Compare commits

...

75 Commits

Author SHA1 Message Date
Xuan-Son Nguyen 0c3b7a9efe
model: fix qwen3next broken due to #18683 (#18762) 2026-01-11 21:00:10 +01:00
Ruben Ortlam 0e76501e1d
Vulkan: Optimize Matmul parameters for AMD GPUs with Coopmat support (#18749)
* vulkan: Enable and optimize large matmul parameter combination for AMD

* limit tuning to AMD GPUs with coopmat support

* use tx_m values instead of _l
2026-01-11 17:33:33 +01:00
Xuan-Son Nguyen 4b060bf240
security: make it clear about subtopics in server (#18754)
* security: make it clear about subtopics in server

* exclude DoS
2026-01-11 16:51:03 +01:00
Daniel Bevenius 9789e28459
debug : include LLAMA_POOLING_TYPE_UNSPECIFIED in pooling check (#18692)
* debug : include LLAMA_POOLING_TYPE_UNSPECIFIED in pooling check

This commit updates the pooling check in the debug example to
also include LLAMA_POOLING_TYPE_UNSPECIFIED and not just
LLAMA_POOLING_TYPE_NONE.

* debug : normalize both pooled and token embeddings

This commit updates debug.cpp to normalize embeddings for both pooled
and non-pooled outputs. For pooled embeddings, normalization is applied
to the single vector, and for non-pooled embeddings, normalization is
applied to each token embedding vector individually.

The motivation for this is to enable non-pooled embeddings to be
normalized which was not possible previously.
2026-01-11 16:34:41 +01:00
Georgi Gerganov 84ae04f163
tests : refactor test-backend-sampler (#18753)
* tests : use "auto", use std::string

* tests : refactor test-backend-sampler.cpp

* cmake : remove redundant declarations

* ci : use smaller model

* tests : add struct test_params

* tests : reduce logit bias 100.0f -> 10.0f
2026-01-11 17:31:03 +02:00
Xuan-Son Nguyen 506bb6e010
model: try to improve Qwen3 Next (#18683)
* qwen3next: simplify qkvz projection

* use ggml_swiglu_split

* revert swiglu_split, but remove redundant repeat()

* fix missing reshape

* rm 2 redundant transposes

* move mul_mat(k,q) to outside of chunking

* rm redundant cont

* improve g_cs_chunk

* add comments about no cont

* use std::pair instead of ggml_concat

* vectorize key_gdiff calculation

* rm unused tensor

* avoid ggml_concat inside loop

* bring back ggml_concat as it may not work on other backend

* nits
2026-01-11 12:53:33 +01:00
thom-dev-fr 79456a690a
readme : update UIs (#18751) 2026-01-11 13:46:50 +02:00
Xuan-Son Nguyen 28068af789
security: narrow down the scope of what we consider a vulnerability (#18752)
* security: narrow down the scope of what we consider a vulnerability

* fix typo
2026-01-11 12:23:36 +01:00
shaofeiqi 707cbafcaa
opencl: add SOFTPLUS op support (#18726) 2026-01-10 21:57:44 -08:00
Aman Gupta b137718878
test-backend-ops: fix mxfp4 tests on blackwell (#18736) 2026-01-11 01:12:57 +08:00
Johannes Gäßler d2ff4e23ac
HIP: adjust RDNA3.5 MMQ kernel selction logic (#18666) 2026-01-10 17:19:01 +01:00
Perry Naseck 657a2e644b
cmake : update blas logic (#18205) 2026-01-10 18:00:54 +02:00
Georgi Gerganov f307926482
server : adjust unified KV cache tests (#18716) 2026-01-10 17:51:56 +02:00
Sigbjørn Skjæret 7fdc8c893d
scripts : follow api redirects in pr2wt.sh (#18739) 2026-01-10 16:04:05 +01:00
Xuan-Son Nguyen 23f82f2420
preset: allow named remote preset (#18728)
* preset: allow named remote preset

* nits: fix docs

* cont docs
2026-01-10 15:12:29 +01:00
Aaron Teo 2656c0d265
docs(ggml): update backend ops (#18734)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2026-01-10 18:48:17 +08:00
Michael Wand 600a366478
Corrected: changed s13 = src1->nb[3] instead of nb[2] (#18724) 2026-01-10 10:16:07 +01:00
Adrien Gallouët ea23c15990
common : add --license to display embedded licenses (#18696)
This commit introduces a mechanism to embed all licenses directly
into the compiled binaries.

This eliminates the need to distribute separate LICENSE files alongside
the executable, making the binaries self-contained and simplifying
deployment.
2026-01-10 09:46:24 +01:00
Xuan-Son Nguyen 9ac2693a30
server: fix n_cmpl not skipping processing prompt (#18663)
* server: fix n_cmpl not skipping processing

* fix infinite loop on empty batch

* cont : init child samplers + modify child logic

* cont : cleanup

* cont : improve n_cmpl logic

- launch the parent task first so it finds the slot with best cache
- parent task waits for child tasks to be launched
- when a child task finishes - remove its cache

* cont : remove redundant function

* cont : reduce parent checks

* fix : nullptr task dereference

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-01-10 00:00:41 +01:00
Simranjeet Singh a61c8bc3bf
mtmd: Add Gemma3n multimodal support with MobileNetV5 vision encoder (#18256)
* Add Gemma3nVisionModel - MobileNetV5 vision encoder convertor to convert_hf_to_gguf.py. Add gemma3n to vision projectors in gguf-py/gguf/constants.py.

* Add mobilenetv5 impl

* Fix comments, remove unused vars

* Fix permute and remove transpose of projection weights

* Fix comments, remove debugging prints from hf_to_gguf

* 1. Hard-code image_mean = 0 and image_std = 1
2. Use available tensor mapping logic
3. Remove redundant chat template replacement of soft tokens placeholder with media placeholder

* 1. Move mobilenetv5 helpers declarations to `clip_graph_mobilenetv5` struct and definitions to mobilenetv5.cpp
2.Remove unused `clip_is_gemma3n` func declarations and definitions
3. Remove redundant `rescale_image_u8_to_f32` func and use `normalize_image_u8_to_f32` with zero mean and unit std
4. Calculate n_patches using image_size / patch_size

* Remove obsolete comments

* - convert_hf_to_gguf.py & constants.py & tensor_mapping.py: Use explicit mapping: Custom map for double indexed blocks and tensor_mapping.py for rest
- convert_hf_to_gguf.py: Unsqueeze Stem Bias and Layer scale tensors to correct shape while converting to gguf
- mobilenetv5.cpp: Remove explicit reshaping of Stem Bias and Layer scale which are now handled while converting to gguf, replace fprintf with LOG_*
- clip.cpp: Remove unused embedding and hard_emb_norm tensor loading

* - Rename tensors to v.conv..., v.blk..., v.msfa... to better align with already existing terminology

* Fix stem conv bias name

* Remove explicit handling of bias term for stem conv

* - Change order of addition in "project_per_layer_inputs" to support broadcasting of vision inp_per_layer
- Simplify the vision embeddings path of "get_per_layer_inputs" to output [n_embd_altup, n_layer, 1], broadcastable

* clean up conversion script

* fix code style

* also preserve audio tensors

* trailing space

* split arch A and V

* rm unused gemma3 func

* fix alignment

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2026-01-09 23:42:38 +01:00
shaofeiqi 593da7fa49
opencl: add EXPM1 op (#18704) 2026-01-09 10:13:13 -08:00
Reese Levine 9e41884dce
Updates to webgpu get_memory (#18707) 2026-01-09 08:17:18 -08:00
Pascal ec8fd7876b
Webui/file upload (#18694)
* webui: fix restrictive file type validation

* webui: simplify file processing logic

* chore: update webui build output

* webui: remove file picker extension whitelist (1/2)

* webui: remove file picker extension whitelist (2/2)

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output

* fix: update ChatForm storybook test after removing accept attribute

* chore: update webui build output

* refactor: more cleanup

* chore: update webui build output
2026-01-09 16:45:32 +01:00
Asbjørn Olling a180ba78c7
cmake: only build cli when server is enabled (#18670) 2026-01-09 16:43:26 +01:00
Georgi Gerganov 53eb9435da
server : fix timing of prompt/generation (#18713) 2026-01-09 12:59:50 +02:00
Georgi Gerganov d3435efc8a
scripts : pr2wt.sh reset to remote head (#18695)
* scripts : pr2wt.sh reset to remote head

* cont : cleaner

* cont : restore --set-upstream-to
2026-01-09 12:16:40 +02:00
Georgi Gerganov f5f8812f7c
server : use different seeds for child completions (#18700)
* server : use different seeds for child completions

* cont : handle default seed

* cont : note
2026-01-09 09:33:50 +02:00
Xuan-Son Nguyen 8ece3836b4
common: support remote preset (#18520)
* arg: support remote preset

* proof reading

* allow one HF repo to point to multiple HF repos

* docs: mention about multiple GGUF use case

* correct clean_file_name

* download: also return HTTP status code

* fix case with cache file used

* fix --offline option
2026-01-08 22:35:40 +01:00
Aaron Teo 046d5fd44e
llama: use host memory if device reports 0 memory (#18587) 2026-01-09 05:34:56 +08:00
Masashi Yoshimura 480160d472
ggml-webgpu: Fix GGML_MEM_ALIGN to 8 for emscripten. (#18628)
* Fix GGML_MEM_ALIGN to 8 for emscripten.

* Add a comment explaining the need for GGML_MEM_ALIGN == 8 in 64-bit wasm with emscripten
2026-01-08 08:36:42 -08:00
Reese Levine 15bff84bf5
ggml webgpu: initial flashattention implementation (#18610)
* FlashAttention (#13)

* Add inplace softmax

* Move rms_norm to split row approach

* Update debug for supports_op

* clean up debug statements

* neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

* neg passes backend test

* unary operators pass ggml tests

* rms_norm double declaration bug atoned

* abides by editor-config

* removed vestigial files

* fixed autoconfig

* All operators (inlcluding xielu) working

* removed unnecesarry checking if node->src[1] exists for unary operators

* responded and dealt with PR comments

* implemented REPL_Template support and removed bug in unary operators kernel

* formatted embed wgsl and ggml-webgpu.cpp

* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings

* Wasm (#9)

* webgpu : fix build on emscripten

* more debugging stuff

* test-backend-ops: force single thread on wasm

* fix single-thread case for init_tensor_uniform

* use jspi

* add pthread

* test: remember to set n_thread for cpu backend

* Add buffer label and enable dawn-specific toggles to turn off some checks

* Intermediate state

* Fast working f16/f32 vec4

* Working float fast mul mat

* Clean up naming of mul_mat to match logical model, start work on q mul_mat

* Setup for subgroup matrix mat mul

* Basic working subgroup matrix

* Working subgroup matrix tiling

* Handle weirder sg matrix sizes (but still % sg matrix size)

* Working start to gemv

* working f16 accumulation with shared memory staging

* Print out available subgroup matrix configurations

* Vectorize dst stores for sg matrix shader

* Gemv working scalar

* Minor set_rows optimization (#4)

* updated optimization, fixed errors

* non vectorized version now dispatches one thread per element

* Simplify

* Change logic for set_rows pipelines

---------

Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Comment on dawn toggles

* Working subgroup matrix code for (semi)generic sizes

* Remove some comments

* Cleanup code

* Update dawn version and move to portable subgroup size

* Try to fix new dawn release

* Update subgroup size comment

* Only check for subgroup matrix configs if they are supported

* Add toggles for subgroup matrix/f16 support on nvidia+vulkan

* Make row/col naming consistent

* Refactor shared memory loading

* Move sg matrix stores to correct file

* Working q4_0

* Formatting

* Work with emscripten builds

* Fix test-backend-ops emscripten for f16/quantized types

* Use emscripten memory64 to support get_memory

* Add build flags and try ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* Remove extra whitespace

* Move wasm single-thread logic out of test-backend-ops for cpu backend

* Disable multiple threads for emscripten single-thread builds in ggml_graph_plan

* Refactored pipelines and workgroup calculations (#10)

* refactored pipelines

* refactored workgroup calculation

* removed commented out block of prior maps

* Clean up ceiling division pattern

---------

Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Start work on flash attention

* Shader structure set up (many bugs still)

* debugging

* Working first test

* Working with head grouping, head sizes to 128, logit softcap, mask/sinks enabled, f32

* Generalize softmax to work with multiple subgroups, f16 accumulation, mask shared memory tiling

* Start work on integrating pre-wgsl

* Separate structs/initial shader compilation library into separate files

* Work on compilation choices for flashattention

* Work on subgroup matrix/tile size portability

* subgroup size agnostic online softmax

* Cleanups, quantization types

* more cleanup

* fix wasm build

* Refactor flashattention to increase parallelism, use direct loads for KV in somce cases

* Checkpoint

* formatting

* Update to account for default kv cache padding

* formatting shader

* Add workflow for ggml-ci webgpu

* Try passing absolute path to dawn in ggml-ci

* Avoid error on device destruction, add todos for proper cleanup

* Fix unused warning

* Forgot one parameter unused

* Move some flashattn computation to f32 for correctness
2026-01-08 08:23:39 -08:00
Jeff Bolz 2524c26164
vulkan: fix push constant size for quantize_q8_1 (#18687)
I added an assert to catch further mismatches, and it found several.
Fix those, too.
2026-01-08 15:40:58 +01:00
Jeff Bolz cb14b06995
vulkan: optimize ssm_scan (#18630)
* vulkan: optimize ssm_scan

* fix warp vs subgroup naming
2026-01-08 15:16:54 +01:00
Adrien Gallouët 55abc39355
vendor : update cpp-httplib to 0.30.0 (#18660)
* vendor : update cpp-httplib to 0.30.0
* common : allow custom headers when downloading
2026-01-08 13:53:54 +01:00
Georgi Gerganov f2f6c88067
scripts : support chaining commands in pr2wt.sh (#18671) 2026-01-08 13:40:23 +02:00
도로로도로또 945bf10627
metal : add MoE kernel specialization for ne20=5 (#18667)
Add template specialization for kernel_mul_mm_id_map0 with ne20=5
to support models using 5 active experts (e.g., VAETKI).
2026-01-08 12:37:45 +02:00
Johannes Gäßler 64848deb18
llama-fit-params: free memory target per device (#18679) 2026-01-08 10:07:58 +01:00
Doctor Shotgun 9a5724dee2
ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH (#18535)
* ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH
* makes the min_batch_size for triggering op offload configurable via env var, defaulting to the prior hardcoded value of 32

* ggml: read GGML_OP_OFFLOAD_MIN_BATCH once and store to dev ctx

* cann: forward declaration of device context struct

* cann: move offload op check after device context declaration

* cuda: fix whitespace

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2026-01-08 11:03:21 +02:00
Daniel Bevenius 9c142e3a2a
model-conversion : add warn about transformers mismatch (#18691)
This commit adds a check comparing the installed transformers library
with the transformers version that the original model supports. This
check will be performed upon a model verification failure and prints a
warning/hint to the user suggesting to install the correct version of
the transformers library.

The motivation for this change is that it is possible for the model
verification to fail due to differences in the transformers library used
and it might not be obvious that this could be the cause of the failure.
With this warning the correct version can be checked and hopefully save
time troubleshooting the cause of the verification failure.
2026-01-08 09:29:53 +01:00
Daniel Bevenius df7fb92170
model-conversion : remove -st targets for converted model (#18689)
This commit removes the '-st` make target for running the converted
embedding model.

The motivation for this is that the pooling type is now part of the
.gguf metdata of the model and this is used by llama-debug when running
the model. So there is no need to specify the pooling type separately
any more.

