Commit Graph

2038 Commits

Author SHA1 Message Date
Georgi Gerganov 7fcf1ef45d
metal : skip loading all-zero mask (#19337)
* metal : skip loading all-zero mask

* cont : minor
2026-02-06 09:25:11 +02:00
Georgi Gerganov 3e21647666
cuda : cuda graphs now compare all node params (#19383) 2026-02-06 07:55:06 +02:00
Georgi Gerganov 22cae83218
metal : adaptive CPU/GPU interleave based on number of nodes (#19369) 2026-02-05 19:07:22 +02:00
Jeff Bolz 449ec2ab07
vulkan: Preprocess FA mask to detect all-neg-inf and all-zero. (#19281)
Write out a 2-bit code per block and avoid loading the mask when it
matches these two common cases.

Apply this optimization when the mask is relatively large (i.e. prompt
processing).
2026-02-05 09:26:38 -06:00
Georgi Gerganov 7a4f97d196
metal : add diag (#19330) 2026-02-05 10:08:45 +02:00
Oleksandr Kuvshynov a498c75ad1
vulkan: fix GPU deduplication logic. (#19222)
* vulkan: fix GPU deduplication logic.

As reported in https://github.com/ggml-org/llama.cpp/issues/19221, the
(same uuid, same driver) logic is problematic for windows+intel igpu.

Let's just avoid filtering for MoltenVK which is apple-specific, and
keep the logic the  same as before 88d23ad5 - just dedup based on UUID.

Verified that MacOS + 4xVega still reports 4 GPUs with this version.

* vulkan: only skip dedup when both drivers are moltenVk
2026-02-05 09:06:59 +01:00
Jeff Bolz 3409ab842d
vulkan: Set k_load_shmem to false when K is too large (#19301) 2026-02-05 08:48:33 +01:00
Jeff Bolz c342c3b93d
vulkan: fix non-contig rope (#19299) 2026-02-05 08:38:59 +01:00
will-lms af252d0758
metal : add missing includes (#19348) 2026-02-05 08:05:09 +02:00
Kevin Pouget 015deb9048
ggml-virtgpu: make the code thread safe (#19204)
* ggml-virtgpu: regenerate_remoting.py: add the ability to deprecate a function

* ggml-virtgpu: deprecate buffer_type is_host remoting

not necessary

* ggml-virtgpu: stop using static vars as cache

The static init isn't thread safe.

* ggml-virtgpu: protect the use of the shared memory to transfer data

* ggml-virtgpu: make the remote calls thread-safe

* ggml-virtgpu: backend: don't continue if couldn't allocate the tensor memory

* ggml-virtgpu: add a cleanup function for consistency

* ggml-virtgpu: backend: don't crash if buft->iface.get_max_size is missing

* fix style and ordering

* Remove the static variable in apir_device_get_count

* ggml-virtgpu: improve the logging

* fix review minor formatting changes
2026-02-04 10:46:18 +08:00
Aman Gupta 2ceda3f662
ggml-cpu: use LUT for converting e8->f32 scales on x86 (#19288)
* ggml-cpu: use LUT for converting e8->f32 scales on x86

* add dispatch based on macro
2026-02-04 09:43:29 +08:00
Georgi Gerganov 44008ce8f9
metal : add solve_tri (#19302) 2026-02-03 23:43:14 +02:00
Ruben Ortlam 32b17abdb0
vulkan: disable coopmat1 fa on Nvidia Turing (#19290) 2026-02-03 17:37:32 +01:00
Aman Gupta 8bece2eb20
CUDA: use mmvq for mul-mat-id for small batch sizes (#18958)
* CUDA: use mmvq for mul-mat-id for small batch sizes

* add mmvq too

* Fix perf issue on ampere. Use mmvf mm-id only for non-nvidia GPUs

* templatize multi_token_path
2026-02-03 23:31:23 +08:00
Georgi Gerganov c55bce4159
metal : minor cleanup (#19251) 2026-02-03 13:43:29 +02:00
Oliver Simons 1f1e57f2bf
CUDA: Fix loop unrolling for BW in mul_mat_q_stream_k_fixup (#19053)
By providing stride_* variables as size_t (i.e., 64-bit) the compiler can
correctly unroll the [two for-loops](557515be1e/ggml/src/ggml-cuda/mmq.cuh (L3789-L3816))
on BW. This gives some perf for prefill/pp phase on BW, while not affecting
other SMs:

| GPU                                                     | Model                 | Test   |   t/s master |   t/s osimons/fix_bw_mmq_fixup_kernel |   Speedup |
|:--------------------------------------------------------|:----------------------|:-------|-------------:|--------------------------------------:|----------:|
| NVIDIA RTX 6000 Ada Generation                          | gpt-oss 20B MXFP4 MoE | pp8096 |      8404.05 |                               8375.79 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | llama 3B Q4_K_M       | pp8096 |     16148.93 |                              16019.60 |      0.99 |
| NVIDIA RTX 6000 Ada Generation                          | llama 8B Q4_0         | pp8096 |      8008.29 |                               7978.80 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | nemotron_h 9B BF16    | pp8096 |      4263.16 |                               4248.53 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | nemotron_h 9B Q4_K_M  | pp8096 |      5165.11 |                               5157.43 |      1.00 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | gpt-oss 20B MXFP4 MoE | pp8096 |     12582.80 |                              12758.37 |      1.01 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | llama 3B Q4_K_M       | pp8096 |     16879.10 |                              17619.47 |      1.04 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | llama 8B Q4_0         | pp8096 |     10649.90 |                              10982.65 |      1.03 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | nemotron_h 9B BF16    | pp8096 |      7717.73 |                               7716.22 |      1.00 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | nemotron_h 9B Q4_K_M  | pp8096 |      7301.90 |                               7370.38 |      1.01 |
2026-02-03 11:33:14 +01:00
George e9a859db3c
ggml: added cleanups in ggml_quantize_free (#19278)
Add missing cleanup calls for IQ2_S, IQ1_M quantization types and IQ3XS with 512 blocks during quantization cleanup.
2026-02-03 08:43:39 +02:00
Gaurav Garg 41e3f02647
cuda : revert CUDA_SCALE_LAUNCH_QUEUES override until investigated (#19227)
Hangs were reported on Jetson Orin AGX if we set CUDA_SCALE_LAUNCH_QUEUES=4x. Reverting the previous PR (#19042) and updating the document to consider setting CUDA_SCALE_LAUNCH_QUEUES=4x for faster throughput on multi-GPU systems.
2026-02-03 08:41:02 +02:00
lhez 91ea44e89b
opencl: refactor some ops, concat, repeat, tanh and scale (#19226)
* opencl: refactor concat

