim
//==============================================================
static std::string trim(const std::string & s) {
size_t a = 0;
while (a < s.size() && std::isspace((unsigned char) s[a])) {
a++;
}
size_t b = s.size();
while (b > a && std::isspace((unsigned char) s[b - 1])) {
b--;
}
return s.substr(a, b - a);
}
static std::string trim_value(std::istream & is) {
std::string str;
std::getline(is, str);
return trim(str);
}
static bool isIdentChar(char c) {
return std::isalnum(static_cast<unsigned char>(c)) || c == '_';
}
static std::string expandMacrosRecursiveInternal(const std::string & line,
const std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & visiting);
static std::string expandMacroValue(const std::string & name,
const std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & visiting) {
if (visiting.count(name)) {
throw std::runtime_error("Recursive macro: " + name);
}
visiting.insert(name);
auto it = macros.find(name);
if (it == macros.end()) {
visiting.erase(name);
return name;
}
const std::string & value = it->second;
if (value.empty()) {
visiting.erase(name);
return "";
}
std::string expanded = expandMacrosRecursiveInternal(value, macros, visiting);
visiting.erase(name);
return expanded;
}
static std::string expandMacrosRecursiveInternal(const std::string & line,
const std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & visiting) {
std::string result;
result.reserve(line.size());
size_t i = 0;
while (i < line.size()) {
if (isIdentChar(line[i])) {
size_t start = i;
while (i < line.size() && isIdentChar(line[i])) {
i++;
}
std::string token = line.substr(start, i - start);
auto it = macros.find(token);
if (it != macros.end()) {
result += expandMacroValue(token, macros, visiting);
} else {
result += token;
}
} else {
result += line[i];
i++;
}
}
return result;
}
static std::string expandMacrosRecursive(const std::string & line,
const std::unordered_map<std::string, std::string> & macros) {
std::unordered_set<std::string> visiting;
return expandMacrosRecursiveInternal(line, macros, visiting);
}
//==============================================================
// Tokenizer for expressions in #if/#elif
//==============================================================
class ExprLexer {
public:
enum Kind { END, IDENT, NUMBER, OP, LPAREN, RPAREN };
struct Tok {
Kind kind;
std::string text;
};
explicit ExprLexer(std::string_view sv) : src(sv), pos(0) {}
Tok next() {
skipWS();
if (pos >= src.size()) {
return { END, "" };
}
char c = src[pos];
// number
if (std::isdigit((unsigned char) c)) {
size_t start = pos;
while (pos < src.size() && std::isdigit((unsigned char) src[pos])) {
pos++;
}
return { NUMBER, std::string(src.substr(start, pos - start)) };
}
// identifier
if (std::isalpha((unsigned char) c) || c == '_') {
size_t start = pos;
while (pos < src.size() && (std::isalnum((unsigned char) src[pos]) || src[pos] == '_')) {
pos++;
}
return { IDENT, std::string(src.substr(start, pos - start)) };
}
if (c == '(') {
pos++;
return { LPAREN, "(" };
}
if (c == ')') {
pos++;
return { RPAREN, ")" };
}
// multi-char operators
static const char * two_ops[] = { "==", "!=", "<=", ">=", "&&", "||", "<<", ">>" };
for (auto op : two_ops) {
if (src.substr(pos, 2) == op) {
pos += 2;
return { OP, std::string(op) };
}
}
// single-char operators
if (std::string("+-*/%<>!").find(c) != std::string::npos) {
pos++;
return { OP, std::string(1, c) };
}
// unexpected
pos++;
return { END, "" };
}
private:
std::string_view src;
size_t pos;
void skipWS() {
while (pos < src.size() && std::isspace((unsigned char) src[pos])) {
pos++;
}
}
};
//==============================================================
// Expression Parser (recursive descent)
//==============================================================
class ExprParser {
public:
ExprParser(std::string_view expr,
const std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & visiting) :
lex(expr),
macros(macros),
visiting(visiting) {
advance();
}
int parse() { return parseLogicalOr(); }
private:
ExprLexer lex;
ExprLexer::Tok tok;
const std::unordered_map<std::string, std::string> & macros;
std::unordered_set<std::string> & visiting;
void advance() { tok = lex.next(); }
bool acceptOp(const std::string & s) {
if (tok.kind == ExprLexer::OP && tok.text == s) {
advance();
return true;
}
return false;
}
bool acceptKind(ExprLexer::Kind k) {
if (tok.kind == k) {
advance();
return true;
}