The commit also adds an option to specify the type of normalization
applied to the output embeddings when running the converted model.

And the readme documentation has been  updated to reflect these changes.
2026-01-08 09:29:15 +01:00
Julius Tischbein 2038101bd9
llama : add `use_direct_io` flag for model loading (#18166)
* Adding --direct-io flag for model loading

* Fixing read_raw() calls

* Fixing Windows read_raw_at

* Changing type off_t to size_t for windows and Renaming functions

* disable direct io when mmap is explicitly enabled

* Use read_raw_unsafe when upload_backend is available, not functional on some devices with Vulkan and SYCL

* Fallback to std::fread in case O_DIRECT fails due to bad address

* Windows: remove const keywords and unused functions

* Update src/llama-mmap.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: jtischbein <jtischbein@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-01-08 08:35:30 +02:00
shaofeiqi 568371a726
opencl: add FILL op support (#18682) 2026-01-07 22:04:50 -08:00
Sigbjørn Skjæret 5b8844ae53
scripts : fix repos cloned with .git extension (#18669) 2026-01-07 22:35:34 +01:00
Sigbjørn Skjæret 7e16fef085
convert : more variants of rope_theta config entries (#18668) 2026-01-07 22:34:51 +01:00
Oliver Walsh f5245b5e4e
cuda : fix build on cuda 12.8 (#18672)
compute121 requires 12.9

Signed-off-by: Oliver Walsh <owalsh@redhat.com>
2026-01-07 22:32:44 +01:00
R ae9f8df778
fix(docker): add missing libglvnd libraries to Vulkan image (#18664)
Add libglvnd0, libgl1, libglx0, libegl1, libgles2 to the Vulkan
Dockerfile base image. These libraries are required by mesa-vulkan-drivers
to properly initialize the Vulkan ICD and detect GPU devices.

Without these libraries, vkEnumeratePhysicalDevices() returns an empty
list, resulting in "ggml_vulkan: No devices found." error.

Fixes #17761
2026-01-07 16:57:42 +01:00
Adrien Gallouët 56d2fed2b3
tools : remove llama-run (#18661)
* tools : remove llama-run
* Remove licenses/LICENSE-linenoise

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-01-07 16:18:26 +01:00
Georgi Gerganov 56426673cb
scripts : add pr2wt.sh (#18644)
* scripts : add pr2wt.sh

* script : shebang

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-01-07 15:16:20 +02:00
Daniel Bevenius bb77764c2d
convert : clarify sentence-transformers-dense-modules help [no ci] (#18662)
* convert : clarify sentence-transformers-dense-modules help [no ci]

This commit updates this options help message which currently looks
like this:
```console
  --sentence-transformers-dense-modules
                        Whether to include sentence-transformers dense modules.It can be used for sentence-transformers models, like
                        google/embeddinggemma-300mDefault these modules are not included.
```
2026-01-07 13:18:53 +01:00
Sigbjørn Skjæret 9dfa8ee950
ci : run cann build unconditionally [no ci] (#18659) 2026-01-07 13:07:08 +01:00
Jeff Bolz ca4a8370bc
vulkan: reject ops when a tensor is too large to allocate (#18646) 2026-01-07 12:03:32 +01:00
virajwad 03023296cf
vulkan: Warptile tuning for Intel Xe2/Xe3 (#18178)
* modify warptile tuning for xe3

* intel vendor check w/ coopmat support

* fix back formatting

* fix formatting change 2

* move intel check to chip specific tuning part

* Change to support both windows and linux

* modify m_warptile to l_warptile for intel

* modify warptile tuning for bf16 matmuls to fix regression (m_warptile to l_warptile)

* Code style changes

* Code style changes (2)

* Code style changes (3)
2026-01-07 11:59:47 +01:00
Eve 8c77a04cc7
vulkan: more mul mat optimizations (#18533)
* q4_k

* q5_k

* q2_k

* q4_1

* q5_1

* better buf index
2026-01-07 11:13:17 +01:00
Daniel Bevenius ffba4f29e6
examples : add debug utility/example (#18464)
* examples : add debug utility/example

This commit introduces a new example named llama-debug which is a
utility that is intended to be used to assist with developing/debugging
a converted model.

The motivation for this utilitiy is to assist in model conversion work
to verify that the model produces the expected outputs. It is intended
to replace logits.cpp in examples/model-conversion.

Example usage:
```console
./build/bin/llama-debug \
    -m models/Qwen2.5-0.5B-Instruct.gguf \
    --prompt "Hello, my name is" \
    --save-logits
...
Model add_bos: false
Input prompt: "Hello, my name is"
Token ids (5):
Hello(9707) ,(11)  my(847)  name(829)  is(374)
Data saved to data/llamacpp-Qwen2.5-0.5B-Instruct.bin
Data saved to data/llamacpp-Qwen2.5-0.5B-Instruct.txt
Prompt saved to data/llamacpp-Qwen2.5-0.5B-Instruct-prompt.txt
Tokens saved to data/llamacpp-Qwen2.5-0.5B-Instruct-tokens.bin
```

For more details about the options available for this example, please
refer to examples/debug/README.md.

* throw runtime error instead of logging error

* remove params.warmup and enable the warmup/nowarmup option

* model-conversion : remove logits.cpp

This commit removes logits.cpp in favor of using llama-debug for
generating logits and embeddings.

* examples : remove model-conversion directory

This was missed in the previous commit.

* model-conversion : add support for saving prompt and token ids

This commit add support for storing the prompt and the token ids for the
prompt when running the original models.

The motivation for this is that this will allow us to compare the prompt
and the tokens generated for the prompt when verifing the converted
model. Currently it is possible that even if the same prompt is used
that the tokens generated are different if there is a difference in the
tokenization between the original and converted model which would
currently go unnoticed (the verification will most likely fail but it
might not be obvious why).

* squash! model-conversion : add support for saving prompt and token ids

fix pyright errors.

* model-conversion : add compare_tokens utility

This commit adds a script to compare token outputs between original and
converted models.

Example usage:
```console
(venv) $ ./scripts/utils/compare_tokens.py pytorch-gemma-3-270m-it llamacpp-gemma-3-270m-it-bf16

Comparing tokens between:
  Original : pytorch-gemma-3-270m-it (6 tokens)
  Converted: llamacpp-gemma-3-270m-it-bf16 (6 tokens)

 All 6 tokens match!
```
And there is a verbose flag that will also print out the prompts:
```console
(venv) $ ./scripts/utils/compare_tokens.py pytorch-gemma-3-270m-it llamacpp-gemma-3-270m-it-bf16 -v

Original model prompt (pytorch-gemma-3-270m-it):
  prompt: Hello, my name is
n_tokens: 6
token ids: 2, 9259, 236764, 1041, 1463, 563

Converted model prompt (llamacpp-gemma-3-270m-it-bf16):
  prompt: Hello, my name is
n_tokens: 6
token ids: 2, 9259, 236764, 1041, 1463, 563

Comparing tokens between:
  Original : pytorch-gemma-3-270m-it (6 tokens)
  Converted: llamacpp-gemma-3-270m-it-bf16 (6 tokens)

 All 6 tokens match!
```

* model-conversion : add token comparison to verifiction scripts

This commit add the calling of the compare_tokens function in
compare-logits.py and semantic_check.py to ensure that the token ids
that the tokenizers procoduce are the same before proceeding with
verifying the logits/embeddings.

Placing them in the existing scripts instead calling them separately
ensures that the token comparison is always done prior to the
logit/embedding verifications.

Follow up commit/pr could refactor the causal logits verification into
a single script instead of the two that exist now. This would reduce the
code and make it consistent with the embeddings verficiation which only
has a single script.

* debug : use llama_model_n_embd_out

This commit updates the debug example to use the new function
llama_model_n_embd_out instead of llama_model_n_embd.

The motivation for this change is to support late interation retriever
models, like LFM2-ColBert-350M, where the output embeddings are down
projected to a lower dimension.

* debug : add print_usage function

This commit adds a print_usage function that is passed to the
common_params_parse.

The motivation for this is that this enables a specific usage message
which will be printed after all the options, for example:
```console
example usage:

  Print tensors:

  ./build/bin/llama-debug -m model.gguf -p "Hello my name is" --verbose

  The tensors to be printed can be filtered with --tensor-filter option.

  Save logits/embeddings:

  ./build/bin/llama-debug -m model.gguf -p "Hello my name is" --save-logits

  Add --embedding to save embeddings
```
2026-01-07 10:42:19 +01:00
hipudding 3333951d86
CANN: Fix rename for get_env (#18652)
In #18624, get_env in ggml-cann was renamed to get_env_as_lowercase
to accurately reflect the function’s behavior and reduce the chance
of misuse. However, the update missed renaming call sites in other
files. This commit fixes that oversight.
2026-01-07 16:11:31 +08:00
Raul Torres 193ee38a1b
CANN: Rename `get_env` to `get_env_as_lowercase` (#18624) 2026-01-07 10:01:25 +08:00
Max Krasnyansky 95ea9e0861
Hexagon add support for f16/f32 flash attention, scale, set-rows and improve f16/32 matmul (#18611)
* hexagon: improve fp16 matmul and add fp32/fp16 flash-attention

* hexagon: add support for set-rows fp32 -> fp16 with i32/i64 row-idx

* hexagon: add support for SCALE fp32

* hexagon: replace scalar fp32 -> fp16 copy with HVX

* hexagon: optimize flash_atten_ext with aligned VTCM buffers and DMA

- Implements double-buffered DMA prefetching for K, V, and Mask tensors.
- Ensures K and V rows in VTCM are padded to 128 bytes to support aligned HVX operations.
- Correctly synchronizes DMA transfers to prevent race conditions.
- Uses `FLASH_ATTN_BLOCK_SIZE` of 128 for efficient chunking.

* hexagon: use aligned mad_f16

* hexagon: flash_atten more aligned ops

* hexagon: optimize scale_f32 hvx helpers

* hexagon: unroll fa loops

* hexagon: remove unused set-rows log

* hexagon: flash_attn_ext add support for DMAing Q

- Update `op_flash_attn_ext` to include Q row size in scratchpad allocation.
- Pad Q row size to 128 bytes for alignment.
- Implement DMA transfer for Q tensor in `flash_attn_ext_f16_thread`.
- Update dot product computations to use VTCM-buffered Q data.

* hexagon: fix handling of NANs hvx dotproducts

* hexagon: cleanup spad allocation in flash-atten

* hexagon: improve fp16/fp32 matmul

- Introduced `vec_dot_f16_f16` and `vec_dot_f16_f16_rx2` kernels using efficient HVX dot product intrinsics.
- Added `quantize_fp32_f16` to copy/convert weights from DDR to VTCM
- Updated `op_matmul` to use the optimized path when VTCM capacity allows and broadcasting requirements are compatible.
- Implemented fallback logic to the original implementation for complex broadcasting scenarios.

* hexagon: fix HVX_ARCH check

* hexagon: matmul cleanup and fp16 fixes

Use aligned vec_dot_f16 for 2d matmuls and unaligned version for 4d.

* hexagon: fix fp16 x fp16 matmuls and some minor refactoring

* hexagon: add support for GET_ROWS f32 -> f32

Also optimize SET_ROWS threading a bit when we have just a few rows to process.

* hexagon: optimize set-rows threading

* hexagon: update adb/run-bench.sh to properly support experimental and verbose options

* hexagon: flash_atten use aligned vectors for dot products
2026-01-06 17:38:29 -08:00
Tarek Dakhran ccbc84a537
mtmd: mtmd_audio_streaming_istft (#18645)
Change is decoupled from https://github.com/ggml-org/llama.cpp/pull/18641.

[LFM2.5-Audio-1.5B](https://huggingface.co/LiquidAI/LFM2.5-Audio-1.5B)
needs streaming istft for generating output audio.

* add streaming ISTFT class (`mtmd_audio_streaming_istft`) with overlap-add for audio reconstruction
* replace global audio cache with per-instance cache, the model requires
  two independent caches, for preprocessing (audio input) and for istft
  (audio output).
* unified templated FFT/IFFT implementation supporting both forward and inverse transforms
2026-01-06 21:00:29 +01:00
Johannes Gäßler 68b4d516c3
llama-params-fit: fix last devices with low VRAM (#18494) 2026-01-06 20:02:30 +01:00
Aadeshveer Singh 24af22fc36
ggml : optimize cuda ssm_scan using warp-level reduction (#18505)
* ggml : optimize cuda ssm_scan using warp-level reduction

* ggml : apply code review suggestions (style, const, constexpr)

* ggml : add TODO regarding stride consistency
2026-01-07 02:24:34 +08:00
Xuan-Son Nguyen 07fbe19f1f
arg: use CSV escape style for multiple-value args (#18643)
* arg: use CSV escape style for multiple-value args

* add test
2026-01-06 17:51:08 +01:00
Jeff Bolz ea13cba850
vulkan: support buffer_from_host_ptr (#18467)
* vulkan: support buffer_from_host_ptr

* hacky use of buffer_from_host_ptr for directio

* disable buffer_from_host_ptr cap

* use external memory for ggml_vk_host_malloc, revert model loader changes

* disable external_memory_host for MoltenVK

* take buffer memory types into account

* don't use external_memory_host for ggml_vk_host_malloc
2026-01-06 17:37:07 +01:00
Aman Gupta 090b137e56
ggml-cuda: refactor cuda graph usage (#18637)
* ggml-cuda: refactor cuda graph usage

* use is_enabled() instead of enabled
2026-01-06 23:48:45 +08:00
Beinsezii 968929528c
mmq.cu: tune mmq/rocblas switching for RDNA (#18537)
* Patch perf regression for mmq kernels in ROCm

recover performance regression for https://github.com/ggml-org/llama.cpp/issues/17917

* add n_experts branch like the cdna path

* mmq.cu: tune mmq/wmma switching for RDNA

* mmq.cu: move amd wmma mmq/wmma switching behind IS_RDNA3

* Update ggml/src/ggml-cuda/mmq.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Jiacheng (Jason) Chen <76919340+jiachengjason@users.noreply.github.com>
Co-authored-by: jiachengjason <jasonchen.jiacheng@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2026-01-06 16:26:07 +01:00
R 3d26a09dc7
server : add thinking content blocks to Anthropic Messages API (#18551)
* server : add thinking content blocks to Anthropic Messages API

Add support for returning reasoning/thinking content in Anthropic API
responses when using models with --reasoning-format deepseek and the
thinking parameter enabled.

- Non-streaming: adds thinking block before text in content array
- Streaming: emits thinking_delta events with correct block indices
- Partial streaming: tracks reasoning state across chunks via
  anthropic_has_reasoning member variable

Tested with bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF model.

* server : fix Anthropic API streaming for thinking content blocks

Add signature field and fix duplicate content_block_start events in
Anthropic Messages API streaming responses for reasoning models.