* opencl: refactor repeat

* opencl: refactor tanh

* opencl: enable fp16 for tanh

* opencl: refactor scale

* opencl: fix unused variables
2026-02-02 15:54:43 -08:00
Aman Gupta 9f682fb640
ggml-cpu: FA split across kv for faster TG (#19209)
* ggml-cpu: split across kv for faster TG

* simplify sinks application

* add ref impl
2026-02-03 01:19:55 +08:00
Neo Zhang bf38346d13
Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. (#19246)
User can't build up the software for Nvidia & AMD GPU.
rm the oneMath since it is only used in NV and AMD code path.
2026-02-02 21:06:21 +08:00
Tamar 4d5e972673
sycl: implement GGML_OP_TOP_K (#19242) 2026-02-02 21:05:51 +08:00
Georgi Gerganov 6fdddb4987
metal : support virtual devices (#18919)
* metal : support virtual devices

* cont : manage buffer type context memory

* metal : add events

* cont : implement cpy_tensor_async
2026-02-02 14:29:44 +02:00
Johannes Gäßler 59377a6c87
ggml-backend: fix async set/get fallback sync (#19179) 2026-02-02 10:00:05 +01:00
Christian Kastner 7a4ca3cbd9
docs : Minor cleanups (#19252)
* Update old URLs to github.com/ggml-org/

* Bump copyrights
2026-02-02 08:38:55 +02:00
Nikhil Jain 2dc3ce2166
Remove pipeline cache mutexes (#19195)
* Remove mutex for pipeline caches, since they are now per-thread.

* Add comment

* Run clang-format

* Cleanup

* Run CI again

* Run CI once more

* Run clang-format
2026-02-01 18:47:29 -08:00
Max Krasnyansky 3bc8d2cf23
Bump cmake max version (needed for Windows on Snapdragon builds) (#19188)
* Bump max cmake version (needed for Windows on Snapdragon builds)

* cmake: move max version setting into ggml/CMakeLists
2026-02-01 14:13:38 -08:00
nullname 89f10baad5
ggml-hexagon: flash-attention and reduce-sum optimizations (#19141)
* wip

* ggml-hexagon: add vectorized dot product function for FP32 and FP16 accumulation

* ggml-hexagon: optimize dot product functions for FP16 and FP32 with new vectorized implementations

* wip

* ggml-hexagon: optimize hvx_vec_dump_f32_n and hvx_vec_reduce_sum_qf32x2 functions for improved performance

* ggml-hexagon: refactor dot product functions to use a common loading function for improved readability

* optimize vector dot product functions to use unified reduction for improved performance

* wip

* ggml-hexagon: add vectorized dot product function for FP32 and FP16 accumulation

* ggml-hexagon: optimize dot product functions for FP16 and FP32 with new vectorized implementations

* wip

* ggml-hexagon: optimize hvx_vec_dump_f32_n and hvx_vec_reduce_sum_qf32x2 functions for improved performance

* ggml-hexagon: refactor dot product functions to use a common loading function for improved readability

* optimize vector dot product functions to use unified reduction for improved performance

* hexagon: optimize reduce-sum for v75+

* hexagon: always keep row_sums in sf/fp32

* ggml-hexagon: enhance directory checks for HEXAGON_SDK_ROOT and HEXAGON_TOOLS_ROOT

* fix compiling error after rebase

---------

Co-authored-by: Max Krasnyansky <maxk@qti.qualcomm.com>
2026-01-30 21:14:20 -08:00
shaofeiqi 971facc38e
opencl: add optimized q8_0 mm kernel for adreno (#18871)
* Add Q8_0 OpenCL kernel

Co-authored-by: yunjie <yunjie@qti.qualcomm.com>

* opencl: fix build for non-adreno

* opencl: refactor q8_0

* opencl: enforce subgroup size of 64 for adreno for q8_0

* For A750 and older generations, subgroup size can be 64 or 128.
  This kernel assumes subgroup size 64.

* opencl: suppress warning when adreno kernels are disabled

---------

Co-authored-by: yunjie <yunjie@qti.qualcomm.com>
Co-authored-by: Li He <lih@qti.qualcomm.com>
2026-01-30 10:19:27 -08:00
Georgi Gerganov dfd6106c84 cuda : fix compile warnings (whisper/0) 2026-01-30 20:09:21 +02:00
Simon Redman 13f3ebfae1
Correctly fetch q8_1 quantize pipeline in test as needed by 8a3519b (#19194) 2026-01-30 17:27:16 +01:00
bssrdf ecbf01d441
add tensor type checking as part of cuda graph properties (#19186) 2026-01-30 12:57:52 +08:00
s8322 1025fd2c09
sycl: implement GGML_UNARY_OP_SOFTPLUS (#19114)
* sycl: add softplus unary op implementation

* sycl: add softplus unary op implementation

* docs(ops): mark SYCL SOFTPLUS as supported

* docs: update SYCL status for SOFTPLUS
2026-01-30 12:01:38 +08:00
RachelMantel c7358ddf64
sycl: implement GGML_OP_TRI (#19089)
* sycl: implement GGML_OP_TRI