return false;
}
int parseLogicalOr() {
int v = parseLogicalAnd();
while (acceptOp("||")) {
int rhs = parseLogicalAnd();
v = (v || rhs);
}
return v;
}
int parseLogicalAnd() {
int v = parseEquality();
while (acceptOp("&&")) {
int rhs = parseEquality();
v = (v && rhs);
}
return v;
}
int parseEquality() {
int v = parseRelational();
for (;;) {
if (acceptOp("==")) {
int rhs = parseRelational();
v = (v == rhs);
} else if (acceptOp("!=")) {
int rhs = parseRelational();
v = (v != rhs);
} else {
break;
}
}
return v;
}
int parseRelational() {
int v = parseShift();
for (;;) {
if (acceptOp("<")) {
int rhs = parseShift();
v = (v < rhs);
} else if (acceptOp(">")) {
int rhs = parseShift();
v = (v > rhs);
} else if (acceptOp("<=")) {
int rhs = parseShift();
v = (v <= rhs);
} else if (acceptOp(">=")) {
int rhs = parseShift();
v = (v >= rhs);
} else {
break;
}
}
return v;
}
int parseShift() {
int v = parseAdd();
for (;;) {
if (acceptOp("<<")) {
int rhs = parseAdd();
v = (v << rhs);
} else if (acceptOp(">>")) {
int rhs = parseAdd();
v = (v >> rhs);
} else {
break;
}
}
return v;
}
int parseAdd() {
int v = parseMult();
for (;;) {
if (acceptOp("+")) {
int rhs = parseMult();
v = (v + rhs);
} else if (acceptOp("-")) {
int rhs = parseMult();
v = (v - rhs);
} else {
break;
}
}
return v;
}
int parseMult() {
int v = parseUnary();
for (;;) {
if (acceptOp("*")) {
int rhs = parseUnary();
v = (v * rhs);
} else if (acceptOp("/")) {
int rhs = parseUnary();
v = (rhs == 0 ? 0 : v / rhs);
} else if (acceptOp("%")) {
int rhs = parseUnary();
v = (rhs == 0 ? 0 : v % rhs);
} else {
break;
}
}
return v;
}
int parseUnary() {
if (acceptOp("!")) {
return !parseUnary();
}
if (acceptOp("-")) {
return -parseUnary();
}
if (acceptOp("+")) {
return +parseUnary();
}
return parsePrimary();
}
int parsePrimary() {
// '(' expr ')'
if (acceptKind(ExprLexer::LPAREN)) {
int v = parse();
if (!acceptKind(ExprLexer::RPAREN)) {
throw std::runtime_error("missing ')'");
}
return v;
}
// number
if (tok.kind == ExprLexer::NUMBER) {
int v = std::stoi(tok.text);
advance();
return v;
}
// defined(identifier)
if (tok.kind == ExprLexer::IDENT && tok.text == "defined") {
advance();
if (acceptKind(ExprLexer::LPAREN)) {
if (tok.kind != ExprLexer::IDENT) {
throw std::runtime_error("expected identifier in defined()");
}
std::string name = tok.text;
advance();
if (!acceptKind(ExprLexer::RPAREN)) {
throw std::runtime_error("missing ) in defined()");
}
return macros.count(name) ? 1 : 0;
} else {
// defined NAME
if (tok.kind != ExprLexer::IDENT) {
throw std::runtime_error("expected identifier in defined NAME");
}
std::string name = tok.text;
advance();
return macros.count(name) ? 1 : 0;
}
}
// identifier -> treat as integer, if defined use its value else 0
if (tok.kind == ExprLexer::IDENT) {
std::string name = tok.text;
advance();
auto it = macros.find(name);
if (it == macros.end()) {
return 0;
}
if (it->second.empty()) {
return 1;
}
return evalMacroExpression(name, it->second);
}
// unexpected
return 0;
}
int evalMacroExpression(const std::string & name, const std::string & value) {
if (visiting.count(name)) {
throw std::runtime_error("Recursive macro: " + name);
}
visiting.insert(name);
ExprParser ep(value, macros, visiting);
int v = ep.parse();
visiting.erase(name);
return v;
}
};
//==============================================================
// Preprocessor
//==============================================================
class Preprocessor {
public:
explicit Preprocessor(Options opts = {}) : opts_(std::move(opts)) {
// Treat empty include path as current directory
if (opts_.include_path.empty()) {
opts_.include_path = ".";
}
parseMacroDefinitions(opts_.macros);
}
std::string preprocess_file(const std::string & filename, const std::vector<std::string> & additional_macros = {}) {
std::unordered_map<std::string, std::string> macros;
std::unordered_set<std::string> predefined;
std::unordered_set<std::string> include_stack;
buildMacros(additional_macros, macros, predefined);
std::string result = processFile(filename, macros, predefined, include_stack, DirectiveMode::All);
return result;
}
std::string preprocess(const std::string & contents, const std::vector<std::string> & additional_macros = {}) {
std::unordered_map<std::string, std::string> macros;
std::unordered_set<std::string> predefined;
std::unordered_set<std::string> include_stack;
buildMacros(additional_macros, macros, predefined);