* server: refactor Anthropic streaming state to avoid raw pointer

Replace raw pointer to task_result_state with direct field copies:
- Copy state fields in update() before processing chunk
- Use local copies in to_json_anthropic() instead of dereferencing
- Pre-compute state updates for next chunk in update()

This makes the data flow clearer and avoids unsafe pointer patterns.
2026-01-06 16:17:13 +01:00
Christian Kastner bd2a93d475
gguf-py : add requests to dependencies (#18629) 2026-01-06 08:56:38 +01:00
Adrien Gallouët e75ee11024
ggml : fix avx512bf16 build (#18623)
- include `immintrin.h` when required
- remove unused m512bh

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-01-06 08:54:10 +02:00
Raul Torres da9b8d3300
CANN: Make `valid_values` variable `static const` (#18627) 2026-01-06 11:53:28 +08:00
nwyin e443fbcfa5
ggml webgpu: add CEIL operation support (#18605)
* ggml-webgpu: add CEIL operation support

      Add support for the CEIL unary operation in the WebGPU backend:
      - Add CEIL_FUNC shader template in unary_op.wgsl
      - Add 4 shader variants (f32, f16, inplace versions)
      - Initialize CEIL pipelines in ggml-webgpu.cpp
      - Register CEIL in supports_op function

* docs: update WebGPU ops support for CEIL
2026-01-05 11:38:57 -08:00
Tarek Dakhran 73d284a250
model : add LFM2-ColBert-350M (#18607)
* model : add LFM2-ColBert-350M

* llama_model_n_embd_out() - returns `hparams.n_embd_out` if set and fallbacks to `hparams.n_embd`
2026-01-05 19:52:56 +01:00
Johannes Gäßler df17a4c94f
CUDA: fix FA FP16 accumulator overflow for Granite (#18614) 2026-01-05 19:51:13 +01:00
tt 1871f0ba56
add YoutuVLForConditionalGeneration architectures (#18620)
* Support Youtu-VL Model
---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-01-05 18:15:14 +01:00
Aman Gupta f47edb8c19
ggml-cuda: check for srcs outside the cgraph (#18583)
* ggml-cuda: check for srcs outside the cgraph

* review: use leafs instead
2026-01-05 22:46:36 +08:00
Vladislav Sayapin da143b9940
server : fix router child env in containerized environments (#18562) 2026-01-05 14:12:05 +01:00
Jeff Bolz f1768d8f03
vulkan: fix topk_moe_sigmoid_norm_bias failures in GLM-4.6 (#18582) 2026-01-05 11:51:39 +01:00
166 changed files with 22449 additions and 11095 deletions

View File

@ -33,6 +33,7 @@ FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl libvulkan1 mesa-vulkan-drivers \
libglvnd0 libgl1 libglx0 libegl1 libgles2 \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \

View File

@ -152,13 +152,13 @@ jobs:
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.zip"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
mkdir dawn
unzip artifact.zip
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.tar.gz -C dawn --strip-components=1
tar -xvf ${DAWN_ASSET_NAME}.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
@ -532,13 +532,13 @@ jobs:
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.zip"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
mkdir dawn
unzip artifact.zip
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.tar.gz -C dawn --strip-components=1
tar -xvf ${DAWN_ASSET_NAME}.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
@ -1418,7 +1418,6 @@ jobs:
echo "FIXME: test on devices"
openEuler-latest-cmake-cann:
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
defaults:
run:
shell: bash -el {0}
@ -1705,6 +1704,34 @@ jobs:
run: |
GG_BUILD_METAL=1 bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
ggml-ci-mac-webgpu:
runs-on: [self-hosted, macOS, ARM64]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dawn Dependency
id: dawn-depends
run: |
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}.zip"
mkdir dawn
unzip artifact.zip
tar -xvf ${DAWN_ASSET_NAME}.tar.gz -C dawn --strip-components=1
- name: Test
id: ggml-ci
run: |
GG_BUILD_WEBGPU=1 GG_BUILD_WEBGPU_DAWN_PREFIX="$GITHUB_WORKSPACE/dawn" \
bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
ggml-ci-mac-vulkan:
runs-on: [self-hosted, macOS, ARM64]

1
.gitignore vendored
View File

@ -130,6 +130,7 @@ poetry.toml
# Local scripts
/run-vim.sh
/run-chat.sh
/run-spec.sh
/.ccache/
# IDE

View File

@ -182,6 +182,9 @@ if (NOT MSVC)
endif()
endif()
include("cmake/license.cmake")
license_add_file("llama.cpp" "LICENSE")
#
# 3rd-party
#
@ -235,6 +238,19 @@ if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TOOLS)
add_subdirectory(tools)
endif()
# Automatically add all files from the 'licenses' directory
file(GLOB EXTRA_LICENSES "${CMAKE_SOURCE_DIR}/licenses/LICENSE-*")
foreach(FILE_PATH ${EXTRA_LICENSES})
get_filename_component(FILE_NAME "${FILE_PATH}" NAME)
string(REGEX REPLACE "^LICENSE-" "" NAME "${FILE_NAME}")
license_add_file("${NAME}" "${FILE_PATH}")
endforeach()
if (LLAMA_BUILD_COMMON)
license_generate(common)
endif()
#
# install
#

View File

@ -200,6 +200,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
- [BonzAI App](https://apps.apple.com/us/app/bonzai-your-local-ai-agent/id6752847988) (proprietary)
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [Dot](https://github.com/alexpinel/Dot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
@ -482,21 +483,6 @@ To learn more about model quantization, [read this documentation](tools/quantize
</details>
## [`llama-run`](tools/run)
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
- <details>
<summary>Run a model with a specific prompt (by default it's pulled from Ollama registry)</summary>
```bash
llama-run granite-code
```
</details>
[^3]: [RamaLama](https://github.com/containers/ramalama)
## [`llama-simple`](examples/simple)
#### A minimal example for implementing apps with `llama.cpp`. Useful for developers.
@ -600,7 +586,6 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
- [stb-image](https://github.com/nothings/stb) - Single-header image format decoder, used by multimodal subsystem - Public domain
- [nlohmann/json](https://github.com/nlohmann/json) - Single-header JSON library, used by various tools/examples - MIT License
- [minja](https://github.com/google/minja) - Minimal Jinja parser in C++, used by various tools/examples - MIT License
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
- [subprocess.h](https://github.com/sheredom/subprocess.h) - Single-header process launching solution for C and C++ - Public domain

View File

@ -1,12 +1,52 @@
# Security Policy
- [**Reporting a vulnerability**](#reporting-a-vulnerability)
- [**Requirements**](#requirements)
- [**Covered Topics**](#covered-topics)
- [**Using llama.cpp securely**](#using-llamacpp-securely)
- [Untrusted models](#untrusted-models)
- [Untrusted inputs](#untrusted-inputs)
- [Data privacy](#data-privacy)
- [Untrusted environments or networks](#untrusted-environments-or-networks)
- [Multi-Tenant environments](#multi-tenant-environments)
- [**Reporting a vulnerability**](#reporting-a-vulnerability)
## Reporting a vulnerability
If you have discovered a security vulnerability in this project that falls inside the [covered topics](#covered-topics), please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
> [!IMPORTANT]
> For collaborators: if you are interested in helping out with reviewing privting security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080
## Requirements
Before submitting your report, ensure you meet the following requirements:
- You have read this policy and fully understand it.
- AI is only permitted in an assistive capacity as stated in [AGENTS.md](AGENTS.md). We do not accept reports that are written exclusively by AI.
- Your report must include a working Proof-of-Concept in the form of a script and/or attached files.
Maintainers reserve the right to close the report if these requirements are not fulfilled.
## Covered Topics
Only vulnerabilities that fall within these parts of the project are considered valid. For problems falling outside of this list, please report them as issues.
- `src/**/*`
- `ggml/**/*`
- `gguf-py/**/*`
- `tools/server/*`, **excluding** the following topics:
- Web UI
- Features marked as experimental
- Features not recommended for use in untrusted environments (e.g., router, MCP)
- Bugs that can lead to Denial-of-Service attack
Note that none of the topics under [Using llama.cpp securely](#using-llamacpp-securely) are considered vulnerabilities in LLaMA C++.
For vulnerabilities that fall within the `vendor` directory, please report them directly to the third-party project.
## Using llama.cpp securely
@ -55,19 +95,3 @@ If you intend to run multiple models in parallel with shared memory, it is your
3. Model Sharing: In a multitenant model sharing design, tenants and users must understand the security risks of running code provided by others. Since there are no reliable methods to detect malicious models, sandboxing the model execution is the recommended approach to mitigate the risk.
4. Hardware Attacks: GPUs or TPUs can also be attacked. [Researches](https://scholar.google.com/scholar?q=gpu+side+channel) has shown that side channel attacks on GPUs are possible, which can make data leak from other models or processes running on the same system at the same time.
## Reporting a vulnerability
Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-securely) are considered vulnerabilities of LLaMA C++.
<!-- normal version -->
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
Please note that using AI to identify vulnerabilities and generate reports is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before submitting the report.
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
> [!IMPORTANT]
> For collaborators: if you are interested in helping out with reviewing privting security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080

View File

@ -105,7 +105,20 @@ if [ ! -z ${GG_BUILD_VULKAN} ]; then
fi
if [ ! -z ${GG_BUILD_WEBGPU} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1 -DGGML_METAL=OFF -DGGML_BLAS=OFF"
if [ ! -z "${GG_BUILD_WEBGPU_DAWN_PREFIX}" ]; then
if [ -z "${CMAKE_PREFIX_PATH}" ]; then
export CMAKE_PREFIX_PATH="${GG_BUILD_WEBGPU_DAWN_PREFIX}"
else
export CMAKE_PREFIX_PATH="${GG_BUILD_WEBGPU_DAWN_PREFIX}:${CMAKE_PREFIX_PATH}"
fi
fi
# For some systems, Dawn_DIR needs to be set explicitly, e.g., the lib64 path
if [ ! -z "${GG_BUILD_WEBGPU_DAWN_DIR}" ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DDawn_DIR=${GG_BUILD_WEBGPU_DAWN_DIR}"
fi
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then
@ -284,7 +297,8 @@ function gg_sum_test_scripts {
}
function gg_get_model {
local gguf_0="$MNT/models/qwen3/0.6B/ggml-model-f16.gguf"
#local gguf_0="$MNT/models/qwen3/0.6B/ggml-model-f16.gguf"
local gguf_0="$MNT/models/qwen3/0.6B/ggml-model-q4_0.gguf"
if [[ -s $gguf_0 ]]; then
echo -n "$gguf_0"
else

40
cmake/license.cmake Normal file
View File

@ -0,0 +1,40 @@
define_property(GLOBAL PROPERTY LICENSE_TEXT
BRIEF_DOCS "Embedded licenses"
FULL_DOCS "Global string containing all aggregated licenses"
)
function(license_add_file NAME FILE)
if(NOT IS_ABSOLUTE "${FILE}")
set(FILE "${CMAKE_CURRENT_SOURCE_DIR}/${FILE}")
endif()
if(EXISTS "${FILE}")
set(TITLE "License for ${NAME}")
string(REGEX REPLACE "." "=" UNDERLINE "${TITLE}")
file(READ "${FILE}" TEXT)
get_property(TMP GLOBAL PROPERTY LICENSE_TEXT)
string(APPEND TMP "R\"=L=(${TITLE}\n${UNDERLINE}\n\n${TEXT})=L=\",\n")
set_property(GLOBAL PROPERTY LICENSE_TEXT "${TMP}")
else()
message(WARNING "License file '${FILE}' not found")
endif()
endfunction()
function(license_generate TARGET_NAME)
message(STATUS "Generating embedded license file for target: ${TARGET_NAME}")
get_property(TEXT GLOBAL PROPERTY LICENSE_TEXT)
set(CPP_CONTENT "// Generated by CMake\n\n")
string(APPEND CPP_CONTENT "const char* LICENSES[] = {\n")
string(APPEND CPP_CONTENT "${TEXT}")
string(APPEND CPP_CONTENT "nullptr\n")
string(APPEND CPP_CONTENT "};\n")
set(CPP_FILE "${CMAKE_BINARY_DIR}/license.cpp")
file(WRITE "${CPP_FILE}" "${CPP_CONTENT}")
if(TARGET ${TARGET_NAME})
target_sources(${TARGET_NAME} PRIVATE "${CPP_FILE}")
else()
message(FATAL_ERROR "Target '${TARGET_NAME}' does not exist")
endif()
endfunction()

View File

@ -155,27 +155,3 @@ if (LLAMA_LLGUIDANCE)
endif ()
target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
#
# copy the license files
#
# Check if running in GitHub Actions
if (DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
message(STATUS "Running inside GitHub Actions - copying license files")
# Copy all files from licenses/ to build/bin/
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
foreach(LICENSE_FILE ${LICENSE_FILES})
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
add_custom_command(
POST_BUILD
TARGET ${TARGET}
COMMAND ${CMAKE_COMMAND} -E copy_if_different
"${LICENSE_FILE}"
"$<TARGET_FILE_DIR:llama>/${FILENAME}"
COMMENT "Copying ${FILENAME} to ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}")
message(STATUS "Copying ${LICENSE_FILE} to ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${FILENAME}")
endforeach()
endif()