* docs: update ops.md for SYCL TRI

* docs: regenerate ops.md

* docs: update SYCL support for GGML_OP_TRI
2026-01-30 12:00:49 +08:00
Zheyuan Chen bd90fc74c3
ggml-webgpu: improve flastAttention performance by software pipelining (#19151)
* webgpu : pipeline flash_attn Q/K loads in WGSL

* ggml-webgpu: unroll Q*K accumlation inner loop

* ggml-webgpu: vectorization

* ggml-webgpu: unrolling

* ggml-webgpu: remove redundant unrolling

* ggml-webgpu: restore the config

* ggml-webgpu: remove redundant comments

* ggml-webgpu: formatting

* ggml-webgpu: formatting and remove vectorization

* ggml-webgpu: remove unnecessary constants

* ggml-webgpu: change QKV buffer to read_write to pass validation

* ggml-webgpu: add explanation for the additional bracket around Q K accumulate

* Indentation and for -> if for tail

* Kick off CI on wgsl only commits

---------

Co-authored-by: Reese Levine <reeselevine1@gmail.com>
2026-01-29 14:05:30 -08:00
Todor Boinovski ce38a4db47
hexagon: enable offloading to Hexagon on Windows on Snapdragon (#19150)
* hexagon: updates to enable offloading to HTP on WoS

* Update windows.md

* Update windows.md

* hexagon: enable -O3 optimizations

* hexagon: move all _WINDOWS conditional compilation to _WIN32

* hexagon: updates to enable offloading to HTP on WoS

* hexagon: use run-time vs load-time dynamic linking for cdsp driver interface

* refactor htp-drv

* hexagon: add run-bench.ps1 script

* hexagon: htdrv refactor

* hexagon: unify Android and Windows build readmes

* hexagon: update README.md

* hexagon: refactor htpdrv

* hexagon: drv refactor

* hexagon: more drv refactor

* hexagon: fixes for android builds

* hexagon: factor out dl into ggml-backend-dl

* hexagon: add run-tool.ps1 script

* hexagon: merge htp-utils in htp-drv and remove unused code

* wos: no need for getopt_custom.h

* wos: add missing CR in htpdrv

* hexagon: ndev enforecement applies only to the Android devices

* hexagon: add support for generating and signing .cat file

* hexagon: add .inf file

* hexagon: working auto-signing and improved windows builds

* hexagon: futher improve skel build

* hexagon: add rough WoS guide

* hexagon: updated windows guide

* hexagon: improve cmake handling of certs and logging

* hexagon: improve windows setup/build doc

* hexagon: more windows readme updates

* hexagon: windows readme updates

* hexagon: windows readme updates

* hexagon: windows readme updates

* hexagon: windows readme updates

* Update windows.md

* Update windows.md

* snapdragon: rename docs/backend/hexagon to docs/backends/snapdragon

Also added a power shell script to simplify build env setup.

* hexagon: remove trailing whitespace and move cmake requirement to user-presets

* hexagon: fix CMakeUserPresets path in workflow yaml

* hexagon: introduce local version of libdl.h

* hexagon: fix src1 reuse logic

gpt-oss needs a bigger lookahead window.
The check for src[1] itself being quantized was wrong.

---------

Co-authored-by: Max Krasnyansky <maxk@qti.qualcomm.com>
2026-01-29 12:33:21 -08:00
Georgi Gerganov 4fdbc1e4db
cuda : fix nkvo, offload and cuda graph node properties matching (#19165)
* cuda : fix nkvo

* cont : more robust cuda graph node property matching

* cont : restore pre-leafs implementation

* cont : comments + static_assert
2026-01-29 18:45:30 +02:00
yulo f3dd7b8e68
HIP: add mmf for CDNA (#18896)
* refactor mmf rows_per_block

* speed up compile

* pass cdna compile

* fix cuda error

* clean up mmf

* f32 mmf

* clean float mma

* fix mmf error

* faster mmf

* extend tile k

* fix compile error

* Revert "extend tile k"

This reverts commit 4d2ef3d483.

* fix smem overflow

* speed up compiling mmf

* speed up compile for hip

* 512 block for cdna

* config pad size

* fix as comment

* update select logic

* move some code to cuh

* fix as comment

* correct cdna3 config

---------

Co-authored-by: zhang hui <you@example.com>
2026-01-29 11:10:53 +01:00
Vishal Singh b33df266d0
ggml-zendnn : resolve ZenDNN backend cross-module symbol dependency (#19159) 2026-01-29 12:28:57 +08:00
Aman Gupta 3bcc990997
CUDA: refactor topk-moe to enable more models (GLM 4.7, Nemotron etc.) (#19126) 2026-01-29 10:31:28 +08:00
Neo Zhang d4964a7c66
sycl: fix norm kernels: l2_norm, group_norm, rms_norm by remove assert to support more cases (#19154)
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2026-01-29 09:20:22 +08:00
Ruben Ortlam f6b533d898
Vulkan Flash Attention Coopmat1 Refactor (#19075)
* vulkan: use coopmat for flash attention p*v matrix multiplication