std::string result = processString(contents, macros, predefined, include_stack, DirectiveMode::All);
return result;
}
std::string preprocess_includes_file(const std::string & filename) {
std::unordered_map<std::string, std::string> macros;
std::unordered_set<std::string> predefined;
std::unordered_set<std::string> include_stack;
std::string result = processFile(filename, macros, predefined, include_stack, DirectiveMode::IncludesOnly);
return result;
}
std::string preprocess_includes(const std::string & contents) {
std::unordered_map<std::string, std::string> macros;
std::unordered_set<std::string> predefined;
std::unordered_set<std::string> include_stack;
std::string result = processString(contents, macros, predefined, include_stack, DirectiveMode::IncludesOnly);
return result;
}
private:
Options opts_;
std::unordered_map<std::string, std::string> global_macros;
enum class DirectiveMode { All, IncludesOnly };
struct Cond {
bool parent_active;
bool active;
bool taken;
};
//----------------------------------------------------------
// Parse macro definitions into global_macros
//----------------------------------------------------------
void parseMacroDefinitions(const std::vector<std::string> & macro_defs) {
for (const auto & def : macro_defs) {
size_t eq_pos = def.find('=');
if (eq_pos != std::string::npos) {
// Format: NAME=VALUE
std::string name = trim(def.substr(0, eq_pos));
std::string value = trim(def.substr(eq_pos + 1));
global_macros[name] = value;
} else {
// Format: NAME
std::string name = trim(def);
global_macros[name] = "";
}
}
}
//----------------------------------------------------------
// Build combined macro map and predefined set for a preprocessing operation
//----------------------------------------------------------
void buildMacros(const std::vector<std::string> & additional_macros,
std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & predefined) {
macros = global_macros;
predefined.clear();
for (const auto & [name, value] : global_macros) {
predefined.insert(name);
}
for (const auto & def : additional_macros) {
size_t eq_pos = def.find('=');
std::string name, value;
if (eq_pos != std::string::npos) {
name = trim(def.substr(0, eq_pos));
value = trim(def.substr(eq_pos + 1));
} else {
name = trim(def);
value = "";
}
// Add to macros map (will override global if same name)
macros[name] = value;
predefined.insert(name);
}
}
//----------------------------------------------------------
// Helpers
//----------------------------------------------------------
std::string loadFile(const std::string & fname) {
std::ifstream f(fname);
if (!f.is_open()) {
throw std::runtime_error("Could not open file: " + fname);
}
std::stringstream ss;
ss << f.rdbuf();
return ss.str();
}
bool condActive(const std::vector<Cond> & cond) const {
if (cond.empty()) {
return true;
}
return cond.back().active;
}
//----------------------------------------------------------
// Process a file
//----------------------------------------------------------
std::string processFile(const std::string & name,
std::unordered_map<std::string, std::string> & macros,
const std::unordered_set<std::string> & predefined_macros,
std::unordered_set<std::string> & include_stack,
DirectiveMode mode) {
if (include_stack.count(name)) {
throw std::runtime_error("Recursive include: " + name);
}
include_stack.insert(name);
std::string shader_code = loadFile(name);
std::string out = processString(shader_code, macros, predefined_macros, include_stack, mode);
include_stack.erase(name);
return out;
}
std::string processIncludeFile(const std::string & fname,
std::unordered_map<std::string, std::string> & macros,
const std::unordered_set<std::string> & predefined_macros,
std::unordered_set<std::string> & include_stack,
DirectiveMode mode) {
std::string full_path = opts_.include_path + "/" + fname;
return processFile(full_path, macros, predefined_macros, include_stack, mode);
}
//----------------------------------------------------------
// Process text
//----------------------------------------------------------
std::string processString(const std::string & shader_code,
std::unordered_map<std::string, std::string> & macros,
const std::unordered_set<std::string> & predefined_macros,
std::unordered_set<std::string> & include_stack,
DirectiveMode mode) {
std::vector<Cond> cond; // Conditional stack for this shader
std::stringstream out;
std::istringstream in(shader_code);