View File

@ -2,10 +2,11 @@
#include "chat.h"
#include "common.h"
#include "download.h"
#include "json-schema-to-grammar.h"
#include "log.h"
#include "sampling.h"
#include "download.h"
#include "preset.h"
// fix problem with std::min and std::max
#if defined(_WIN32)
@ -47,6 +48,8 @@
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
extern const char * LICENSES[];
using json = nlohmann::ordered_json;
using namespace common_arg_utils;
@ -268,6 +271,55 @@ static void parse_tensor_buffer_overrides(const std::string & value, std::vector
}
}
static std::string clean_file_name(const std::string & fname) {
std::string clean_fname = fname;
string_replace_all(clean_fname, "\\", "_");
string_replace_all(clean_fname, "/", "_");
return clean_fname;
}
static bool common_params_handle_remote_preset(common_params & params, llama_example ex) {
GGML_ASSERT(!params.model.hf_repo.empty());
// the returned hf_repo is without tag
auto [hf_repo, hf_tag] = common_download_split_repo_tag(params.model.hf_repo);
// "latest" tag (default if not specified) is translated to "default" preset
if (hf_tag == "latest") {
hf_tag = "default";
}
const bool offline = params.offline;
std::string model_endpoint = get_model_endpoint();
auto preset_url = model_endpoint + hf_repo + "/resolve/main/preset.ini";
// prepare local path for caching
auto preset_fname = clean_file_name(hf_repo + "_preset.ini");
auto preset_path = fs_get_cache_file(preset_fname);
const int status = common_download_file_single(preset_url, preset_path, params.hf_token, offline);
const bool has_preset = status >= 200 && status < 400;
// remote preset is optional, so we don't error out if not found
if (has_preset) {
LOG_INF("applying remote preset from %s\n", preset_url.c_str());
common_preset_context ctx(ex, /* only_remote_allowed */ true);
common_preset global;
auto remote_presets = ctx.load_from_ini(preset_path, global);
remote_presets = ctx.cascade(global, remote_presets);
if (remote_presets.find(hf_tag) != remote_presets.end()) {
common_preset preset = remote_presets.at(hf_tag);
LOG_INF("\n%s", preset.to_ini().c_str()); // to_ini already added trailing newline
preset.apply_to_params(params);
} else {
throw std::runtime_error("Remote preset.ini does not contain [" + std::string(hf_tag) + "] section");
}
} else {
LOG_INF("%s", "no remote preset found, skipping\n");
}
return has_preset;
}
struct handle_model_result {
bool found_mmproj = false;
common_params_model mmproj;
@ -309,9 +361,7 @@ static handle_model_result common_params_handle_model(
// make sure model path is present (for caching purposes)
if (model.path.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = model.hf_repo + "_" + model.hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
std::string filename = clean_file_name(model.hf_repo + "_" + model.hf_file);
model.path = fs_get_cache_file(filename);
}
@ -425,61 +475,87 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
}
};
std::set<std::string> seen_args;
auto parse_cli_args = [&]() {
std::set<std::string> seen_args;
for (int i = 1; i < argc; i++) {
const std::string arg_prefix = "--";
for (int i = 1; i < argc; i++) {
const std::string arg_prefix = "--";
std::string arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg_to_options.find(arg) == arg_to_options.end()) {
throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
}
if (!seen_args.insert(arg).second) {
LOG_WRN("DEPRECATED: argument '%s' specified multiple times, use comma-separated values instead (only last value will be used)\n", arg.c_str());
}
auto & tmp = arg_to_options[arg];
auto opt = *tmp.first;
bool is_positive = tmp.second;
if (opt.has_value_from_env()) {
fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
}
try {
if (opt.handler_void) {
opt.handler_void(params);
continue;
std::string arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (opt.handler_bool) {
opt.handler_bool(params, is_positive);
continue;
if (arg_to_options.find(arg) == arg_to_options.end()) {
throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
}
if (!seen_args.insert(arg).second) {
LOG_WRN("DEPRECATED: argument '%s' specified multiple times, use comma-separated values instead (only last value will be used)\n", arg.c_str());
}
auto & tmp = arg_to_options[arg];
auto opt = *tmp.first;
bool is_positive = tmp.second;
if (opt.has_value_from_env()) {
fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
}
try {
if (opt.handler_void) {
opt.handler_void(params);
continue;
}
if (opt.handler_bool) {
opt.handler_bool(params, is_positive);
continue;
}
// arg with single value
check_arg(i);
std::string val = argv[++i];
if (opt.handler_int) {
opt.handler_int(params, std::stoi(val));
continue;
}
if (opt.handler_string) {
opt.handler_string(params, val);
continue;
}
// arg with single value
check_arg(i);
std::string val = argv[++i];
if (opt.handler_int) {
opt.handler_int(params, std::stoi(val));
continue;
}
if (opt.handler_string) {
opt.handler_string(params, val);
continue;
}
// arg with 2 values
check_arg(i);
std::string val2 = argv[++i];
if (opt.handler_str_str) {
opt.handler_str_str(params, val, val2);
continue;
// arg with 2 values
check_arg(i);
std::string val2 = argv[++i];
if (opt.handler_str_str) {
opt.handler_str_str(params, val, val2);
continue;
}
} catch (std::exception & e) {
throw std::invalid_argument(string_format(
"error while handling argument \"%s\": %s\n\n"
"usage:\n%s\n\nto show complete usage, run with -h",
arg.c_str(), e.what(), opt.to_string().c_str()));
}
} catch (std::exception & e) {
throw std::invalid_argument(string_format(
"error while handling argument \"%s\": %s\n\n"
"usage:\n%s\n\nto show complete usage, run with -h",
arg.c_str(), e.what(), opt.to_string().c_str()));
}
};
// parse the first time to get -hf option (used for remote preset)
parse_cli_args();
// maybe handle remote preset
if (!params.model.hf_repo.empty()) {
std::string cli_hf_repo = params.model.hf_repo;
bool has_preset = common_params_handle_remote_preset(params, ctx_arg.ex);
// special case: if hf_repo explicitly set by preset, we need to preserve it (ignore CLI value)
// this is useful when we have one HF repo pointing to other HF repos (one model - multiple GGUFs)
std::string preset_hf_repo = params.model.hf_repo;
bool preset_has_hf_repo = preset_hf_repo != cli_hf_repo;
if (has_preset) {
// re-parse CLI args to override preset values
parse_cli_args();
}
// preserve hf_repo from preset if needed
if (preset_has_hf_repo) {
params.model.hf_repo = preset_hf_repo;
}
}
@ -679,7 +755,6 @@ static void common_params_print_completion(common_params_context & ctx_arg) {
"llama-quantize",
"llama-qwen2vl-cli",
"llama-retrieval",
"llama-run",
"llama-save-load-state",
"llama-server",
"llama-simple",
@ -854,6 +929,54 @@ bool common_arg_utils::is_autoy(const std::string & value) {
return value == "auto" || value == "-1";
}
// Simple CSV parser that handles quoted fields and escaped quotes
// example:
// input: value1,"value, with, commas","value with ""escaped"" quotes",value4
// output: [value1] [value, with, commas] [value with "escaped" quotes] [value4]
static std::vector<std::string> parse_csv_row(const std::string& input) {
std::vector<std::string> fields;
std::string field;
bool in_quotes = false;
for (size_t i = 0; i < input.length(); ++i) {
char ch = input[i];
if (ch == '"') {
if (!in_quotes) {
// start of quoted field (only valid if at beginning of field)
if (!field.empty()) {
// quote appeared in middle of unquoted field, treat as literal
field += '"';
} else {
in_quotes = true; // start
}
} else {
if (i + 1 < input.length() && input[i + 1] == '"') {
// escaped quote: ""
field += '"';
++i; // skip the next quote
} else {
in_quotes = false; // end
}
}
} else if (ch == ',') {
if (in_quotes) {
field += ',';
} else {
fields.push_back(std::move(field));
field.clear();
}
} else {
field += ch;
}
}
// Add the last field
fields.push_back(std::move(field));
return fields;
}
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
// per-example default params
// we define here to make sure it's included in llama-gen-docs
@ -918,6 +1041,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
exit(0);
}
));
add_opt(common_arg(
{"--license"},
"show source code license and dependencies",
[](common_params &) {
for (int i = 0; LICENSES[i]; ++i) {
printf("%s\n", LICENSES[i]);
}
exit(0);
}
));
add_opt(common_arg(
{"-cl", "--cache-list"},
"show list of models in cache",
@ -1250,7 +1383,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--in-file"}, "FNAME",
"an input file (use comma-separated values to specify multiple files)",
[](common_params & params, const std::string & value) {
for (const auto & item : string_split<std::string>(value, ',')) {
for (const auto & item : parse_csv_row(value)) {
std::ifstream file(item);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", item.c_str()));
@ -1397,7 +1530,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, bool value) {
params.warmup = value;
}
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_DEBUG}));
add_opt(common_arg(
{"--spm-infill"},
string_format(
@ -1713,7 +1846,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
else { throw std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_DEBUG}).set_env("LLAMA_ARG_POOLING"));
add_opt(common_arg(
{"--attention"}, "{causal,non-causal}",
"attention type for embeddings, use model default if unspecified",
@ -2002,7 +2135,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--image", "--audio"}, "FILE",
"path to an image or audio file. use with multimodal models, use comma-separated values for multiple files\n",
[](common_params & params, const std::string & value) {
for (const auto & item : string_split<std::string>(value, ',')) {
for (const auto & item : parse_csv_row(value)) {
params.image.emplace_back(item);
}
}
@ -2041,11 +2174,22 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"--mmap"},
{"--no-mmap"},
string_format("whether to memory-map model (if disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
string_format("whether to memory-map model. Explicitly enabling mmap disables direct-io. (if mmap disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.use_mmap = value;
if (value) {
params.use_direct_io = false; // disable direct io when mmap is explicitly enabled
}
}
).set_env("LLAMA_ARG_MMAP"));
add_opt(common_arg(
{"-dio", "--direct-io"},
{"-ndio", "--no-direct-io"},
string_format("use DirectIO if available. Takes precedence over --mmap (default: %s)", params.use_direct_io ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.use_direct_io = value;
}
).set_env("LLAMA_ARG_DIO"));
add_opt(common_arg(
{"--numa"}, "TYPE",
"attempt optimizations that help on some NUMA systems\n"
@ -2197,7 +2341,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
std::vector<std::string> split_arg{ it, {} };
if (split_arg.size() >= llama_max_devices()) {
throw std::invalid_argument(
string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
string_format("got %zu input configs, but system only has %zu devices", split_arg.size(), llama_max_devices())
);
}
for (size_t i = 0; i < llama_max_devices(); ++i) {
@ -2237,10 +2381,28 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_env("LLAMA_ARG_FIT"));
add_opt(common_arg(
{ "-fitt", "--fit-target" }, "MiB",
string_format("target margin per device for --fit option, default: %zu", params.fit_params_target/(1024*1024)),
[](common_params & params, int value) {
params.fit_params_target = value * size_t(1024*1024);
{ "-fitt", "--fit-target" }, "MiB0,MiB1,MiB2,...",
string_format("target margin per device for --fit, comma-separated list of values, "
"single value is broadcast across all devices, default: %zu", params.fit_params_target[0]/(1024*1024)),
[](common_params & params, const std::string & value) {
std::string arg_next = value;
// split string by , and /
const std::regex regex{ R"([,/]+)" };
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
std::vector<std::string> split_arg{ it, {} };
if (split_arg.size() >= llama_max_devices()) {
throw std::invalid_argument(
string_format("got %zu input configs, but system only has %zu devices", split_arg.size(), llama_max_devices())
);
}
if (split_arg.size() == 1) {
std::fill(params.fit_params_target.begin(), params.fit_params_target.end(), std::stoul(split_arg[0]) * 1024*1024);
return;
}
for (size_t i = 0; i < split_arg.size(); i++) {
params.fit_params_target[i] = std::stoul(split_arg[i]) * 1024*1024;
}
}
).set_env("LLAMA_ARG_FIT_TARGET"));
add_opt(common_arg(
@ -2259,37 +2421,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
));
add_opt(common_arg(
{"--override-kv"}, "KEY=TYPE:VALUE,...",
"advanced option to override model metadata by key. to specify multiple overrides, either use comma-separated or repeat this argument.\n"
"advanced option to override model metadata by key. to specify multiple overrides, either use comma-separated values.\n"
"types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false,tokenizer.ggml.add_eos_token=bool:false",
[](common_params & params, const std::string & value) {
std::vector<std::string> kv_overrides;
std::string current;
bool escaping = false;
for (const char c : value) {
if (escaping) {
current.push_back(c);
escaping = false;
} else if (c == '\\') {
escaping = true;
} else if (c == ',') {
kv_overrides.push_back(current);
current.clear();
} else {
current.push_back(c);
}
}
if (escaping) {
current.push_back('\\');
}
kv_overrides.push_back(current);
for (const auto & kv_override : kv_overrides) {
if (!string_parse_kv_override(kv_override.c_str(), params.kv_overrides)) {
throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", kv_override.c_str()));
for (const auto & item : parse_csv_row(value)) {
if (!string_parse_kv_override(item.c_str(), params.kv_overrides)) {
throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", item.c_str()));
}
}
}
@ -2306,7 +2443,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--lora"}, "FNAME",
"path to LoRA adapter (use comma-separated values to load multiple adapters)",
[](common_params & params, const std::string & value) {
for (const auto & item : string_split<std::string>(value, ',')) {
for (const auto & item : parse_csv_row(value)) {
params.lora_adapters.push_back({ item, 1.0, "", "", nullptr });
}
}
@ -2317,7 +2454,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"path to LoRA adapter with user defined scaling (format: FNAME:SCALE,...)\n"
"note: use comma-separated values",
[](common_params & params, const std::string & value) {
for (const auto & item : string_split<std::string>(value, ',')) {
for (const auto & item : parse_csv_row(value)) {
auto parts = string_split<std::string>(item, ':');
if (parts.size() != 2) {
throw std::invalid_argument("lora-scaled format: FNAME:SCALE");
@ -2331,7 +2468,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--control-vector"}, "FNAME",
"add a control vector\nnote: use comma-separated values to add multiple control vectors",
[](common_params & params, const std::string & value) {
for (const auto & item : string_split<std::string>(value, ',')) {
for (const auto & item : parse_csv_row(value)) {
params.control_vectors.push_back({ 1.0f, item, });
}
}
@ -2341,7 +2478,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"add a control vector with user defined scaling SCALE\n"
"note: use comma-separated values (format: FNAME:SCALE,...)",
[](common_params & params, const std::string & value) {
for (const auto & item : string_split<std::string>(value, ',')) {
for (const auto & item : parse_csv_row(value)) {
auto parts = string_split<std::string>(item, ':');
if (parts.size() != 2) {
throw std::invalid_argument("control-vector-scaled format: FNAME:SCALE");
@ -2439,7 +2576,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--context-file"}, "FNAME",
"file to load context from (use comma-separated values to specify multiple files)",
[](common_params & params, const std::string & value) {
for (const auto & item : string_split<std::string>(value, ',')) {
for (const auto & item : parse_csv_row(value)) {
std::ifstream file(item, std::ios::binary);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", item.c_str()));
@ -2586,7 +2723,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, int value) {
params.embd_normalize = value;
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_DEBUG}));
add_opt(common_arg(
{"--embd-output-format"}, "FORMAT",
"empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix, \"raw\" = plain whitespace-delimited output (one embedding per line)",
@ -2664,7 +2801,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.embedding = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_DEBUG}).set_env("LLAMA_ARG_EMBEDDINGS"));
add_opt(common_arg(
{"--rerank", "--reranking"},
string_format("enable reranking endpoint on server (default: %s)", "disabled"),
@ -2675,9 +2812,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
add_opt(common_arg(
{"--api-key"}, "KEY",
"API key to use for authentication (default: none)",
"API key to use for authentication, multiple keys can be provided as a comma-separated list (default: none)",
[](common_params & params, const std::string & value) {
params.api_keys.push_back(value);
for (const auto & key : parse_csv_row(value)) {
if (!key.empty()) {
params.api_keys.push_back(key);
}
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
add_opt(common_arg(
@ -2691,7 +2832,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
std::string key;
while (std::getline(key_file, key)) {
if (!key.empty()) {
params.api_keys.push_back(key);
params.api_keys.push_back(key);
}
}
key_file.close();
@ -2713,7 +2854,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
add_opt(common_arg(
{"--chat-template-kwargs"}, "STRING",
string_format("sets additional params for the json template parser"),
"sets additional params for the json template parser, must be a valid json object string, e.g. '{\"key1\":\"value1\",\"key2\":\"value2\"}'",
[](common_params & params, const std::string & value) {
auto parsed = json::parse(value);
for (const auto & item : parsed.items()) {
@ -3351,6 +3492,27 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
}
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg(
{"--save-logits"},
string_format("save final logits to files for verification (default: %s)", params.save_logits ? "true" : "false"),
[](common_params & params) {
params.save_logits = true;
}
).set_examples({LLAMA_EXAMPLE_DEBUG}));
add_opt(common_arg(
{"--logits-output-dir"}, "PATH",
string_format("directory for saving logits output files (default: %s)", params.logits_output_dir.c_str()),
[](common_params & params, const std::string & value) {
params.logits_output_dir = value;
}
).set_examples({LLAMA_EXAMPLE_DEBUG}));
add_opt(common_arg(
{"--tensor-filter"}, "REGEX",
"filter tensor names for debug output (regex pattern, can be specified multiple times)",
[](common_params & params, const std::string & value) {
params.tensor_filter.push_back(value);
}
).set_examples({LLAMA_EXAMPLE_DEBUG}));
// presets
add_opt(common_arg(

View File

@ -129,11 +129,3 @@ void common_params_add_preset_options(std::vector<common_arg> & args);
// initialize argument parser context - used by test-arg-parser and preset
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
struct common_remote_params {
std::vector<std::string> headers;
long timeout = 0; // CURLOPT_TIMEOUT, in seconds ; 0 means no timeout
long max_size = 0; // max size of the response ; unlimited if 0 ; max is 2GB
};
// get remote file content, returns <http_code, raw_response_body>
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params);

View File

@ -1097,7 +1097,7 @@ common_init_result::common_init_result(common_params & params) :
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target.data(), params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
@ -1366,6 +1366,7 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_direct_io = params.use_direct_io;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.use_extra_bufts = !params.no_extra_bufts;