* fix P loading issue

* fix barrier position

* remove reduction that is no longer needed

* move max thread reduction into loop

* remove osh padding

* add bounds checks and padding

* remove unused code

* fix shmem sizes, loop duration and accesses

* don't overwrite Qf, add new shared psh buffer instead

* add missing bounds checks

* use subgroup reductions

* optimize

* move bounds check, reduce barriers

* support other Bc values and other subgroup sizes

* remove D_split

* replace Of register array with shared memory Ofsh array

* parallelize HSV across the rowgroups

* go back to Of in registers, not shmem

* vectorize sfsh

* don't store entire K tile in shmem

* fixes

* load large k tiles to shmem on Nvidia

* adapt shared memory host check function to shader changes

* remove Bc 32 case

* remove unused variable

* fix missing mask reduction tmspsh barrier

* fix mask bounds check

* fix rowmax f16 under/overflow to inf

* fix flash_attn_cm2 BLOCK_SIZE preprocessor directives
2026-01-28 18:52:45 +01:00
Patryk Kaminski 0cd7032ca4
ggml-sycl: remove unused syclcompat header (#19140)
The syclcompat/math.hpp is not used anymore. The change that intrduced it was successfuly reverted (https://github.com/ggml-org/llama.cpp/pull/17826).
This include path will become obsolete and dropped in oneAPI 2026.0 effectively breaking ggml-sycl builds.
2026-01-28 23:33:54 +08:00
Oleksandr Kuvshynov 88d23ad515
vulkan: handle device dedup on MacOS + Vega II Duo cards (#19058)
Deduplication here relied on the fact that vulkan would return unique
UUID for different physical GPUs. It is at the moment not always the case.
On Mac Pro 2019 running Mac OS, with 2 Vega II Duo cards (so, 4 GPU total),
MotlenVK would assign same UUID to pairs of GPUs, unless they
are connected with Infinity Fabric.

See more details here: KhronosGroup/MoltenVK#2683.

The right way is to fix that in MoltenVK, but until it is fixed,
llama.cpp would only recognize 2 of 4 GPUs in such configuration.

The deduplication logic here is changed to only filter GPUs if UUID is
same but driver is different.
2026-01-28 12:35:54 +01:00
Kevin Pouget b7feacf7f3
ggml: new backend for Virglrenderer API Remoting acceleration (v2) (#18718) 2026-01-28 17:49:40 +08:00
Alberto Cabrera Pérez 6ad70c5a77
ggml-cpu: arm64: Q4_K scale unroll and vectorization (#19108) 2026-01-28 09:15:56 +02:00
Georgi Gerganov 631cbfcc7a
cuda : fix "V is K view" check for non-unified KV cache (#19145) 2026-01-28 09:15:27 +02:00
Georgi Gerganov 2eee6c866c
CUDA: tune GLM 4.7 Flash FA kernel selection logic (DGX Spark) (#19142) 2026-01-28 09:15:11 +02:00
Nikhil Jain 06961e2876
ggml webgpu: Split shared state (webgpu_context) into global state and per-thread state (#18976)
* Squashed commit of the following:

commit b3c6bf4b0450d8d452b934df27a0fb7cb53cd755
Author: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Date:   Mon Dec 1 18:29:00 2025 -0800

    ggml webgpu: fix xielu parameter passing (#11)

    The XIELU operation was incorrectly using static_cast to convert
    float parameters to uint32_t, which converted numeric values instead
    of preserving IEEE 754 bit patterns. This caused incorrect values
    to be interpreted by the GPU shader.

    * Use reinterpret_cast to preserve float bit patterns when passing
      through uint32_t params buffer
    * Update WGSL shader parameter types from u32 to f32
    * Re-enable XIELU support (was disabled due to numerical issues)

    Fixes NMSE test failures for XIELU operation on WebGPU backend.

commit 5ca9b5e49e
Author: neha-ha <137219201+neha-ha@users.noreply.github.com>
Date:   Tue Nov 18 12:17:00 2025 -0800

    Refactored pipelines and workgroup calculations (#10)

    * refactored pipelines

    * refactored workgroup calculation

    * removed commented out block of prior maps

    * Clean up ceiling division pattern

    ---------

    Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
    Co-authored-by: Reese Levine <reeselevine1@gmail.com>

Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:13:06 2025 -0700

    formatted embed wgsl and ggml-webgpu.cpp

commit e1f6baea31
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:08:37 2025 -0700

    implemented REPL_Template support and removed bug in unary operators kernel

commit 8c70b8fece
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 15 16:14:20 2025 -0700

    responded and dealt with PR comments

commit f9282c660c
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:41:41 2025 -0700

    removed unnecesarry checking if node->src[1] exists for unary operators

commit 4cf28d7dec
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:32:45 2025 -0700

    All operators (inlcluding xielu) working

commit 74c6add176
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:16:48 2025 -0700

    fixed autoconfig

commit 362749910b
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:10:46 2025 -0700

    removed vestigial files

commit cb08583337
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:59:32 2025 -0700

    abides by editor-config

commit 5360e2852a
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:45:57 2025 -0700

    rms_norm double declaration bug atoned

commit 7b09baa4aa
Merge: 8a6ec843 74b8fc17
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 11:50:03 2025 -0700

    resolving merge conflicts

commit 8a6ec843a5
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 8 18:06:47 2025 -0700

    unary operators pass ggml tests

commit c3ae38278a
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 1 16:22:40 2025 -0700

    neg passes backend test

commit aa1c9b2f88
Author: James Contini <jamescontini@gmail.com>
Date:   Tue Sep 30 23:55:27 2025 -0700

    neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>

* Remove extra code and format

* Add ops documentation (finally)

* ggml webgpu: add SOFTPLUS unary operator

Implements SOFTPLUS (log(1 + exp(x))) with f16/f32 support. Uses f32
precision for intermediate calculations to prevent f16 overflow.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support
* Follow Vulkan backend numerical stability pattern

* ggml webgpu: add EXPM1 unary operator

Implements EXPM1 (exp(x) - 1) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add FLOOR unary operator

Implements FLOOR (rounds down to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add CEIL unary operator

Implements CEIL (rounds up to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add ROUND unary operator

Implements ROUND (rounds to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add TRUNC unary operator

Implements TRUNC (truncates towards zero) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* docs : update WebGPU support for unary operators (FLOOR, CEIL, ROUND, TRUNC, EXPM1, SOFTPLUS)

* Updates to webgpu get_memory

* Move shared state (webgpu_context) and device creation out of registration context, device context, and buffer context, and move into backend context

* Small cleanup

* Move Instance, Device, Adapter, Device creation, and capabilities to global state while moving Queue, pipelines, and buffers to per-thread state.