std::string line;
while (std::getline(in, line)) {
std::string t = trim(line);
if (!t.empty() && t[0] == '#') {
bool handled = handleDirective(t, out, macros, predefined_macros, cond, include_stack, mode);
if (mode == DirectiveMode::IncludesOnly && !handled) {
out << line << "\n";
}
} else {
if (mode == DirectiveMode::IncludesOnly) {
out << line << "\n";
} else if (condActive(cond)) {
// Expand macros in the line before outputting
std::string expanded = expandMacrosRecursive(line, macros);
out << expanded << "\n";
}
}
}
if (mode == DirectiveMode::All && !cond.empty()) {
throw std::runtime_error("Unclosed #if directive");
}
return out.str();
}
//----------------------------------------------------------
// Directive handler
//----------------------------------------------------------
bool handleDirective(const std::string & t,
std::stringstream & out,
std::unordered_map<std::string, std::string> & macros,
const std::unordered_set<std::string> & predefined_macros,
std::vector<Cond> & cond,
std::unordered_set<std::string> & include_stack,
DirectiveMode mode) {
// split into tokens
std::string body = t.substr(1);
std::istringstream iss(body);
std::string cmd;
iss >> cmd;
if (cmd == "include") {
if (mode == DirectiveMode::All && !condActive(cond)) {
return true;
}
std::string file;
iss >> file;
if (file.size() >= 2 && file.front() == '"' && file.back() == '"') {
file = file.substr(1, file.size() - 2);
}
out << processIncludeFile(file, macros, predefined_macros, include_stack, mode);
return true;
}
if (mode == DirectiveMode::IncludesOnly) {
return false;
}
if (cmd == "define") {
if (!condActive(cond)) {
return true;
}
std::string name;
iss >> name;
// Don't override predefined macros from options
if (predefined_macros.count(name)) {
return true;
}
std::string value = trim_value(iss);
macros[name] = value;
return true;
}
if (cmd == "undef") {
if (!condActive(cond)) {
return true;
}
std::string name;
iss >> name;
// Don't undef predefined macros from options
if (predefined_macros.count(name)) {
return true;
}
macros.erase(name);
return true;
}
if (cmd == "ifdef") {
std::string name;
iss >> name;
bool p = condActive(cond);
bool v = macros.count(name);
cond.push_back({ p, p && v, p && v });
return true;
}
if (cmd == "ifndef") {
std::string name;
iss >> name;
bool p = condActive(cond);
bool v = !macros.count(name);
cond.push_back({ p, p && v, p && v });
return true;
}
if (cmd == "if") {
std::string expr = trim_value(iss);
bool p = condActive(cond);
bool v = false;
if (p) {
std::unordered_set<std::string> visiting;
ExprParser ep(expr, macros, visiting);
v = ep.parse() != 0;
}
cond.push_back({ p, p && v, p && v });
return true;
}
if (cmd == "elif") {
std::string expr = trim_value(iss);
if (cond.empty()) {
throw std::runtime_error("#elif without #if");
}
Cond & c = cond.back();
if (!c.parent_active) {
c.active = false;
return true;
}
if (c.taken) {
c.active = false;
return true;
}
std::unordered_set<std::string> visiting;
ExprParser ep(expr, macros, visiting);
bool v = ep.parse() != 0;
c.active = v;
if (v) {
c.taken = true;
}
return true;
}
if (cmd == "else") {
if (cond.empty()) {
throw std::runtime_error("#else without #if");
}
Cond & c = cond.back();
if (!c.parent_active) {
c.active = false;
return true;
}
if (c.taken) {
c.active = false;
} else {
c.active = true;
c.taken = true;
}
return true;
}
if (cmd == "endif") {
if (cond.empty()) {
throw std::runtime_error("#endif without #if");
}
cond.pop_back();
return true;
}
// Unknown directive
throw std::runtime_error("Unknown directive: #" + cmd);
}
};
} // namespace pre_wgsl
#endif // PRE_WGSL_HPP

View File

@ -0,0 +1,591 @@
diagnostic(off, chromium.subgroup_matrix_uniformity);
diagnostic(off, subgroup_uniformity);
enable f16;
enable subgroups;
enable chromium_experimental_subgroup_matrix;
#ifdef KV_F32
#define KV_TYPE f32
#else
#define KV_TYPE f16
#endif
// Default values
#define HEAD_DIM_QK 64
#define HEAD_DIM_V 64
// The number of rows/columns/k in a subgroup matrix. MxK * KxN = MxN
// Note that the "K" here does not correspond to the K in attention's Q/K/V, it's just the common dimension.
#define SG_MAT_M 8
#define SG_MAT_N 8
#define SG_MAT_K 8
// Each workgroup processes one subgroup matrix of Q rows
#define Q_TILE SG_MAT_M
#define KV_TILE 16
#define WG_SIZE 64
// Number of subgroup-matrix-width blocks that span the KV tile. SG_MAT_N must divide KV_TILE.