View File

@ -80,6 +80,7 @@ int32_t cpu_get_num_math();
//
enum llama_example {
LLAMA_EXAMPLE_DEBUG,
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_COMPLETION,
@ -331,12 +332,14 @@ struct common_params {
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM, -1 is auto, <= -2 is all
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
int32_t n_gpu_layers = -1; // number of layers to store in VRAM, -1 is auto, <= -2 is all
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
// margin per device in bytes for fitting parameters to free memory:
std::vector<size_t> fit_params_target = std::vector<size_t>(llama_max_devices(), 1024 * 1024*1024);
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
@ -372,6 +375,11 @@ struct common_params {
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
// llama-debug specific options
std::string logits_output_dir = "data"; // directory for saving logits output files // NOLINT
bool save_logits = false; // whether to save logits to files // NOLINT
std::vector<std::string> tensor_filter; // filter tensor names for debug output (regex) // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
@ -422,7 +430,8 @@ struct common_params {
bool kv_unified = false; // enable unified KV cache
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool use_mmap = true; // use mmap for faster loads
bool use_mmap = true; // enable mmap to use filesystem cache
bool use_direct_io = true; // read from disk without buffering for faster model loading
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation

View File

@ -157,6 +157,20 @@ static std::string read_etag(const std::string & path) {
return none;
}
static bool is_http_status_ok(int status) {
return status >= 200 && status < 400;
}
std::pair<std::string, std::string> common_download_split_repo_tag(const std::string & hf_repo_with_tag) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
return {hf_repo, tag};
}
#ifdef LLAMA_USE_CURL
//
@ -306,11 +320,14 @@ static bool common_download_head(CURL * curl,
}
// download one single file from remote URL to local path
static bool common_download_file_single_online(const std::string & url,
// returns status code or -1 on error
static int common_download_file_single_online(const std::string & url,
const std::string & path,
const std::string & bearer_token) {
const std::string & bearer_token,
const common_header_list & custom_headers) {
static const int max_attempts = 3;
static const int retry_delay_seconds = 2;
for (int i = 0; i < max_attempts; ++i) {
std::string etag;
@ -330,6 +347,11 @@ static bool common_download_file_single_online(const std::string & url,
common_load_model_from_url_headers headers;
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
curl_slist_ptr http_headers;
for (const auto & h : custom_headers) {
std::string s = h.first + ": " + h.second;
http_headers.ptr = curl_slist_append(http_headers.ptr, s.c_str());
}
const bool was_perform_successful = common_download_head(curl.get(), http_headers, url, bearer_token);
if (!was_perform_successful) {
head_request_ok = false;
@ -365,7 +387,7 @@ static bool common_download_file_single_online(const std::string & url,
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
return -1;
}
}
@ -374,14 +396,14 @@ static bool common_download_file_single_online(const std::string & url,
if (std::filesystem::exists(path_temporary)) {
if (remove(path_temporary.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str());
return false;
return -1;
}
}
if (std::filesystem::exists(path)) {
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
return -1;
}
}
}
@ -408,23 +430,27 @@ static bool common_download_file_single_online(const std::string & url,
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
int status = static_cast<int>(http_code);
if (!is_http_status_ok(http_code)) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
return status; // TODO: maybe only return on certain codes
}
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
return -1;
}
return static_cast<int>(http_code);
} else {
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
}
break;
return 304; // Not Modified - fake cached response
}
}
return true;
return -1; // max attempts reached
}
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
@ -454,8 +480,10 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
}
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
for (const auto & header : params.headers) {
http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
std::string header_ = header.first + ": " + header.second;
http_headers.ptr = curl_slist_append(http_headers.ptr, header_.c_str());
}
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
@ -617,9 +645,11 @@ static bool common_pull_file(httplib::Client & cli,
}
// download one single file from remote URL to local path
static bool common_download_file_single_online(const std::string & url,
// returns status code or -1 on error
static int common_download_file_single_online(const std::string & url,
const std::string & path,
const std::string & bearer_token) {
const std::string & bearer_token,
const common_header_list & custom_headers) {
static const int max_attempts = 3;
static const int retry_delay_seconds = 2;
@ -629,6 +659,9 @@ static bool common_download_file_single_online(const std::string & url,
if (!bearer_token.empty()) {
default_headers.insert({"Authorization", "Bearer " + bearer_token});
}
for (const auto & h : custom_headers) {
default_headers.emplace(h.first, h.second);
}
cli.set_default_headers(default_headers);
const bool file_exists = std::filesystem::exists(path);
@ -647,8 +680,10 @@ static bool common_download_file_single_online(const std::string & url,
LOG_WRN("%s: HEAD invalid http status code received: %d\n", __func__, head ? head->status : -1);
if (file_exists) {
LOG_INF("%s: Using cached file (HEAD failed): %s\n", __func__, path.c_str());
return true;
return 304; // 304 Not Modified - fake cached response
}
return head->status; // cannot use cached file, return raw status code
// TODO: maybe retry only on certain codes
}
std::string etag;
@ -680,12 +715,12 @@ static bool common_download_file_single_online(const std::string & url,
if (file_exists) {
if (!should_download_from_scratch) {
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
return true;
return 304; // 304 Not Modified - fake cached response
}
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
return -1;
}
}
@ -697,7 +732,7 @@ static bool common_download_file_single_online(const std::string & url,
existing_size = std::filesystem::file_size(path_temporary);
} else if (remove(path_temporary.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str());
return false;
return -1;
}
}
@ -718,15 +753,16 @@ static bool common_download_file_single_online(const std::string & url,
if (std::rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
return -1;
}
if (!etag.empty()) {
write_etag(path, etag);
}
break;
return head->status; // TODO: use actual GET status?
}
return true;
return -1; // max attempts reached
}
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url,
@ -734,13 +770,9 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string
auto [cli, parts] = common_http_client(url);
httplib::Headers headers = {{"User-Agent", "llama-cpp"}};
for (const auto & header : params.headers) {
size_t pos = header.find(':');
if (pos != std::string::npos) {
headers.emplace(header.substr(0, pos), header.substr(pos + 1));
} else {
headers.emplace(header, "");
}
headers.emplace(header.first, header.second);
}
if (params.timeout > 0) {
@ -769,32 +801,45 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string
#if defined(LLAMA_USE_CURL) || defined(LLAMA_USE_HTTPLIB)
static bool common_download_file_single(const std::string & url,
const std::string & path,
const std::string & bearer_token,
bool offline) {
int common_download_file_single(const std::string & url,
const std::string & path,
const std::string & bearer_token,
bool offline,
const common_header_list & headers) {
if (!offline) {
return common_download_file_single_online(url, path, bearer_token);
return common_download_file_single_online(url, path, bearer_token, headers);
}
if (!std::filesystem::exists(path)) {
LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
return false;
return -1;
}
LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
return true;
return 304; // Not Modified - fake cached response
}
// download multiple files from remote URLs to local paths
// the input is a vector of pairs <url, path>
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) {
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls,
const std::string & bearer_token,
bool offline,
const common_header_list & headers) {
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
futures_download.reserve(urls.size());
for (auto const & item : urls) {
futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair<std::string, std::string> & it) -> bool {
return common_download_file_single(it.first, it.second, bearer_token, offline);
}, item));
futures_download.push_back(
std::async(
std::launch::async,
[&bearer_token, offline, &headers](const std::pair<std::string, std::string> & it) -> bool {
const int http_status = common_download_file_single(it.first, it.second, bearer_token, offline, headers);
return is_http_status_ok(http_status);
},
item
)
);
}
// Wait for all downloads to complete
@ -807,17 +852,18 @@ static bool common_download_file_multiple(const std::vector<std::pair<std::strin
return true;
}
bool common_download_model(
const common_params_model & model,
const std::string & bearer_token,
bool offline) {
bool common_download_model(const common_params_model & model,
const std::string & bearer_token,
bool offline,
const common_header_list & headers) {
// Basic validation of the model.url
if (model.url.empty()) {
LOG_ERR("%s: invalid model url\n", __func__);
return false;
}
if (!common_download_file_single(model.url, model.path, bearer_token, offline)) {
const int http_status = common_download_file_single(model.url, model.path, bearer_token, offline, headers);
if (!is_http_status_ok(http_status)) {
return false;
}
@ -876,27 +922,26 @@ bool common_download_model(
}
// Download in parallel
common_download_file_multiple(urls, bearer_token, offline);
common_download_file_multiple(urls, bearer_token, offline, headers);
}
return true;
}
common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag,
const std::string & bearer_token,
bool offline,
const common_header_list & custom_headers) {
// the returned hf_repo is without tag
auto [hf_repo, tag] = common_download_split_repo_tag(hf_repo_with_tag);
std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
// headers
std::vector<std::string> headers;
headers.push_back("Accept: application/json");
common_header_list headers = custom_headers;
headers.push_back({"Accept", "application/json"});
if (!bearer_token.empty()) {
headers.push_back("Authorization: Bearer " + bearer_token);
headers.push_back({"Authorization", "Bearer " + bearer_token});
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
// User-Agent header is already set in common_remote_get_content, no need to set it here
@ -952,7 +997,7 @@ common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, cons
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
throw std::runtime_error(string_format("error from HF API (%s), response code: %ld, data: %s", url.c_str(), res_code, res_str.c_str()));
}
// check response
@ -1031,9 +1076,10 @@ std::string common_docker_resolve_model(const std::string & docker) {
const std::string url_prefix = "https://registry-1.docker.io/v2/" + repo;
std::string manifest_url = url_prefix + "/manifests/" + tag;
common_remote_params manifest_params;
manifest_params.headers.push_back("Authorization: Bearer " + token);
manifest_params.headers.push_back(
"Accept: application/vnd.docker.distribution.manifest.v2+json,application/vnd.oci.image.manifest.v1+json");
manifest_params.headers.push_back({"Authorization", "Bearer " + token});
manifest_params.headers.push_back({"Accept",
"application/vnd.docker.distribution.manifest.v2+json,application/vnd.oci.image.manifest.v1+json"
});
auto manifest_res = common_remote_get_content(manifest_url, manifest_params);
if (manifest_res.first != 200) {
throw std::runtime_error("Failed to get Docker manifest, HTTP code: " + std::to_string(manifest_res.first));
@ -1070,7 +1116,8 @@ std::string common_docker_resolve_model(const std::string & docker) {
std::string local_path = fs_get_cache_file(model_filename);
const std::string blob_url = url_prefix + "/blobs/" + gguf_digest;
if (!common_download_file_single(blob_url, local_path, token, false)) {
const int http_status = common_download_file_single(blob_url, local_path, token, false, {});
if (!is_http_status_ok(http_status)) {
throw std::runtime_error("Failed to download Docker Model");
}
@ -1084,11 +1131,11 @@ std::string common_docker_resolve_model(const std::string & docker) {
#else
common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool) {
common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool, const common_header_list &) {
throw std::runtime_error("download functionality is not enabled in this build");
}
bool common_download_model(const common_params_model &, const std::string &, bool) {
bool common_download_model(const common_params_model &, const std::string &, bool, const common_header_list &) {
throw std::runtime_error("download functionality is not enabled in this build");
}
@ -1096,6 +1143,14 @@ std::string common_docker_resolve_model(const std::string &) {
throw std::runtime_error("download functionality is not enabled in this build");
}
int common_download_file_single(const std::string &,
const std::string &,
const std::string &,
bool,
const common_header_list &) {
throw std::runtime_error("download functionality is not enabled in this build");
}
#endif // LLAMA_USE_CURL || LLAMA_USE_HTTPLIB
std::vector<common_cached_model_info> common_list_cached_models() {

View File

@ -1,12 +1,27 @@
#pragma once
#include <string>
#include <vector>
struct common_params_model;
//
// download functionalities
//
using common_header = std::pair<std::string, std::string>;
using common_header_list = std::vector<common_header>;
struct common_remote_params {
common_header_list headers;
long timeout = 0; // in seconds, 0 means no timeout
long max_size = 0; // unlimited if 0
};
// get remote file content, returns <http_code, raw_response_body>
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params);
// split HF repo with tag into <repo, tag>
// for example: "user/model:tag" -> <"user/model", "tag">
// if tag is not present, default to "latest"
// example: "user/model" -> <"user/model", "latest">
std::pair<std::string, std::string> common_download_split_repo_tag(const std::string & hf_repo_with_tag);
struct common_cached_model_info {
std::string manifest_path;
@ -41,17 +56,29 @@ struct common_hf_file_res {
common_hf_file_res common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & bearer_token,
bool offline);
bool offline,
const common_header_list & headers = {}
);
// returns true if download succeeded
bool common_download_model(
const common_params_model & model,
const std::string & bearer_token,
bool offline);
bool offline,
const common_header_list & headers = {}
);
// returns list of cached models
std::vector<common_cached_model_info> common_list_cached_models();
// download single file from url to local path
// returns status code or -1 on error
int common_download_file_single(const std::string & url,
const std::string & path,
const std::string & bearer_token,
bool offline,
const common_header_list & headers = {});
// resolve and download model from Docker registry
// return local path to downloaded model file
std::string common_docker_resolve_model(const std::string & docker);

View File

@ -16,6 +16,48 @@ static std::string rm_leading_dashes(const std::string & str) {
return str.substr(pos);
}
// only allow a subset of args for remote presets for security reasons
// do not add more args unless absolutely necessary
// args that output to files are strictly prohibited
static std::set<std::string> get_remote_preset_whitelist(const std::map<std::string, common_arg> & key_to_opt) {
static const std::set<std::string> allowed_options = {
"model-url",
"hf-repo",
"hf-repo-draft",
"hf-repo-v", // vocoder
"hf-file-v", // vocoder
"mmproj-url",
"pooling",
"jinja",
"batch-size",
"ubatch-size",
"cache-reuse",
"chat-template-kwargs",
"mmap",
// note: sampling params are automatically allowed by default
// negated args will be added automatically if the positive arg is specified above
};
std::set<std::string> allowed_keys;
for (const auto & it : key_to_opt) {
const std::string & key = it.first;
const common_arg & opt = it.second;
if (allowed_options.find(key) != allowed_options.end() || opt.is_sparam) {
allowed_keys.insert(key);
// also add variant keys (args without leading dashes and env vars)
for (const auto & arg : opt.get_args()) {
allowed_keys.insert(rm_leading_dashes(arg));
}
for (const auto & env : opt.get_env()) {
allowed_keys.insert(env);
}
}
}
return allowed_keys;
}
std::vector<std::string> common_preset::to_args(const std::string & bin_path) const {
std::vector<std::string> args;
@ -121,6 +163,29 @@ void common_preset::merge(const common_preset & other) {
}
}
void common_preset::apply_to_params(common_params & params) const {
for (const auto & [opt, val] : options) {
// apply each option to params
if (opt.handler_string) {
opt.handler_string(params, val);
} else if (opt.handler_int) {
opt.handler_int(params, std::stoi(val));
} else if (opt.handler_bool) {
opt.handler_bool(params, common_arg_utils::is_truthy(val));
} else if (opt.handler_str_str) {
// not supported yet
throw std::runtime_error(string_format(
"%s: option with two values is not supported yet",
__func__
));
} else if (opt.handler_void) {
opt.handler_void(params);
} else {
GGML_ABORT("unknown handler type");
}
}
}
static std::map<std::string, std::map<std::string, std::string>> parse_ini_from_file(const std::string & path) {
std::map<std::string, std::map<std::string, std::string>> parsed;
@ -230,10 +295,16 @@ static std::string parse_bool_arg(const common_arg & arg, const std::string & ke
return value;
}
common_preset_context::common_preset_context(llama_example ex)
common_preset_context::common_preset_context(llama_example ex, bool only_remote_allowed)
: ctx_params(common_params_parser_init(default_params, ex)) {
common_params_add_preset_options(ctx_params.options);
key_to_opt = get_map_key_opt(ctx_params);
// setup allowed keys if only_remote_allowed is true
if (only_remote_allowed) {
filter_allowed_keys = true;
allowed_keys = get_remote_preset_whitelist(key_to_opt);
}
}
common_presets common_preset_context::load_from_ini(const std::string & path, common_preset & global) const {
@ -249,7 +320,18 @@ common_presets common_preset_context::load_from_ini(const std::string & path, co
}
LOG_DBG("loading preset: %s\n", preset.name.c_str());
for (const auto & [key, value] : section.second) {
if (key == "version") {
// skip version key (reserved for future use)
continue;
}
LOG_DBG("option: %s = %s\n", key.c_str(), value.c_str());
if (filter_allowed_keys && allowed_keys.find(key) == allowed_keys.end()) {
throw std::runtime_error(string_format(
"option '%s' is not allowed in remote presets",
key.c_str()
));
}
if (key_to_opt.find(key) != key_to_opt.end()) {
const auto & opt = key_to_opt.at(key);
if (is_bool_arg(opt)) {
@ -259,7 +341,10 @@ common_presets common_preset_context::load_from_ini(const std::string & path, co
}
LOG_DBG("accepted option: %s = %s\n", key.c_str(), preset.options[opt].c_str());
} else {
// TODO: maybe warn about unknown key?
throw std::runtime_error(string_format(
"option '%s' not recognized in preset '%s'",
key.c_str(), preset.name.c_str()
));
}
}