* Cleanups

* More cleanup

* Move staging_buf mutex to global context

* Resolve merge

* Resolve merge

* Resolve merge

* Clean up merge errors, delete forward declaration, and run clang-format

* Rename device_init to backend_init

* Move webgpu_context to backend_context

* Move buffer context members into global context and refactor function calls

* Run clang-format

* Remove commends

* Move parameter buffers to per-thread, add single memset_tensor param buf

* Fix CI compilation issue

* Fix builds for emscripten not supporting subgroups

* cleanup

* cleanup

---------

Co-authored-by: Reese Levine <reeselevine1@gmail.com>
2026-01-27 20:53:36 -08:00
Vishal Singh f2571df8b7
ggml-zendnn : update ZenDNN git tag to main branch (#19133) 2026-01-28 06:21:36 +08:00
Johannes Gäßler a5bb8ba4c5
CUDA: tune GLM 4.7 Flash FA kernel selection logic (#19097) 2026-01-27 14:28:56 +01:00
Alberto Cabrera Pérez be8890e721
ggml-cpu: aarm64: q6_K repack gemm and gemv (and generic) implementations (i8mm) #18860 (#18888)
* Boilerplate for q6_K repack

* q6_K repack to q6_Kx8 implementation

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* q6_K generic gemv and gemm

* wip, gemm_q6_K 8x8

* Still WIP: loading of q8s, q6h and q6l

* first working version of q6_K gemm

* Moved q6 loads outside of sb block, Unrolled inner loop

* Replaced modulo with mask

* First implementation of GEMV

* ggml_vdotq_s32 -> vdotq_s32

* Reduce width of accumulators in q6_K gemv

* Bsums instead of calc bias. Preload scales to use vget_lane. Unroll.

* Reuse scales in GEMM (same GEMV opt)

* Added todos for bsum and different qh repack

* Arch fallback

* VSLIQ for merging qh adn ql

* Removed TODO, already tested

* Apply suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Removed unused import

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-01-27 11:08:10 +02:00
Gaurav Garg a83c73a18a
[CUDA] Reduce CPU-side stalls due to the CUDA command buffer being full (#19042)
* [CUDA] Reduce CPU-side stalls due to the CUDA command buffer being full

With pipeline parallelism, during prompt processing, the CPU-side CUDA command buffer gets full, stalling the CPU. Due to this, enough work doesn't get submitted to the GPU, causing bubbles in the GPU timeline.
Fix this by setting the CUDA environment variable CUDA_SCALE_LAUNCH_QUEUES to 4x to increase the command buffer size.

* Set the env variable in the CUDA backend registry allocation

* Add link to PR in code comment

* Remove warning logs and update documentation
2026-01-27 08:52:44 +02:00
shalinib-ibm 7afdfc9b84
ggml-cpu: Enable FP16 MMA kernels on PPC (#19060) 2026-01-27 11:52:34 +08:00
lhez 94eeb5967c
opencl: add flattened q6_K mv (#19054)
* opencl: flatten `q6_K` and add `kernel_mul_mv_q6_K_f32_flat`

* opencl: clean up

* opencl: refactor q6_K mv - put loop body in `block_q_6_K_dot_y_flat`

* opencl: tweak the workgroup size a bit

* opencl: output 4 values per subgroup for `kernel_mul_mv_q6_K_f32_flat`

* opencl: proper alignment for q6_K

* opencl: boundary handling for flattened q6_K mv

* opencl: rename q6_K mv kernel file

* opencl: put flattened q6_K mv in its own file

* opencl: use lower k in file name

* opencl: use K in variable names
2026-01-26 19:36:24 -08:00
Johannes Gäßler b0311c16d2
CUDA: fix padding of GQA to power of 2 in FA (#19115) 2026-01-26 23:24:58 +01:00
Johannes Gäßler 0c21677e43
CUDA: faster FA for GQA > 1 but not power of 2 (#19092) 2026-01-25 21:19:47 +01:00
ccbinn 0440bfd160
metal : fix recommendedMaxWorkingSetSize availability on legacy iOS/macOS (#19088)
Co-authored-by: chenbin11 <chenbin11@kuaishou.com>
2026-01-25 20:07:19 +02:00
Aman Gupta bcb43163ae
ggml-cpu: Use tiled FA for prompt-processing (#19012)
* ggml-cpu: Use tiled FA for prompt-processing

the FA performance is gimped on CPU on long contexts because it essentially uses a vector kernel. This PR adds a tiled FA for PP. Perf tuning for tile sizes done on a AMD EPYC single-socket 64-c machine.

* fix out of bounds for mask

* skip rows where there are all masks

* skip tile if mask is inf

* store mask in worksize

* check inf tile earlier
2026-01-25 23:25:58 +08:00
Georgi Gerganov d9c6ce46f7
kv-cache : support V-less cache (#19067)
* kv-cache : support V-less cache

* cuda : better check for V_is_K_view

* cuda : improve V_is_K_view check

* graph : add comments

* hparams : refactor
2026-01-25 15:48:56 +02:00
Johannes Gäßler 4e5b83b226
GGUF: check that tensor size is representable (#19072) 2026-01-24 21:57:51 +01:00
Johannes Gäßler 8f91ca54ec
CUDA: re-use MLA K data for V in MMA FA (#19057) 2026-01-24 10:09:36 +01:00
Aman Gupta 81ab64f3c8
ggml-cuda: enable cuda-graphs for `n-cpu-moe` (#18934)
* ggml-cuda: add split-wise cuda graph

* add n-cpu-moe compare_llama_bench.py

* fix hip/musa builds
2026-01-24 14:25:20 +08:00
nullname 8af1f5f430
ggml-hexagon: flash-attn opt (#19025)
* optimize flash attention kernel by improving score computation and online softmax update

* wip

* Refactor online softmax update in flash attention kernel for improved performance

* Optimize flash attention kernel by replacing float array with HVX_Vector for score computation

* wip
2026-01-23 22:02:07 -08:00
Neo Zhang cb6caca191
[SYCL] use malloc to support both iGPU and dGPU in same time (#18992)
* use malloc to support both iGPU and dGPU in same time

* support windows

---------

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2026-01-23 20:54:10 +08:00
Alberto Cabrera Pérez 091a46cb8d
ggml-cpu: aarm64: q5_K repack gemm and gemv (and generic) implementations (i8mm) (#18860)
* Boilerplate for q5_Kx8 REPACK on ARM and fallback

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Implements make_block_q5_Kx8 by extending make_block_q4_Kx8

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* q5_K repack gemm and gemv generics

* Gemm and Gemv ARM implementations (i8mm)

* Improved qh manipulation looking at non-repack vec_dot implementation

* Full unroll

* Apply Q5_K Gemv vand and vshl optimizations to gemm. Improve comments.