#define KV_BLOCKS (KV_TILE / SG_MAT_N)
// Quantization constants/helpers
#define BLOCK_SIZE 32
#define BLOCKS_K ((HEAD_DIM_QK + BLOCK_SIZE - 1) / BLOCK_SIZE)
#define BLOCKS_V ((HEAD_DIM_V + BLOCK_SIZE - 1) / BLOCK_SIZE)
// number of quantized elements processed per thread
#if defined(KV_Q4_0)
#define NQ 16
// Q4_0 has 32 elements, 1 f16 for scale, 8 f16 for 4-bit weights
#define F16_PER_BLOCK 9
#define WEIGHTS_PER_F16 4
#elif defined(KV_Q8_0)
#define NQ 8
// Q8_0 has 32 elements, 1 f16 for scale, 16 f16 for 8-bit weights
#define F16_PER_BLOCK 17
#define WEIGHTS_PER_F16 2
#endif
#define F16_PER_THREAD (NQ / WEIGHTS_PER_F16)
// Ok not to put these in a define block, compiler will remove if unused
fn get_byte(value: u32, index: u32) -> u32 {
return (value >> (index * 8)) & 0xFF;
}
fn get_byte_i32(value: u32, index: u32) -> i32 {
return bitcast<i32>(((value >> (index * 8)) & 0xFF) << 24) >> 24;
}
struct Params {
offset_q: u32,
offset_k: u32,
offset_v: u32,
offset_mask: u32,
offset_sinks: u32,
offset_dst: u32,
// shapes of Q/K/V
n_heads: u32,
seq_len_q: u32,
seq_len_kv: u32,
// strides (in elements)
stride_q1: u32,
stride_q2: u32,
stride_q3: u32,
stride_k1: u32,
stride_k2: u32,
stride_k3: u32,
stride_v1: u32,
stride_v2: u32,
stride_v3: u32,
stride_mask3: u32,
// repeat factors for K/V, e.g., MHA vs. MQA vs. GQA
q_per_kv: u32,
// softmax params
scale: f32,
max_bias: f32,
logit_softcap: f32,
n_head_log2: f32,
m0: f32,
m1: f32,
};
@group(0) @binding(0) var<storage, read_write> Q: array<f32>;
@group(0) @binding(1) var<storage, read_write> K: array<KV_TYPE>;
@group(0) @binding(2) var<storage, read_write> V: array<KV_TYPE>;
#if defined(MASK) && defined(SINKS)
@group(0) @binding(3) var<storage, read_write> mask: array<f16>;
@group(0) @binding(4) var<storage, read_write> sinks: array<f32>;
#define DST_BINDING 5
#define PARAMS_BINDING 6
#elif defined(MASK)
@group(0) @binding(3) var<storage, read_write> mask: array<f16>;
#define DST_BINDING 4
#define PARAMS_BINDING 5
#elif defined(SINKS)
@group(0) @binding(3) var<storage, read_write> sinks: array<f32>;
#define DST_BINDING 4
#define PARAMS_BINDING 5
#else
#define DST_BINDING 3
#define PARAMS_BINDING 4
#endif
@group(0) @binding(DST_BINDING) var<storage, read_write> dst: array<f32>;
@group(0) @binding(PARAMS_BINDING) var<uniform> params: Params;
// Just a very small float value.
const FLOAT_MIN: f32 = -1.0e9;
// The number of Q rows processed per workgroup
var<workgroup> q_shmem: array<f16, Q_TILE * HEAD_DIM_QK>;
#ifndef KV_DIRECT
const kv_shmem_size = KV_TILE * max(HEAD_DIM_QK, HEAD_DIM_V);
// we can reuse the same shmem for K and V since we only need one at a time
var<workgroup> kv_shmem: array<f16, kv_shmem_size>;
#endif
var<workgroup> o_shmem: array<f16, Q_TILE * HEAD_DIM_V>; // output shmem
#ifdef MASK
// storage for mask values
var<workgroup> mask_shmem: array<f16, Q_TILE * KV_TILE>;
#endif
// storage for output of Q*K^T scores for online softmax (S matrix from paper)
// also storage for diagonal matrix during online softmax (P matrix from paper)
// note that we reuse the same storage for both since we only need one at a time
var<workgroup> inter_shmem: array<f16, Q_TILE * KV_TILE>;
// Storage for row max and exp sum during online softmax
var<workgroup> row_max_shmem: array<f32, Q_TILE>;
var<workgroup> exp_sum_shmem: array<f32, Q_TILE>;
fn calc_softmax_term(kv_idx: u32, q_tile_row: u32, slope: f32) -> f32 {
var v = select(FLOAT_MIN,
f32(inter_shmem[kv_idx + q_tile_row * KV_TILE]) * params.scale,
kv_idx < KV_TILE);
#ifdef LOGIT_SOFTCAP
v = params.logit_softcap * tanh(v);
#endif
#ifdef MASK
let mask_val = select(0.0, f32(mask_shmem[q_tile_row * KV_TILE + kv_idx]), kv_idx < KV_TILE);
let mask_term = slope * mask_val;
v += mask_term;
#endif
return v;
}
@compute @workgroup_size(WG_SIZE)
fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
@builtin(local_invocation_id) local_id: vec3<u32>,
@builtin(subgroup_id) subgroup_id: u32,
@builtin(subgroup_size) subgroup_size: u32,
@builtin(num_subgroups) num_subgroups: u32,
@builtin(subgroup_invocation_id) sg_inv_id: u32) {
// initialize row max for online softmax
for (var i = local_id.x; i < Q_TILE; i += WG_SIZE) {
row_max_shmem[i] = FLOAT_MIN;
exp_sum_shmem[i] = 0.0;
}
for (var i = local_id.x; i < Q_TILE * HEAD_DIM_V; i += WG_SIZE) {
o_shmem[i] = 0.0;
}
// workgroups per head/batch
let wg_per_head = (params.seq_len_q + Q_TILE - 1u) / Q_TILE;