View File

@ -6,6 +6,7 @@
#include <string>
#include <vector>
#include <map>
#include <set>
//
// INI preset parser and writer
@ -40,6 +41,9 @@ struct common_preset {
// merge another preset into this one, overwriting existing options
void merge(const common_preset & other);
// apply preset options to common_params
void apply_to_params(common_params & params) const;
};
// interface for multiple presets in one file
@ -50,7 +54,12 @@ struct common_preset_context {
common_params default_params; // unused for now
common_params_context ctx_params;
std::map<std::string, common_arg> key_to_opt;
common_preset_context(llama_example ex);
bool filter_allowed_keys = false;
std::set<std::string> allowed_keys;
// if only_remote_allowed is true, only accept whitelisted keys
common_preset_context(llama_example ex, bool only_remote_allowed = false);
// load presets from INI file
common_presets load_from_ini(const std::string & path, common_preset & global) const;

View File

@ -528,7 +528,11 @@ class ModelBase:
return ()
def prepare_tensors(self):
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
# Handle empty tensor_map for models with block_count=0 (like MobileNetV5)
if self.tensor_map.mapping:
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
else:
max_name_len = len("vision_encoder.weight,") # Default reasonable length
for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
# we don't need these
@ -771,8 +775,8 @@ class TextModel(ModelBase):
self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
rope_theta = self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)
local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "swa_rope_theta", "rope_local_base_freq"], optional=True)
rope_theta = self.find_hparam(["global_rope_theta", "rope_global_theta", "rope_theta_global", "rope_theta", "rotary_emb_base"], optional=True)
local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "rope_theta_local", "swa_rope_theta", "rope_local_base_freq"], optional=True)
# Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
@ -4363,7 +4367,37 @@ class Qwen3NextModel(Qwen2MoeModel):
elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
data_torch = data_torch + 1
yield from super().modify_tensors(data_torch, name, bid)
if "in_proj_qkvz.weight" in name:
# original order: [q, k, v, z] * head_count
# corrected order: [q * head_count, k * head_count, v * head_count, z * head_count]
head_k_dim = self.hparams["linear_key_head_dim"]
head_v_dim = self.hparams["linear_value_head_dim"]
num_v_heads = self.hparams["linear_num_value_heads"]
num_k_heads = self.hparams["linear_num_key_heads"]
hidden_size = self.hparams["hidden_size"]
split_arg_list_qkvz = [
head_k_dim, # q partition
head_k_dim, # k partition
(num_v_heads // num_k_heads * head_v_dim), # v partition
(num_v_heads // num_k_heads * head_v_dim), # z partition
]
# view as (n_embd, head_count, [q+k+v+z])
data_torch = data_torch.permute(1, 0).contiguous()
data_torch = data_torch.view(-1, num_k_heads, sum(split_arg_list_qkvz))
# split into q, k, v, z
q, k, v, z = torch.split(data_torch, split_arg_list_qkvz, dim=-1)
# flatten dim + head_count
q = q.contiguous().view(hidden_size, -1)
k = k.contiguous().view(hidden_size, -1)
v = v.contiguous().view(hidden_size, -1)
z = z.contiguous().view(hidden_size, -1)
# stack back
qkv = torch.cat([q, k, v], dim=-1).permute(1, 0).contiguous()
z = z.permute(1, 0).contiguous()
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_QKV, bid, ".weight"), qkv)
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_GATE, bid, ".weight"), z)
else:
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("RND1")
@ -6038,7 +6072,175 @@ class Gemma3VisionModel(MmprojModel):
return [] # skip other tensors
class ConformerAudioModel(MmprojModel):
_batch_norm_tensors: list[dict[str, Tensor]] | None = None
@staticmethod
def is_audio_tensor(name: str):
return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
def tensor_force_quant(self, name, new_name, bid, n_dims):
if ConformerAudioModel.is_audio_tensor(name):
if ".conv" in name or "_conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F32
return super().tensor_force_quant(name, new_name, bid, n_dims)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# fold running_mean, running_var and eps into weight and bias for batch_norm
if "batch_norm" in name:
if self._batch_norm_tensors is None:
self._batch_norm_tensors = [{} for _ in range(self.block_count)]
assert bid is not None
self._batch_norm_tensors[bid][name] = data_torch
if len(self._batch_norm_tensors[bid]) < 5:
return []
weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
eps = 1e-5 # default value
a = weight / torch.sqrt(running_var + eps)
b = bias - running_mean * a
return [
(self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
(self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
]
# reshape conv weights
if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
data_torch = data_torch[:, None, None]
if "conv.depthwise_conv" in name and name.endswith(".weight"):
assert data_torch.shape[1] == 1
data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
if "conv.pointwise_conv" in name and name.endswith(".weight"):
assert data_torch.shape[2] == 1
data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Gemma3nForConditionalGeneration")
class Gemma3nVisionAudioModel(ConformerAudioModel):
has_audio_encoder = True
has_vision_encoder = True
# Double indexed mapping for MobileNetV5 blocks (not supported by tensor_mapping.py)
# This is the only known model having this, so we prefer implementing it outside of tensor_mapping.py
block_tensor_mapping = {
"model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_exp.weight": "v.blk.{bid}.{sid}.conv_exp.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.bn1.weight": "v.blk.{bid}.{sid}.bn1.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_pwl.weight": "v.blk.{bid}.{sid}.conv_pwl.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.bn2.weight": "v.blk.{bid}.{sid}.bn2.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.conv.weight": "v.blk.{bid}.{sid}.dw_start.conv.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.bn.weight": "v.blk.{bid}.{sid}.dw_start.bn.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.conv.weight": "v.blk.{bid}.{sid}.dw_mid.conv.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.bn.weight": "v.blk.{bid}.{sid}.dw_mid.bn.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.conv.weight": "v.blk.{bid}.{sid}.pw_exp.conv.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.bn.weight": "v.blk.{bid}.{sid}.pw_exp.bn.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.conv.weight": "v.blk.{bid}.{sid}.pw_proj.conv.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.bn.weight": "v.blk.{bid}.{sid}.pw_proj.bn.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.layer_scale.gamma": "v.blk.{bid}.{sid}.layer_scale.gamma",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.query.proj.weight": "v.blk.{bid}.{sid}.attn.query.proj.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.proj.weight": "v.blk.{bid}.{sid}.attn.key.proj.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.proj.weight": "v.blk.{bid}.{sid}.attn.value.proj.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.output.proj.weight": "v.blk.{bid}.{sid}.attn.output.proj.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.down_conv.weight": "v.blk.{bid}.{sid}.attn.key.down_conv.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.norm.weight": "v.blk.{bid}.{sid}.attn.key.norm.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.down_conv.weight": "v.blk.{bid}.{sid}.attn.value.down_conv.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.norm.weight": "v.blk.{bid}.{sid}.attn.value.norm.weight",
"model.vision_tower.timm_model.blocks.{bid}.{sid}.norm.weight": "v.blk.{bid}.{sid}.norm.weight",
}
def __init__(self, *args, **kwargs):
# Parent init will call find_hparam which now returns 0 for empty keys
super().__init__(*args, **kwargs)
assert self.hparams_vision is not None
self.hparams_vision["n_layers"] = 128 # fake value for audio encoder, vision encoder doesn't use it
self.hparams_vision["intermediate_size"] = self.hparams_vision.get("intermediate_size", 2048) * 4
self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_attention_heads", 8)
# MobileNetV5 does not use image_mean/std
self.preprocessor_config["image_mean"] = [0.0 ,0.0 , 0.0]
self.preprocessor_config["image_std"] = [1.0 ,1.0 ,1.0]
self.hparams_vision["image_size"] = self.preprocessor_config.get(
"size", {"height": 768, "width": 768}
)["height"]
# Image sequence length (256 tokens = 16x16 for Gemma3n)
image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
image_size = self.hparams_vision["image_size"]
self.hparams_vision["patch_size"] = image_size // image_seq_length
# remap audio hparams
assert self.hparams_audio is not None
self.hparams_audio["n_layers"] = self.hparams_audio["conf_num_hidden_layers"]
self.hparams_audio["num_attention_heads"] = self.hparams_audio["conf_num_attention_heads"]
self.hparams_audio["feat_in"] = self.hparams_audio["input_feat_size"]
self.hparams_audio["intermediate_size"] = self.hparams_audio.get("intermediate_size", 6144)
def set_gguf_parameters(self):
super().set_gguf_parameters()
# vision params
self.gguf_writer.add_clip_vision_projector_type(gguf.VisionProjectorType.GEMMA3NV)
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
# audio params
assert self.hparams_audio is not None
self.gguf_writer.add_clip_audio_projector_type(gguf.VisionProjectorType.GEMMA3NA)
self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
def tensor_force_quant(self, name, new_name, bid, n_dims):
# Force quantization settings for specific tensor types
if "input_projection" in name or "input_proj" in name:
return gguf.GGMLQuantizationType.F16
if ".embeddings." in name or "stem" in name:
return gguf.GGMLQuantizationType.F32
return super().tensor_force_quant(name, new_name, bid, n_dims)
def custom_map(self, name: str) -> str:
"""Parses names like model.vision_tower.timm_model.blocks.1.2.suffix and applies template mapping."""
parts = name.split(".")
# MobileNet blocks have at least 7 parts: model, vision_tower, timm_model, blocks, bid, sid, and suffix
if len(parts) >= 7:
bid, sid = parts[4], parts[5]
suffix = ".".join(parts[6:])
template = f"model.vision_tower.timm_model.blocks.{{bid}}.{{sid}}.{suffix}"
if template in self.block_tensor_mapping:
return self.block_tensor_mapping[template].format(bid=bid, sid=sid)
raise ValueError(f"Unknown name: {name}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if (ConformerAudioModel.is_audio_tensor(name)):
name = name.replace("model.audio_tower.conformer.", "conformer.layers.")
return super().modify_tensors(data_torch, name, bid)
# Gemma3n uses
# - model.embed_vision.* for projection layers
# - model.vision_tower.* for vision encoder
# Skip non-vision tensors
if not (name.startswith("model.embed_vision.") or name.startswith("model.vision_tower.")):
return []
if name.startswith("model.vision_tower.timm_model.blocks."):
# Double-indexed block tensors through custom logic
new_name = self.custom_map(name)
else:
# Route non-repeating (conv_stem, msfa, embedding, etc.) and un-catched through tensor_mapping.py
new_name = self.map_tensor_name(name)
if new_name.endswith("conv_stem.conv.bias") or new_name.endswith("layer_scale.gamma"):
data_torch = data_torch.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) # [1, C, 1, 1]
return [(new_name, data_torch)]
@ModelBase.register("Gemma3nForCausalLM", "Gemma3nForConditionalGeneration")
class Gemma3NModel(Gemma3Model):
model_arch = gguf.MODEL_ARCH.GEMMA3N
norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
@ -6061,8 +6263,25 @@ class Gemma3NModel(Gemma3Model):
]
def set_vocab(self):
# For Gemma3n multimodal models, we need the FULL vocab_size (262400)
# which includes special tokens from 262144-262399 for vision/audio.
# The vocab_size_per_layer_input (262144) is only the embedding size per layer.
# Temporarily override the hparams lookup order to prioritize vocab_size.
# Store original vocab_size_per_layer_input if it exists
vocab_size_per_layer_input = self.hparams.get("vocab_size_per_layer_input")
# Temporarily remove vocab_size_per_layer_input to force using vocab_size
if vocab_size_per_layer_input is not None:
del self.hparams["vocab_size_per_layer_input"]
# Call parent set_vocab which will now use vocab_size (262400)
super().set_vocab()
# Restore vocab_size_per_layer_input for later use
if vocab_size_per_layer_input is not None:
self.hparams["vocab_size_per_layer_input"] = vocab_size_per_layer_input
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
@ -6098,8 +6317,32 @@ class Gemma3NModel(Gemma3Model):
if "language_model." not in name:
return [] # skip non-language model tensors
# Pad token embeddings for vision/audio special tokens (262144-262399)
if "embed_tokens.weight" in name or "embed_tokens_per_layer" in name:
# Move to CPU to avoid meta device issues during padding
data_torch = data_torch.to(device="cpu")
vocab_size = self.hparams.get("vocab_size", 262400)
current_size = data_torch.shape[0] # First dimension is vocab_size
if current_size < vocab_size:
# Pad with zeros for vision/audio tokens (they get embeddings from vision tower)
padding_size = vocab_size - current_size
tensor_type = "per-layer embeddings" if "per_layer" in name else "token embeddings"
logger.info(f"Padding {tensor_type} shape {list(data_torch.shape)} from {current_size} to {vocab_size} (adding {padding_size} vision/audio token slots)")
# Create padding with zeros (vision tokens won't use these embeddings)
padding = torch.zeros((padding_size, data_torch.shape[1]), dtype=data_torch.dtype, device=data_torch.device)
data_torch = torch.cat([data_torch, padding], dim=0)
# Continue with normal processing
name = name.replace("language_model.", "")
return [(self.map_tensor_name(name), data_torch)]
if "altup_unembed_projections" in name:
data_torch = data_torch.to(device="cpu")
# altup_unembed matrices are [hidden_size, hidden_size], NOT vocab-based
# They should NOT be padded
if ".0." in name:
self._altup_unembd[0] = data_torch
elif ".1." in name:
@ -7212,6 +7455,7 @@ class DeepseekModel(TextModel):
"DeepseekV3ForCausalLM",
"KimiVLForConditionalGeneration",
"YoutuForCausalLM",
"YoutuVLForConditionalGeneration"
)
class DeepseekV2Model(TextModel):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
@ -9935,7 +10179,7 @@ class LFM2Model(TextModel):
self._add_feed_forward_length()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if self._is_vision_tensor(name) or self._is_audio_tensor(name):
if self._is_vision_tensor(name) or ConformerAudioModel.is_audio_tensor(name):
# skip multimodal tensors
return []
@ -9951,8 +10195,26 @@ class LFM2Model(TextModel):
def _is_vision_tensor(self, name: str) -> bool:
return "vision_tower" in name or "multi_modal_projector" in name
def _is_audio_tensor(self, name: str):
return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
@ModelBase.register("Lfm2Model")
class LFM2ColBertModel(LFM2Model):
model_arch = gguf.MODEL_ARCH.LFM2
dense_tensor_name = "dense_2"
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if not name.startswith(self.dense_tensor_name):
name = "model." + name
return super().modify_tensors(data_torch, name, bid)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# dense tensor is stored in a separate safetensors file
from safetensors.torch import load_file
tensors_file = self.dir_model / "1_Dense" / "model.safetensors"
assert tensors_file.is_file()
tensor = load_file(tensors_file)["linear.weight"]
self.gguf_writer.add_embedding_length_out(tensor.shape[0])
yield f"{self.dense_tensor_name}.weight", tensor.clone()
@ModelBase.register("Lfm2MoeForCausalLM")
@ -10060,13 +10322,11 @@ class LFM2VLModel(MmprojModel):
@ModelBase.register("Lfm2AudioForConditionalGeneration")
class LFM2AudioModel(MmprojModel):
class LFM2AudioModel(ConformerAudioModel):
has_vision_encoder = False
has_audio_encoder = True
model_name = "Lfm2AudioEncoder"
_batch_norm_tensors: list[dict[str, Tensor]] | None = None
def get_audio_config(self) -> dict[str, Any] | None:
return self.global_config.get("encoder")
@ -10080,12 +10340,7 @@ class LFM2AudioModel(MmprojModel):
self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
def tensor_force_quant(self, name, new_name, bid, n_dims):
if ".conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F32
return super().tensor_force_quant(name, new_name, bid, n_dims)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
def modify_tensors(self, data_torch, name, bid):
# skip language model tensors
if name.startswith("lfm."):
return []
@ -10098,40 +10353,7 @@ class LFM2AudioModel(MmprojModel):
if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
return []
# fold running_mean, running_var and eps into weight and bias for batch_norm
if "batch_norm" in name:
if self._batch_norm_tensors is None:
self._batch_norm_tensors = [{} for _ in range(self.block_count)]
assert bid is not None
self._batch_norm_tensors[bid][name] = data_torch
if len(self._batch_norm_tensors[bid]) < 5:
return []
weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
eps = 1e-5 # default value
a = weight / torch.sqrt(running_var + eps)
b = bias - running_mean * a
return [
(self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
(self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
]
# reshape conv weights
if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
data_torch = data_torch[:, None, None]
if "conv.depthwise_conv" in name and name.endswith(".weight"):
assert data_torch.shape[1] == 1
data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
if "conv.pointwise_conv" in name and name.endswith(".weight"):
assert data_torch.shape[2] == 1
data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
return [(self.map_tensor_name(name), data_torch)]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("SmallThinkerForCausalLM")
@ -10674,8 +10896,8 @@ class JanusProVisionModel(MmprojModel):
return []
@ModelBase.register("YOUTUVLForConditionalGeneration", "YOUTUVLForCausalLM")
class YOUTUVLVisionModel(MmprojModel):
@ModelBase.register("YoutuVLForConditionalGeneration")
class YoutuVLVisionModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hparams_vision is not None
@ -10952,8 +11174,8 @@ def parse_args() -> argparse.Namespace:
parser.add_argument(
"--sentence-transformers-dense-modules", action="store_true",
help=("Whether to include sentence-transformers dense modules."
"It can be used for sentence-transformers models, like google/embeddinggemma-300m"
help=("Whether to include sentence-transformers dense modules. "
"It can be used for sentence-transformers models, like google/embeddinggemma-300m. "
"Default these modules are not included.")
)