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Fix wrong fallback definitions of Q5_K

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Fixed comments. Reverted unnecessary formatting

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Fixed typo in generic definitions

* Switching AND + Shift with Shift Insert. Better op interleaving.

* Vectorize + unroll the block scales

* Apply gemm optimizations to gemv

* Improve bias calculation

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
2026-01-23 09:55:08 +02:00
Georgi Gerganov a5eaa1d6a3
mla : make the V tensor a view of K (#18986)
* mla : pass V as a view of K to the FA op

* cuda : adjust mla logic to new layout

* kv-cache : fix rope shift

* tests : remove comment

* cuda : fix reusable_cutoff

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2026-01-22 22:09:01 +02:00
Johannes Gäßler e2baf02162
CUDA: fix alignment check for FA (#19023) 2026-01-22 20:39:25 +01:00
lhez 9c96465f99
opencl: enable the general fp mm for non-cont input and as a fallback for specialized kqv kernel for adreno (#18970)
* opencl: add `copy_to_contiguous` and utilize mm kernels

* opencl: only copy to cont for f32 and f16 tensors

* opencl: use cont mm for fallback when dst is large

* opencl: use nb local to copy-to-cont

* opencl: use local offset as well
2026-01-22 10:29:25 -08:00
Aman Gupta b70d251076
CUDA: add gqa_ratio 4 for GLM 4.7 flash (#18953) 2026-01-22 18:51:53 +08:00
shaofeiqi 5516b9c16a
opencl: add TRI op support (#18979) 2026-01-21 22:05:54 -08:00
Aleksei Nikiforov 94242a62c0
ggml-zdnn : mark zDNN buffers as non-host (#18967)
While buffers reside in host memory,
additional transformation is needed to use buffers with zDNN.

Fixes #18848
2026-01-22 01:16:21 +01:00
Jeff Bolz bd544c94a3
vulkan: Remove transfer_ctx, do everything in compute_ctx. (#18945)
* vulkan: Remove transfer_ctx, do everything in compute_ctx.

We had a bug where a set_tensor_async (using transfer_ctx) didn't get
submitted before the graph_compute (using compute_ctx) that came after
it. To avoid this sort of issue, just do everything in compute_ctx.

Remove transfer_cmd_pool, which was already unused.

* fix crash with perf logger
2026-01-21 18:01:40 +01:00
Jeff Bolz 33f890e579
vulkan: support flash attention GQA/split_k with small batches (#18938) 2026-01-21 17:43:43 +01:00
Masato Nakasaka 067b8d7af3
Revert "vulkan: force full subgroups for flash attention to fix intel subgroup crash (#17356)" (#18831)
This reverts commit 980b7cd17e.
2026-01-21 17:13:43 +01:00
Jeff Bolz 50b7f076a5
vulkan: Use mul_mat_vec_id for small values of n (#18918)
Change ggml_vk_mul_mat_vec_id_q_f16 to loop over the batch dimension and
update the indexing calculations in get_offsets.

Mat-vec is faster than mat-mat for small values of n. We don't get the same
reuse of the weights as in the non-ID path, but with this the cost is linear
in n rather than n>1 being far slower than n==1.
2026-01-21 16:22:02 +01:00
Matthieu Coudron 37c35f0e1c
gguf: display strerrno when cant load a model (#18884)
I've had issues loading models with llama-server:
[44039] E gguf_init_from_file: failed to open GGUF file 'mistral-7b-v0.1.Q8_0.gguf'

and I was sure it could access the file. Seems like --models-dir and
--models-presets dont interact like I thought they would but I salvaged
this snippet that helps troubleshooting
[44039] E gguf_init_from_file: failed to open GGUF file 'mistral-7b-v0.1.Q8_0.gguf' (errno No such file or directory)
2026-01-21 08:52:46 +02:00
Oliver Simons 5bd341c9a1
CUDA: Fix builds for older CCCL versions by ifdefing strided_iterator (#18964)
* CUDA: Fix builds for older CCCL versions by ifdefing strided_iterator

Strided iterator was added in [CCCL
3.1](https://github.com/NVIDIA/cccl/releases/tag/v3.1.0), which is packaged into
[CTK
13.1](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#id5)

* Unindent as per code review request
2026-01-21 02:34:29 +01:00
Oliver Simons d1e3556481
CUDA: Replace init_offsets kernel with iterators in cub-based argsort (#18930)
* CUDA: Replace `init_offsets` with iterators in argsort

This is a QOL improvement, saving us the cost of materializing the
iterator

* Remove unnecessary include from top-k.cu
2026-01-20 20:11:01 +08:00
Adrien Gallouët 08f3f4a8a3
ggml : cleanup path_str() (#18928)
- Remove pragmas as `std::codecvt_utf8` is not used.
- Avoid implicit `strlen()`.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-01-20 11:42:49 +01:00
Georgi Gerganov 271191906c
metal : enable FA for MLA heads (#18950) 2026-01-20 12:21:28 +02:00
Georgi Gerganov 365a3e8c31
ggml : add ggml_build_forward_select (#18550)
* ggml : add ggml_build_forward_select