let wg_per_batch = wg_per_head * params.n_heads;
let dst2_stride = HEAD_DIM_V * params.n_heads;
let dst3_stride = dst2_stride * params.seq_len_q;
// batch index
let batch_idx = wg_id.x / wg_per_batch;
let q_batch_offset = params.offset_q + batch_idx * params.stride_q3;
let k_batch_offset = params.offset_k + batch_idx * params.stride_k3;
let v_batch_offset = params.offset_v + batch_idx * params.stride_v3;
let dst_batch_offset = params.offset_dst + batch_idx * dst3_stride;
let wg_in_batch = wg_id.x % wg_per_batch;
// head index
let head_idx = wg_in_batch / wg_per_head;
let q_head_offset = q_batch_offset + head_idx * params.stride_q2;
let k_head_idx = head_idx / params.q_per_kv;
let v_head_idx = k_head_idx;
let k_head_offset = k_batch_offset + k_head_idx * params.stride_k2;
let v_head_offset = v_batch_offset + v_head_idx * params.stride_v2;
// starting Q row for this workgroup
let wg_in_head = wg_in_batch % wg_per_head;
let q_row_start = wg_in_head * Q_TILE;
#ifdef MASK
// mask offset
let mask_global_offset = params.offset_mask + batch_idx * params.stride_mask3 + q_row_start * params.seq_len_kv;
#endif
// note that the output is permuted, the layout is [head_dim_v, n_heads, seq_len_q, batch_size]
let dst_global_offset = dst_batch_offset + q_row_start * dst2_stride + head_idx * HEAD_DIM_V;
let head = f32(head_idx);
let slope = select(1.0, select(pow(params.m1, 2.0 * (head - params.n_head_log2) + 1.0), pow(params.m0, head + 1.0), head < params.n_head_log2), params.max_bias > 0);
// load q tile into shared memory
for (var elem_idx = local_id.x; elem_idx < Q_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE) {
let q_row = elem_idx / HEAD_DIM_QK;
let q_col = elem_idx % HEAD_DIM_QK;
let head_q_row = q_row_start + q_row;
let global_q_row_offset = q_head_offset + head_q_row * params.stride_q1;
q_shmem[elem_idx] = f16(select(
0.0,
Q[global_q_row_offset + q_col],
head_q_row < params.seq_len_q && q_col < HEAD_DIM_QK));
}
for (var kv_tile = 0u; kv_tile < params.seq_len_kv; kv_tile += KV_TILE) {
// clear inter_shmem to ensure zero-initialized accumulators
for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
inter_shmem[elem_idx] = 0.0;
}
// load k tile into shared memory
#if defined(KV_Q4_0)
for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE * NQ) {
let blck_idx = elem_idx / BLOCK_SIZE;
let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
let k_row = blck_idx / BLOCKS_K;
let global_k_row = kv_tile + k_row;
let block_k = blck_idx % BLOCKS_K;
let row_offset = k_row * HEAD_DIM_QK;
if (global_k_row < params.seq_len_kv) {
let global_block_idx = k_head_offset + global_k_row * params.stride_k1 + block_k;
let base_idx = global_block_idx * F16_PER_BLOCK;
let d = K[base_idx]; // scale
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = K[base_idx + 1u + block_offset + j];
let q_1 = K[base_idx + 1u + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k = 0u; k < 4u; k++) {
let q_byte = get_byte(q_packed, k);
let q_hi = (f16((q_byte >> 4) & 0xF) - 8.0) * d;
let q_lo = (f16(q_byte & 0xF) - 8.0) * d;
let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
kv_shmem[row_offset + idx] = q_lo;
kv_shmem[row_offset + idx + 16u] = q_hi;
}
}
}
}
#elif defined(KV_Q8_0)
for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE * NQ) {
let blck_idx = elem_idx / BLOCK_SIZE;
let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
let k_row = blck_idx / BLOCKS_K;
let global_k_row = kv_tile + k_row;
let block_k = blck_idx % BLOCKS_K;
let row_offset = k_row * HEAD_DIM_QK;
if (global_k_row < params.seq_len_kv) {
let global_block_idx = k_head_offset + global_k_row * params.stride_k1 + block_k;
let base_idx = global_block_idx * F16_PER_BLOCK;
let d = K[base_idx]; // scale
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = K[base_idx + 1u + block_offset + j];
let q_1 = K[base_idx + 1u + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k = 0u; k < 4u; k++) {
let q_byte = get_byte_i32(q_packed, k);
let q_val = f16(q_byte) * d;
let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
kv_shmem[row_offset + idx] = q_val;
}
}
}
}
#elif defined(KV_DIRECT)
// Direct global loads for KV
#else
for (var elem_idx = local_id.x; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE) {
let k_row = elem_idx / HEAD_DIM_QK;
let k_col = elem_idx % HEAD_DIM_QK;
let global_k_row = kv_tile + k_row;
let global_k_row_offset = k_head_offset + global_k_row * params.stride_k1;
kv_shmem[elem_idx] = f16(select(