View File

@ -22,7 +22,7 @@ Legend:
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
@ -57,7 +57,6 @@ Legend:
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
@ -71,10 +70,9 @@ Legend:
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ | |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ | 🟡 |
| PAD | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
@ -99,7 +97,6 @@ Legend:
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |

View File

@ -965,6 +965,7 @@
"BLAS","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[12,12,1,2560],ne_kernel=[3,3,1,2560],s0=1,s1=1,p0=1,p1=1,d0=1,d1=1,is_2D=1","support","0","no","BLAS"
"BLAS","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[12,12,2,2560],ne_kernel=[3,3,2,2560],s0=1,s1=1,p0=1,p1=1,d0=1,d1=1,is_2D=1","support","0","no","BLAS"
"BLAS","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[5,5,1,32],ne_kernel=[3,4,1,32],s0=1,s1=1,p0=0,p1=0,d0=1,d1=1,is_2D=1","support","0","no","BLAS"
"BLAS","IM2COL","type_input=f32,type_kernel=f32,dst_type=f32,ne_input=[2,2,1536,729],ne_kernel=[2,2,1536,4096],s0=1,s1=1,p0=0,p1=0,d0=1,d1=1,is_2D=1","support","0","no","BLAS"
"BLAS","IM2COL_3D","type_input=f32,type_kernel=f32,dst_type=f32,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","BLAS"
"BLAS","IM2COL_3D","type_input=f32,type_kernel=f16,dst_type=f32,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","BLAS"
"BLAS","IM2COL_3D","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","BLAS"
@ -4964,6 +4965,7 @@
"BLAS","CONV_TRANSPOSE_1D","ne_input=[2,1,1,1],ne_kernel=[3,1,1,1],s0=1,p0=0,d0=1","support","0","no","BLAS"
"BLAS","CONV_TRANSPOSE_2D","ne_input=[3,2,3,1],ne_kernel=[2,2,1,3],stride=1","support","0","no","BLAS"
"BLAS","CONV_TRANSPOSE_2D","ne_input=[10,10,9,1],ne_kernel=[3,3,1,9],stride=2","support","0","no","BLAS"
"BLAS","CONV_TRANSPOSE_2D","ne_input=[129,63,35,1],ne_kernel=[3,3,48,35],stride=1","support","0","no","BLAS"
"BLAS","COUNT_EQUAL","type=f32,ne=[4,500,1,1]","support","0","no","BLAS"
"BLAS","COUNT_EQUAL","type=f32,ne=[4,5000,1,1]","support","0","no","BLAS"
"BLAS","ARGMAX","type=f32,ne=[32,1,1,1]","support","0","no","BLAS"
@ -5715,15 +5717,15 @@
"BLAS","L2_NORM","type=f32,ne=[64,5,4,3]","support","0","no","BLAS"
"BLAS","RMS_NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000001,inplace=1","support","0","no","BLAS"
"BLAS","L2_NORM","type=f32,ne=[64,5,4,3]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[3,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[6,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[3,1024,4,1],ne_b=[3,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[3,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[6,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[3,1536,4,1],ne_b=[3,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[3,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[6,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[3,2048,4,1],ne_b=[3,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","0","no","BLAS"
@ -5733,6 +5735,15 @@
"BLAS","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[9,1024,1,1],ne_b=[9,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[18,1024,1,1],ne_b=[9,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[9,1024,4,1],ne_b=[9,1024,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[9,1536,1,1],ne_b=[9,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[18,1536,1,1],ne_b=[9,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[9,1536,4,1],ne_b=[9,1536,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[9,2048,1,1],ne_b=[9,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[18,2048,1,1],ne_b=[9,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_CONV","type=f32,ne_a=[9,2048,4,1],ne_b=[9,2048,1,1]","support","0","no","BLAS"
"BLAS","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","0","no","BLAS"
"BLAS","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","BLAS"
"BLAS","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","BLAS"
@ -6592,6 +6603,30 @@
"BLAS","MUL_MAT","type_a=f16,type_b=f32,m=1056,n=1,k=67,bs=[1,1],nr=[4,1],per=[0,2,1,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=f32,type_b=f32,m=64,n=77,k=77,bs=[12,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","1","yes","BLAS"
"BLAS","MUL_MAT","type_a=q4_0,type_b=f32,m=576,n=512,k=576,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","1","yes","BLAS"
"BLAS","MUL_MAT","type_a=q4_0,type_b=f32,m=1,n=2048,k=8192,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=f32,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=f16,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=bf16,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q4_0,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q4_1,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q5_0,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q5_1,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q8_0,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=mxfp4,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q2_K,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q3_K,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q4_K,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q5_K,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=q6_K,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq2_xxs,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq2_xs,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq2_s,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq3_xxs,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq1_s,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq1_m,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq4_nl,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq3_s,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=iq4_xs,type_b=f32,m=1,n=64,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=f16,type_b=f32,m=1056,n=1,k=128,bs=[1,1],nr=[1,1],per=[0,2,1,3],k_v=0,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=f16,type_b=f32,m=128,n=1,k=1056,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=2112,o=1","support","0","no","BLAS"
"BLAS","MUL_MAT","type_a=bf16,type_b=f32,m=1056,n=1,k=128,bs=[1,1],nr=[1,1],per=[0,2,1,3],k_v=0,o=1","support","0","no","BLAS"
@ -8916,6 +8951,11 @@
"BLAS","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=0,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=0.000000,inplace=0","support","0","no","BLAS"
"BLAS","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=1,m_prec=f32,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","0","no","BLAS"
"BLAS","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=1,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","0","no","BLAS"
"BLAS","SOFT_MAX","type=f32,ne=[200001,2,3,1],mask=1,sinks=1,m_prec=f32,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","0","no","BLAS"
"BLAS","SOFT_MAX","type=f32,ne=[200001,2,3,1],mask=1,sinks=1,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","0","no","BLAS"
"BLAS","SOFT_MAX","type=f32,ne=[200000,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0","support","0","no","BLAS"
"BLAS","SOFT_MAX","type=f32,ne=[200000,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0","support","0","no","BLAS"
"BLAS","SOFT_MAX","type=f32,ne=[643251,3,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0","support","0","no","BLAS"
"BLAS","SOFT_MAX_BACK","type=f32,ne=[16,16,1,1],scale=1.000000,max_bias=0.000000","support","0","no","BLAS"
"BLAS","SOFT_MAX_BACK","type=f32,ne=[15,15,1,1],scale=1.000000,max_bias=0.000000","support","0","no","BLAS"
"BLAS","SOFT_MAX_BACK","type=f32,ne=[16,16,2,3],scale=1.000000,max_bias=0.000000","support","0","no","BLAS"
@ -8968,6 +9008,7 @@
"BLAS","ROPE","type=f32,ne_a=[128,40,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,52,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,64,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,1,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,71,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,8,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
@ -8977,6 +9018,7 @@
"BLAS","ROPE","type=f32,ne_a=[80,32,2,1],n_dims=20,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,32,2,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,32,4,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,12,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,28,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,12,2,1],n_dims=20,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
@ -8987,11 +9029,13 @@
"BLAS","ROPE","type=f32,ne_a=[128,28,2,1],n_dims=32,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,16,2,1],n_dims=80,mode=24,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,16,2,1],n_dims=128,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,32,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,40,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,52,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,64,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,1,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,71,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,8,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
@ -9001,6 +9045,7 @@
"BLAS","ROPE","type=f32,ne_a=[80,32,2,1],n_dims=20,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,32,2,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,32,4,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,12,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,28,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,12,2,1],n_dims=20,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
@ -9011,11 +9056,13 @@
"BLAS","ROPE","type=f32,ne_a=[128,28,2,1],n_dims=32,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,16,2,1],n_dims=80,mode=24,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,16,2,1],n_dims=128,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,32,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,40,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,52,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,64,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,1,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,71,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,8,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
@ -9025,6 +9072,7 @@
"BLAS","ROPE","type=f32,ne_a=[80,32,2,1],n_dims=20,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,32,2,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,32,4,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,12,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,28,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,12,2,1],n_dims=20,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
@ -9035,11 +9083,13 @@
"BLAS","ROPE","type=f32,ne_a=[128,28,2,1],n_dims=32,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,16,2,1],n_dims=80,mode=24,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,16,2,1],n_dims=128,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,32,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,40,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,52,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,64,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,1,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,71,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,8,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
@ -9049,6 +9099,7 @@
"BLAS","ROPE","type=f32,ne_a=[80,32,2,1],n_dims=20,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,32,2,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,32,4,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,12,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,28,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,12,2,1],n_dims=20,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
@ -9059,6 +9110,7 @@
"BLAS","ROPE","type=f32,ne_a=[128,28,2,1],n_dims=32,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[80,16,2,1],n_dims=80,mode=24,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[128,16,2,1],n_dims=128,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f32,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f16,ne_a=[128,32,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE","type=f16,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
@ -9184,6 +9236,7 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[128,40,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,52,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,64,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,1,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,71,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,8,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
@ -9193,6 +9246,7 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,2,1],n_dims=20,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,2,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,4,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,12,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,28,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,12,2,1],n_dims=20,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
@ -9203,11 +9257,13 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[128,28,2,1],n_dims=32,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,16,2,1],n_dims=80,mode=24,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,16,2,1],n_dims=128,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,32,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,40,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,52,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,64,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,1,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,71,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,8,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
@ -9217,6 +9273,7 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,2,1],n_dims=20,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,2,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,4,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,12,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,28,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,12,2,1],n_dims=20,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
@ -9227,11 +9284,13 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[128,28,2,1],n_dims=32,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,16,2,1],n_dims=80,mode=24,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,16,2,1],n_dims=128,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,32,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,40,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,52,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,64,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,1,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,71,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,8,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
@ -9241,6 +9300,7 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,2,1],n_dims=20,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,2,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,4,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,12,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,28,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,12,2,1],n_dims=20,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
@ -9251,11 +9311,13 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[128,28,2,1],n_dims=32,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,16,2,1],n_dims=80,mode=24,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,16,2,1],n_dims=128,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,32,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,40,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,52,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,64,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,1,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,71,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,8,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
@ -9265,6 +9327,7 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,2,1],n_dims=20,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,2,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,32,4,1],n_dims=32,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,12,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,28,2,1],n_dims=128,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,12,2,1],n_dims=20,mode=8,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
@ -9275,6 +9338,7 @@
"BLAS","ROPE_BACK","type=f32,ne_a=[128,28,2,1],n_dims=32,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[80,16,2,1],n_dims=80,mode=24,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[128,16,2,1],n_dims=128,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[16,16,8192,1],n_dims=16,mode=40,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f32,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=1,v=1,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f16,ne_a=[128,32,2,1],n_dims=128,mode=0,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
"BLAS","ROPE_BACK","type=f16,ne_a=[64,128,2,1],n_dims=64,mode=2,n_ctx=512,fs=1.000000,ef=0.000000,af=1.000000,ff=0,v=0,inplace=0","support","0","no","BLAS"
@ -9542,333 +9606,333 @@
"BLAS","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","0","no","BLAS"
"BLAS","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","0","no","BLAS"
"BLAS","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[12,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[13,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[13,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[15,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[15,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[15,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[19,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[19,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[19,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[19,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=100","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=500","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=1023","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=9999","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=1","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=2","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=3","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=7","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=15","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=500,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","0","no","BLAS"
"BLAS","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=nearest,flags=none","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=nearest","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bilinear,transpose=0","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bilinear,transpose=1","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=none","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear,flags=none","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bicubic,transpose=0","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bicubic,transpose=1","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic,flags=none","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bicubic,flags=none","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=0","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=1","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=none","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear,flags=none","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bilinear,flags=align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bilinear,flags=align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic,flags=align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bicubic,flags=align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bicubic,flags=align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bicubic","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bilinear|antialias,transpose=0","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bilinear|antialias,transpose=1","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear|antialias","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear|antialias","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear|align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bilinear|align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bilinear|align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic|align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bicubic|align_corners","support","0","no","BLAS"
"BLAS","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bicubic|align_corners","support","0","no","BLAS"
"BLAS","SUM","type=f32,ne=[10,5,4,3]","support","0","no","BLAS"
"BLAS","SUM_ROWS","type=f32,ne=[10,5,4,3],permute=0,slice=0","support","0","no","BLAS"
"BLAS","SUM","type=f32,ne=[11,5,6,3],permute=[0,2,1,3]","support","0","no","BLAS"
@ -9891,8 +9955,9 @@
"BLAS","GROUP_NORM","type=f32,ne=[64,64,320,1],num_groups=32,eps=0.000001","support","0","no","BLAS"
"BLAS","GROUP_NORM","type=f32,ne=[9,9,1280,1],num_groups=32,eps=0.000001","support","0","no","BLAS"
"BLAS","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1,circular=0","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[33,17,2,1],pad_0=4,pad_1=3,circular=1","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0,circular=0","support","0","no","BLAS"
"BLAS","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","0","no","BLAS"
"BLAS","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","no","BLAS"
"BLAS","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","0","no","BLAS"
@ -9914,6 +9979,7 @@
"BLAS","CUMSUM","type=f32,ne=[2048,5,4,3]","support","0","no","BLAS"
"BLAS","CUMSUM","type=f32,ne=[242004,1,1,1]","support","0","no","BLAS"
"BLAS","CUMSUM","type=f32,ne=[375960,1,1,1]","support","0","no","BLAS"
"BLAS","CUMSUM","type=f32,ne=[20481,4,1,1]","support","0","no","BLAS"
"BLAS","XIELU","type=f32,ne=[10,5,4,3]","support","0","no","BLAS"
"BLAS","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","0","no","BLAS"
"BLAS","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","0","no","BLAS"
@ -9923,17 +9989,41 @@
"BLAS","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","0","no","BLAS"
"BLAS","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","0","no","BLAS"
"BLAS","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","0","no","BLAS"
"BLAS","DIAG","type=f32,ne=[10,1,4,3]","support","0","no","BLAS"
"BLAS","DIAG","type=f32,ne=[79,1,19,13]","support","0","no","BLAS"
"BLAS","DIAG","type=f32,ne=[256,1,8,16]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[64,64,2,2]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[79,79,5,3],ne_rhs=[417,79,5,3]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,2],ne_rhs=[32,128,4,2]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[80,80,2,8]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[79,80,2,8]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[81,80,2,8]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[80,80,8,8]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[79,80,8,8]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[81,80,8,8]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[84,84,4,4],ne_rhs=[32,84,4,4]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[95,95,8,8],ne_rhs=[40,95,8,8]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,4],ne_rhs=[31,128,4,4]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,4],ne_rhs=[32,128,4,4]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[128,128,3,4],ne_rhs=[32,128,3,4]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,1],ne_rhs=[32,128,4,1]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[64,64,4,4],ne_rhs=[200,64,4,4]","support","0","no","BLAS"
"BLAS","SOLVE_TRI","type=f32,ne_lhs=[64,64,4,4],ne_rhs=[384,64,4,4]","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=0","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=0","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=1","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=1","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=0","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=0","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=1","support","0","no","BLAS"
"BLAS","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=1","support","0","no","BLAS"
"BLAS","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f32,permute=[0,1,2,3]","support","0","no","BLAS"
"BLAS","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f16,permute=[0,1,2,3]","support","0","no","BLAS"
"BLAS","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=bf16,permute=[0,1,2,3]","support","0","no","BLAS"