* cuda : adapt CUDA graph compat to new feature

* vulkan : update logic to handle command buffer closing

* ggml : check compute for fusion

* ggml : add comment
2026-01-19 20:03:19 +02:00
lhez d1b4757ded
opencl: fix q6_K mv for m=1 (#18893) 2026-01-17 13:50:32 -08:00
Reese Levine a89002f07b
ggml webgpu: support for backend sampling (#18880)
* ggml webgpu: add SOFTPLUS unary operator

Implements SOFTPLUS (log(1 + exp(x))) with f16/f32 support. Uses f32
precision for intermediate calculations to prevent f16 overflow.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support
* Follow Vulkan backend numerical stability pattern

* ggml webgpu: add EXPM1 unary operator

Implements EXPM1 (exp(x) - 1) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add FLOOR unary operator

Implements FLOOR (rounds down to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add CEIL unary operator

Implements CEIL (rounds up to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add ROUND unary operator

Implements ROUND (rounds to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add TRUNC unary operator

Implements TRUNC (truncates towards zero) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* docs : update WebGPU support for unary operators (FLOOR, CEIL, ROUND, TRUNC, EXPM1, SOFTPLUS)

* Updates to webgpu get_memory

* Add argmax

* Add argmax,cumsum,sum,sum_rows

* Add necessary CPY/GET_ROWS operators

* Support for argsort using multi-pass strategy

* Update set_rows for i32 indices, move to pre-wgsl

* Port unary operators to pre-wgsl and support FILL

* Implement PAD

* Add support for top-k

* clean up, scope pipeline init mutex

* fix newline

* Add support for log

* Update LOG for better precision, and ops doc

---------

Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>
2026-01-16 16:12:43 -08:00
Thore Koritzius 388ce82241
ggml : extend ggml_pool_1d + metal (#16429)
* chore: resolve conflicts

* feat: ggml metal impl

* fix: ggml_metal_kargs_pool_1d struct

* fix: require contiguous input

* chore: test pool_1d

* chore: limit pool1d test cases to p0=0 and s0=k0 to conform with asserts

* chore: add p0 and s0 to testing

* fix: allow padding for cpu and metal

* Update ggml/src/ggml-metal/ggml-metal.metal

* fix: correct single-threaded loop

* ggml : cleanup

* tests : add ne[1] != 1 tests

* fix: ne[1] handling in np

* cont : fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-01-16 16:59:56 +02:00
Perry Naseck 0802d4cfb3
ggml-blas: hide warnings from included BLAS headers (#18818)
* fix compile def openblas, blis for compat libs, nvpl compile def, warn if no blas vendor set

* ggml-blas: hide warnings from included BLAS headers
2026-01-16 13:38:25 +02:00
Raul Torres 4ea2eaac01
CANN: Remove unused `ggml_cann_get_device` function (#18625) 2026-01-16 16:34:09 +08:00
Chenguang Li e20fa27a02
CANN: fix an issue where get_env was not fully renamed (#18796)
* CANN: fix an issue where get_env was not fully renamed

* ci: add cann with acl group

* ci: define use_acl_graph using GitHub Action

* ci: update cann dockerfile with acl graph
2026-01-16 16:24:04 +08:00
hipudding baa4ba0aec
CANN: support gated linear attn (#18653)
* CANN: support gated linear attn

This change adds support for the GGML_OP_GATED_LINEAR_ATTN operator.
The feature was implemented by YushengZhao. Because the previous
submission was based on an outdated codebase, this PR was rebased to
merge.

Co-authored-by: YushengZhao <yusheng.chao@outlook.com>
Co-authored-by: hipudding <huafengchun@gmail.com>

* CANN: optimize OP gla

Optimize gla for high preformance

* Remove unused comments

---------

Co-authored-by: 赵禹昇 <2501112001@cninfer02.localdomain>
Co-authored-by: YushengZhao <yusheng.chao@outlook.com>
2026-01-16 16:18:49 +08:00
shaofeiqi 785a710085
OpenCL: add SOLVE_TRI op support (#18846) 2026-01-15 11:17:17 -08:00
Georgi Gerganov 6e7fc8a146
cuda : print less debug logs when disabling cuda graphs (#18868) 2026-01-15 20:53:01 +02:00
Johannes Gäßler 5c662d21a3
CUDA: fix allignment on register spill for FA (#18815) 2026-01-15 15:14:50 +01:00
shalinib-ibm 8cc0ba957b
ggml-cpu: optimize ggml_vec_dot_bf16 for Power9 (#18837) 2026-01-15 17:31:18 +08:00
Max Krasnyansky cff777f226
hexagon: support for OP_CPY, host buffers now optional, hvx-utils refactoring and optimizations (#18822)
* hexagon: disable repack buffers if host buffers are disabled, improved handling of env vars

* hexagon: add support for OP_CPY fp16/fp32 -> fp16/fp32

Factore out all hvx_copy functions into hvx-copy.h header and reduced code duplication.
Update HTP ops infra to support OP_CPY

* hexagon: cleanup and refactor hex/hvx/htp headers and helper libs

hex is basically all scalar/core platform stuff (L2, DMA, basic utils)
hvx is all hvx related utils, helpers, etc
htp is higher level stuff like Ops, etc

hvx-utils library got a nice round of cleanup and refactoring to reduce duplication

use hvx_vec_store_a where possible

* hexagon: refactor HVX sigmoid functions to hvx-sigmoid.h

Moved sigmoid and tanh vector functions from hvx-utils.h to a new header
hvx-sigmoid.h. Implemented aligned and unaligned variants for sigmoid
array processing using a macro pattern similar to hvx-copy.h. Updated
act-ops.c to use the new aligned variant hvx_sigmoid_f32_aa. Removed
unused hvx-sigmoid.c.