0.0,
K[global_k_row_offset + k_col],
global_k_row < params.seq_len_kv && k_col < HEAD_DIM_QK));
}
#endif
workgroupBarrier();
// accumulate q block * k block into registers across the entire KV tile
// TODO: this loop seems to be the current largest bottleneck
for (var kv_block = subgroup_id; kv_block < KV_BLOCKS; kv_block += num_subgroups) {
let inter_offset = kv_block * SG_MAT_N;
var acc: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<
subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(&inter_shmem, inter_offset, false, KV_TILE);
#ifdef KV_DIRECT
let k_block_row = kv_tile + kv_block * SG_MAT_N;
let k_global_offset = k_head_offset + k_block_row * params.stride_k1;
#else
let k_block_offset = kv_block * SG_MAT_N * HEAD_DIM_QK;
#endif
for (var head_dim_block = 0u; head_dim_block < HEAD_DIM_QK; head_dim_block += SG_MAT_K) {
// load q submatrix from shared memory
var q_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
&q_shmem,
head_dim_block,
false,
HEAD_DIM_QK
);
// load k submatrix from device or shared memory
#ifdef KV_DIRECT
var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
&K,
k_global_offset + head_dim_block,
true,
params.stride_k1
);
#else
var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
&kv_shmem,
k_block_offset + head_dim_block,
true,
HEAD_DIM_QK
);
#endif
acc = subgroupMatrixMultiplyAccumulate(q_sg_mat, k_sg_mat, acc);
}
// store acc to shared memory for softmax (S matrix from paper)
subgroupMatrixStore(&inter_shmem, inter_offset, acc, false, KV_TILE);
}
#ifdef MASK
// load mask tile into shared memory for this KV block
// TODO: optimize and skip if mask is -INF for the entire tile
for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
let mask_row = elem_idx / KV_TILE;
let mask_col = elem_idx % KV_TILE;
let global_q_row = q_row_start + mask_row;
let global_k_col = kv_tile + mask_col;
let mask_in_bounds = global_q_row < params.seq_len_q && global_k_col < params.seq_len_kv;
let mask_idx = mask_global_offset + mask_row * params.seq_len_kv + global_k_col;
mask_shmem[elem_idx] = select(0.0, mask[mask_idx], mask_in_bounds);
}
#endif
workgroupBarrier();
// online softmax
for (var q_tile_row = subgroup_id; q_tile_row < Q_TILE; q_tile_row += num_subgroups) {
let global_q_row = q_row_start + q_tile_row;
if (global_q_row >= params.seq_len_q) {
break;
}
// initialize running max for this row
var prev_max = row_max_shmem[q_tile_row];
var final_max = prev_max;
// pass 1: compute final max across the full KV tile in chunks
for (var kv_offset = 0u; kv_offset < KV_TILE; kv_offset += subgroup_size) {
let kv_idx = kv_offset + sg_inv_id;
let softmax_term = calc_softmax_term(kv_idx, q_tile_row, slope);
final_max = subgroupMax(max(final_max, softmax_term));
}
var total_exp_term: f32 = 0.0;
// pass 2: compute exp sum and write P using final_max
for (var kv_offset = 0u; kv_offset < KV_TILE; kv_offset += subgroup_size) {
let kv_idx = kv_offset + sg_inv_id;
let softmax_term = calc_softmax_term(kv_idx, q_tile_row, slope);
let cur_p = select(0.0,
exp(softmax_term - final_max),
kv_tile + kv_idx < params.seq_len_kv && kv_idx < KV_TILE);
total_exp_term += subgroupAdd(cur_p);
if (kv_idx < KV_TILE) {
inter_shmem[kv_idx + q_tile_row * KV_TILE] = f16(cur_p);
}
}
let cur_exp = exp(prev_max - final_max);
if (sg_inv_id == 0) {
row_max_shmem[q_tile_row] = final_max;
exp_sum_shmem[q_tile_row] = exp_sum_shmem[q_tile_row] * cur_exp + total_exp_term;
}
for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
let idx = q_tile_row * HEAD_DIM_V + elem_idx;
o_shmem[idx] = f16(f32(o_shmem[idx]) * cur_exp);
}
}
// load v tile into shared memory
#if defined(KV_Q4_0)
for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE * NQ) {
let blck_idx = elem_idx / BLOCK_SIZE;
let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
let v_row = blck_idx / BLOCKS_V;
let global_v_row = kv_tile + v_row;
let block_k = blck_idx % BLOCKS_V;
let row_offset = v_row * HEAD_DIM_V;
if (global_v_row < params.seq_len_kv) {
let global_block_idx = v_head_offset + global_v_row * params.stride_v1 + block_k;
let base_idx = global_block_idx * F16_PER_BLOCK;
let d = V[base_idx]; // scale
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = V[base_idx + 1u + block_offset + j];
let q_1 = V[base_idx + 1u + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k = 0u; k < 4u; k++) {
let q_byte = get_byte(q_packed, k);
let q_hi = (f16((q_byte >> 4) & 0xF) - 8.0) * d;