* hexagon: factor out hvx-sqrt.h

* hexagon: mintor update to hvx-utils.h

* hexagon: remove spurios log

* hexagon: factor out and optimize hvx_add/sub/mul

* hexagon: remove _opt variants of add/sub/mul as they simply fully aligned versions

* hexagon: refactor reduction functions to hvx-reduce.h

Moved `hvx_self_max_f32` and `hvx_self_sum_f32` from `hvx-utils.h`/`.c` to `hvx-reduce.h`.
Renamed them to `hvx_reduce_max_f32` and `hvx_reduce_sum_f32`.
Added aligned (`_a`) and unaligned (`_u`) variants and used macros to unify logic.
Updated `softmax-ops.c` to use the new functions.

* hexagon: refactor the rest of arithmetic functions to hvx-arith.h

Moved `hvx_sum_of_squares_f32`, `hvx_min_scalar_f32`, and `hvx_clamp_scalar_f32` from `hvx-utils.c/h` to `hvx-arith.h`. Implemented aligned/unaligned variants (`_aa`, `_au`, etc.) and used macros to reduce code duplication. Updated `hvx_min_scalar_f32` and `hvx_clamp_scalar_f32` to use `dst, src, ..., n` argument order. Updated call sites in `act-ops.c`.

Refactor Hexagon HVX arithmetic functions (min, clamp) to hvx-arith.h

Moved `hvx_min_scalar_f32` and `hvx_clamp_scalar_f32` from `hvx-utils.c/h` to `hvx-arith.h`. Implemented aligned/unaligned variants (`_aa`, `_au`, etc.) and used macros to reduce code duplication. Updated these functions to use `dst, src, ..., n` argument order and updated call sites in `act-ops.c`. `hvx_sum_of_squares_f32` remains in `hvx-utils.c` as requested.

* hexagon: refactor hvx_sum_of_squares_f32

- Modify `hvx_sum_of_squares_f32` in `ggml/src/ggml-hexagon/htp/hvx-reduce.h` to use `dst, src` signature.
- Implement `_a` (aligned) and `_u` (unaligned) variants for `hvx_sum_of_squares_f32`.
- Update `hvx_reduce_loop_body` macro to support both returning and storing results via `finalize_op`.
- Update existing reduction functions in `hvx-reduce.h` to use the updated macro.
- Update `rms_norm_htp_f32` in `ggml/src/ggml-hexagon/htp/unary-ops.c` to match the new signature.

* hexagon: use hvx_splat instead of memset

* hexagon: consistent use of f32/f16 in all function names to match the rest of GGML

* hexagon: fix hvx_copy_f16_f32 on v75 and older

* hexagon: update readme to include GGML_HEXAGON_EXPERIMENTAL

* scripts: update snapdragon/adb scripts to enable host param
2026-01-14 21:46:12 -08:00
Oliver Simons 36f0132464
CUDA: Factor out and re-use `block_reduce` function (#18785)
* CUDA: Refactor and expose two_stage_warp_reduce_* function

* Use `two_stage_warp_reduce` also in softmax kernel, move smem out of it

Moving smem out of `__device__` function to `__global__` function
allows for explicit smem reuse, as either compiler or cuda rt seem to not
free it afterwards (`cudaFuncSetAttribute` fails when not accounting for
it once for each call to two_stage_warp_reduce)

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Use two_stage_warp_reduce in group_norm_f32

* Use two_stage_warp_reduce in rms_norm_f32

* Fix smem calculation which expects bytes

* Make `two_stage_warp_reduce` accept all values warp_reduce accepts

Also integrate it into norm_f32 function

* Use two_stage_warp_reduce in l2_norm_f32

* Use type traits for block reduction for better legibility

Also adresss other requests by @am17an such as variable renaming

* Make norm tests cover all cuda paths

* Mark columns % WARP_SIZE !=0 as supported for RMS_NORM_BACK

Unit-tests passed locally, let's see if they pass in the CI as well

* Use `enum class` for `block_reduce_method`

This is more type-safe than plain enum

* Rename variables as suggested in code review by @am17an

* Rename two_stage_warp_reduce -> block_reduce

* Fix trailing whitespace in common.cuh

* Make condition of static_assert type-dependent

This delays evaluation until the template is actually instantiated.
Otherwise, some compilers may evaluate the assert when parsing the
template, resulting in build errors as observed here:

https://github.com/ggml-org/llama.cpp/actions/runs/20960323123/job/60235530068?pr=18785

* Inline definitions

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2026-01-15 10:44:54 +08:00
Jeff Bolz 3e4bb29666
vulkan: Check maxStorageBufferRange in supports_op (#18709)
* vulkan: Check maxStorageBufferRange in supports_op

* skip maxStorageBufferRange check when shader64BitIndexing is enabled
2026-01-14 10:59:05 +01:00
Daniel Bevenius 01cbdfd7eb
CUDA : fix typo in clang pragma comment [no ci] (#18830) 2026-01-14 10:31:49 +01:00
Ruben Ortlam 635ef78ec5
vulkan: work around Intel fp16 bug in mmq (#18814) 2026-01-14 09:41:23 +01:00
Perry Naseck 7d587e5544
ggml-metal: do not copy headers for embedded, use current binary dir for embedded (#18705) 2026-01-14 09:22:25 +02:00
yulo ea4a321f2a
HIP: add fattn-mma-f16 for RDNA4 (#18481)
* finish VQ mma

* flash_attn_ext_f16_iter

* KQ_rowsum

* correct exp

* fix scale error

* fix softmax scale

* fix softmax scale

* enable fattn on cpu side

* fix random error

* disable fattn-mma-f16 on rdna3

* fix wrong col for rdna

* use identity mat to transpose

* resolve conflicts

* basic tuning for DeepSeek-R1-Distill-Qwen-1.5B

* fix volta compile error

* align rdna4 policy for fattn

* adjust fattn policy

* adjust kernel selection logic

* update as the review comments

* keep fattn-wmma logic

* adjust kernel selection logic

---------

Co-authored-by: zhang hui <you@example.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2026-01-13 13:52:16 +01:00