let q_lo = (f16(q_byte & 0xF) - 8.0) * d;
let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
kv_shmem[row_offset + idx] = q_lo;
kv_shmem[row_offset + idx + 16u] = q_hi;
}
}
}
}
#elif defined(KV_Q8_0)
for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE * NQ) {
let blck_idx = elem_idx / BLOCK_SIZE;
let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
let v_row = blck_idx / BLOCKS_V;
let global_v_row = kv_tile + v_row;
let block_k = blck_idx % BLOCKS_V;
let row_offset = v_row * HEAD_DIM_V;
if (global_v_row < params.seq_len_kv) {
let global_block_idx = v_head_offset + global_v_row * params.stride_v1 + block_k;
let base_idx = global_block_idx * F16_PER_BLOCK;
let d = V[base_idx]; // scale
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = V[base_idx + 1u + block_offset + j];
let q_1 = V[base_idx + 1u + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k = 0u; k < 4u; k++) {
let q_byte = get_byte_i32(q_packed, k);
let q_val = f16(q_byte) * d;
let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
kv_shmem[row_offset + idx] = q_val;
}
}
}
}
#elif defined(KV_DIRECT)
// Direct global loads for KV
#else
for (var elem_idx = local_id.x; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE) {
let v_row = elem_idx / HEAD_DIM_V;
let v_col = elem_idx % HEAD_DIM_V;
let global_v_row = kv_tile + v_row;
let global_v_row_offset = v_head_offset + global_v_row * params.stride_v1;
kv_shmem[elem_idx] = f16(select(
0.0,
V[global_v_row_offset + v_col],
global_v_row < params.seq_len_kv && v_col < HEAD_DIM_V));
}
#endif
workgroupBarrier();
// we have P (Q_TILE x KV_TILE) in inter_shmem and V (KV_TILE x head_dim_v) in kv_shmem
// we want to compute O += P * V across the full KV tile
for (var head_dim_block = subgroup_id * SG_MAT_N;
head_dim_block < HEAD_DIM_V;
head_dim_block += num_subgroups * SG_MAT_N) {
// load O submatrix from shared memory
var o_sg_mat: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(
&o_shmem,
head_dim_block,
false,
HEAD_DIM_V
);
for (var kv_block = 0u; kv_block < KV_BLOCKS; kv_block++) {
let p_offset = kv_block * SG_MAT_N;
var p_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
&inter_shmem,
p_offset,
false,
KV_TILE
);
// load V submatrix from global or shared memory
#ifdef KV_DIRECT
let v_block_row = kv_tile + kv_block * SG_MAT_N;
let v_global_offset = v_head_offset + v_block_row * params.stride_v1 + head_dim_block;
var v_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
&V,
v_global_offset,
false,
params.stride_v1
);
#else
let v_block_offset = kv_block * SG_MAT_N * HEAD_DIM_V;
var v_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
&kv_shmem,
v_block_offset + head_dim_block,
false,
HEAD_DIM_V
);
#endif
// O += P * V
o_sg_mat = subgroupMatrixMultiplyAccumulate(p_sg_mat, v_sg_mat, o_sg_mat);
}
// store O back to shared memory
subgroupMatrixStore(&o_shmem, head_dim_block, o_sg_mat, false, HEAD_DIM_V);
}
workgroupBarrier();
}
#ifdef SINKS
// add sinks (applied once after processing all KV tiles)
for (var q_tile_row = subgroup_id;
q_tile_row < Q_TILE;
q_tile_row += num_subgroups) {
// no need to process rows beyond seq_len_q
let global_q_row = q_row_start + q_tile_row;
if (global_q_row >= params.seq_len_q) {
break;
}
var prev_max = row_max_shmem[q_tile_row];
// for non-sink threads, exp(FLOAT_MIN) effectively zeroes out their contribution to the sum
let sink_val = select(FLOAT_MIN, sinks[params.offset_sinks + head_idx], sg_inv_id == 0);
let new_max = subgroupMax(max(prev_max, sink_val));
let max_exp = exp(prev_max - new_max);
let sink_exp = exp(sink_val - new_max);
let sink_exp_sum = subgroupAdd(sink_exp);
if (sg_inv_id == 0) {
exp_sum_shmem[q_tile_row] = exp_sum_shmem[q_tile_row] * max_exp + sink_exp_sum;
}
for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
let idx = q_tile_row * HEAD_DIM_V + elem_idx;
let val = f32(o_shmem[idx]) * max_exp;
o_shmem[idx] = f16(val);
}
}
workgroupBarrier();
#endif
// write output back to global memory
for (var q_tile_row = subgroup_id;
q_tile_row < Q_TILE;
q_tile_row += num_subgroups) {
let global_q_row = q_row_start + q_tile_row;
if (global_q_row >= params.seq_len_q) {
break;
}
let exp_sum = exp_sum_shmem[q_tile_row];
let scale = select(0.0, 1.0 / exp_sum, exp_sum != 0);
for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
let o_val = o_shmem[q_tile_row * HEAD_DIM_V + elem_idx];
let scaled = f32(o_val) * scale;
dst[dst_global_offset + q_tile_row * dst2_stride + elem_idx] = scaled;
}
}
}