Can't render this file because it is too large.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

97
docs/preset.md Normal file
View File

@ -0,0 +1,97 @@
# llama.cpp INI Presets
## Introduction
The INI preset feature, introduced in [PR#17859](https://github.com/ggml-org/llama.cpp/pull/17859), allows users to create reusable and shareable parameter configurations for llama.cpp.
### Using Presets with the Server
When running multiple models on the server (router mode), INI preset files can be used to configure model-specific parameters. Please refer to the [server documentation](../tools/server/README.md) for more details.
### Using a Remote Preset
> [!NOTE]
>
> This feature is currently only supported via the `-hf` option.
For GGUF models hosted on Hugging Face, you can include a `preset.ini` file in the root directory of the repository to define specific configurations for that model.
Example:
```ini
hf-repo-draft = username/my-draft-model-GGUF
temp = 0.5
top-k = 20
top-p = 0.95
```
For security reasons, only certain options are allowed. Please refer to [preset.cpp](../common/preset.cpp) for the complete list of permitted options.
Example usage:
Assuming your repository `username/my-model-with-preset` contains a `preset.ini` with the configuration above:
```sh
llama-cli -hf username/my-model-with-preset
# This is equivalent to:
llama-cli -hf username/my-model-with-preset \
--hf-repo-draft username/my-draft-model-GGUF \
--temp 0.5 \
--top-k 20 \
--top-p 0.95
```
You can also override preset arguments by specifying them on the command line:
```sh
# Force temp = 0.1, overriding the preset value
llama-cli -hf username/my-model-with-preset --temp 0.1
```
If you want to define multiple preset configurations for one or more GGUF models, you can create a blank HF repo for each preset. Each HF repo should contain a `preset.ini` file that references the actual model(s):
```ini
hf-repo = user/my-model-main
hf-repo-draft = user/my-model-draft
temp = 0.8
ctx-size = 1024
; (and other configurations)
```
### Named presets
If you want to define multiple preset configurations for one or more GGUF models, you can create a blank HF repo containing a single `preset.ini` file that references the actual model(s):
```ini
[*]
mmap = 1
[gpt-oss-20b-hf]
hf = ggml-org/gpt-oss-20b-GGUF
batch-size = 2048
ubatch-size = 2048
top-p = 1.0
top-k = 0
min-p = 0.01
temp = 1.0
chat-template-kwargs = {"reasoning_effort": "high"}
[gpt-oss-120b-hf]
hf = ggml-org/gpt-oss-120b-GGUF
batch-size = 2048
ubatch-size = 2048
top-p = 1.0
top-k = 0
min-p = 0.01
temp = 1.0
chat-template-kwargs = {"reasoning_effort": "high"}
```
You can then use it via `llama-cli` or `llama-server`, example:
```sh
llama-server -hf user/repo:gpt-oss-120b-hf
```
Please make sure to provide the correct `hf-repo` for each child preset. Otherwise, you may get error: `The specified tag is not a valid quantization scheme.`

View File

@ -15,6 +15,7 @@ llama_add_compile_flags()
if (EMSCRIPTEN)
else()
add_subdirectory(batched)
add_subdirectory(debug)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
@ -34,7 +35,6 @@ else()
add_subdirectory(gen-docs)
add_subdirectory(training)
add_subdirectory(diffusion)
add_subdirectory(model-conversion)
if (NOT GGML_BACKEND_DL)
add_subdirectory(convert-llama2c-to-ggml)
# these examples use the backends directly and cannot be built with dynamic loading

View File

@ -1,5 +1,5 @@
set(TARGET llama-logits)
add_executable(${TARGET} logits.cpp)
set(TARGET llama-debug)
add_executable(${TARGET} debug.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

54
examples/debug/README.md Normal file
View File

@ -0,0 +1,54 @@
# llama.cpp/examples/debug
This is a utility intended to help debug a model by registering a callback that
logs GGML operations and tensor data. It can also store the generated logits or
embeddings as well as the prompt and token ids for comparision with the original
model.
### Usage
```shell
llama-debug \
--hf-repo ggml-org/models \
--hf-file phi-2/ggml-model-q4_0.gguf \
--model phi-2-q4_0.gguf \
--prompt hello \
--save-logits \
--verbose
```
The tensor data is logged as debug and required the --verbose flag. The reason
for this is that while useful for a model with many layers there can be a lot of
output. You can filter the tensor names using the `--tensor-filter` option.
A recommended approach is to first run without `--verbose` and see if the
generated logits/embeddings are close to the original model. If they are not,
then it might be required to inspect tensor by tensor and in that case it is
useful to enable the `--verbose` flag along with `--tensor-filter` to focus on
specific tensors.
### Options
This example supports all standard `llama.cpp` options and also accepts the
following options:
```console
$ llama-debug --help
...
----- example-specific params -----
--save-logits save final logits to files for verification (default: false)
--logits-output-dir PATH directory for saving logits output files (default: data)
--tensor-filter REGEX filter tensor names for debug output (regex pattern, can be specified multiple times)
```
### Output Files
When `--save-logits` is enabled, the following files are created in the output
directory:
* `llamacpp-<model>[-embeddings].bin` - Binary output (logits or embeddings)
* `llamacpp-<model>[-embeddings].txt` - Text output (logits or embeddings, one per line)
* `llamacpp-<model>[-embeddings]-prompt.txt` - Prompt text and token IDs
* `llamacpp-<model>[-embeddings]-tokens.bin` - Binary token IDs for programmatic comparison
These files can be compared against the original model's output to verify the
converted model.

439
examples/debug/debug.cpp Normal file
View File

@ -0,0 +1,439 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include "ggml.h"
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <string>
#include <vector>
#include <filesystem>
#include <fstream>
#include <regex>
static void print_usage(int, char ** argv) {
const std::string usage_template = R"(
example usage:
Print tensors:
{prog} -m model.gguf -p "Hello my name is" --verbose
The tensors to be printed can be filtered with --tensor-filter option.
Save logits/embeddings:
{prog} -m model.gguf -p "Hello my name is" --save-logits
Add --embedding to save embeddings)" "\n";
// Fix the source code indentation above that is introduced by the raw string literal.
std::string usage = std::regex_replace(usage_template, std::regex("\\n {8}"), "\n");
usage = std::regex_replace(usage, std::regex("\\{prog\\}"), argv[0]);
LOG("%s\n", usage.c_str());
}
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data);
struct callback_data {
std::vector<uint8_t> data;
std::vector<std::regex> tensor_filters;
callback_data() = default;
callback_data(common_params & params, const std::vector<std::string> & filter_patterns) {
for (const auto & pattern : filter_patterns) {
try {
std::string anchored_pattern = "^" + pattern;
tensor_filters.emplace_back(anchored_pattern, std::regex::optimize);
} catch (const std::regex_error & e) {
throw std::runtime_error("Invalid regex pattern '" + pattern + "': " + e.what());
}
}
params.cb_eval = ggml_debug;
params.cb_eval_user_data = this;
}
};
static bool has_pooling(llama_context * ctx) {
switch (llama_pooling_type(ctx)) {
case LLAMA_POOLING_TYPE_NONE:
case LLAMA_POOLING_TYPE_UNSPECIFIED:
return false;
default:
return true;
}
}
struct output_data {
float * data_ptr = nullptr;
int data_size = 0;
std::string type_suffix;
std::vector<float> embd_norm;
std::string prompt;
std::vector<llama_token> tokens;
output_data(llama_context * ctx, const llama_model * model, const common_params & params) {
const llama_vocab * vocab = llama_model_get_vocab(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
tokens = common_tokenize(ctx, params.prompt, add_bos);
prompt = params.prompt;
if (params.embedding) {
const int n_embd = llama_model_n_embd_out(model);
const bool pooling = has_pooling(ctx);
const int n_embd_count = pooling ? 1 : tokens.size();
const int n_floats = n_embd * n_embd_count;
float * embd_raw = pooling ? llama_get_embeddings_seq(ctx, 0) : llama_get_embeddings(ctx);
if (embd_raw == nullptr) {
throw std::runtime_error("failed to get embeddings from the model");
}
LOG_DBG("pooling_enabled: %s\n", pooling ? "true" : "false");
LOG_DBG("n_embd: %d\n", n_embd);
LOG_DBG("n_floats: %d\n", n_floats);
LOG_DBG("n_embd_count: %d\n", n_embd_count);
data_ptr = embd_raw;
data_size = n_floats;
type_suffix = "-embeddings";
if (params.embd_normalize >= 0) {
embd_norm.resize(n_floats);
for (int i = 0; i < n_embd_count; i++) {
common_embd_normalize(embd_raw+i*n_embd, embd_norm.data()+i*n_embd, n_embd, params.embd_normalize);
}
data_ptr = embd_norm.data();
}
} else {
const float * logits = llama_get_logits_ith(ctx, tokens.size() - 1);
const int n_logits = llama_vocab_n_tokens(vocab);
data_ptr = const_cast<float*>(logits);
data_size = n_logits;
type_suffix = "";
}
}
};
static std::string ggml_ne_string(const ggml_tensor * t) {
std::string str;
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
str += std::to_string(t->ne[i]);
if (i + 1 < GGML_MAX_DIMS) {
str += ", ";
}
}
return str;
}
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
union {
float f;
uint32_t i;
} u;
u.i = (uint32_t)h.bits << 16;
return u.f;
}
static float ggml_get_float_value(const uint8_t * data, ggml_type type,
const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
switch (type) {
case GGML_TYPE_F16:
return ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]);
case GGML_TYPE_F32:
return *(const float *) &data[i];
case GGML_TYPE_I64:
return (float) *(const int64_t *) &data[i];
case GGML_TYPE_I32:
return (float) *(const int32_t *) &data[i];
case GGML_TYPE_I16:
return (float) *(const int16_t *) &data[i];
case GGML_TYPE_I8:
return (float) *(const int8_t *) &data[i];
case GGML_TYPE_BF16:
return ggml_compute_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]);
default:
GGML_ABORT("fatal error");
}
}
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
float sum = 0;
float sum_sq = 0.0;
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
sum += v;
sum_sq += v * v;
}
}
}
}
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
LOG_DBG(" [\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
if (i2 == n && ne[2] > 2*n) {
LOG_DBG(" ..., \n");
i2 = ne[2] - n;
}
LOG_DBG(" [\n");
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
if (i1 == n && ne[1] > 2*n) {
LOG_DBG(" ..., \n");
i1 = ne[1] - n;
}
LOG_DBG(" [");
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
if (i0 == n && ne[0] > 2*n) {
LOG_DBG("..., ");
i0 = ne[0] - n;
}
const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
LOG_DBG("%12.4f", v);
if (i0 < ne[0] - 1) {
LOG_DBG(", ");
}
}
LOG_DBG("],\n");
}
LOG_DBG(" ],\n");
}
LOG_DBG(" ]\n");
LOG_DBG(" sum = %f\n", sum);
LOG_DBG(" sum_sq = %f\n", sum_sq);
}
if (std::isnan(sum)) {
LOG_ERR("encountered NaN - aborting\n");
exit(0);
}
}
/**
* GGML operations callback during the graph execution.
*
* @param t current tensor
* @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
* if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
* see ggml_backend_sched_eval_callback
* @param user_data user data to pass at each call back
* @return true to receive data or continue the graph, false otherwise
*/
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
auto * cb_data = (callback_data *) user_data;
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
if (ask) {
return true; // Always retrieve data
}
bool matches_filter = cb_data->tensor_filters.empty();
if (!matches_filter) {
for (const auto & filter : cb_data->tensor_filters) {
if (std::regex_search(t->name, filter)) {
matches_filter = true;
break;
}
}
}
char src1_str[128] = {0};
if (src1) {
snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
}
if (matches_filter) {
LOG_DBG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
t->name,
ggml_type_name(t->type),
ggml_op_desc(t),
src0->name,
ggml_ne_string(src0).c_str(),
src1 ? src1_str : "",
ggml_ne_string(t).c_str());
}
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
if (!is_host) {
auto n_bytes = ggml_nbytes(t);
cb_data->data.resize(n_bytes);
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
}
if (!ggml_is_quantized(t->type) && matches_filter) {
uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
}
return true;
}
static void save_output_data(const output_data & output, const std::string & model_name, const std::string & output_dir) {
std::filesystem::create_directory(output_dir);
auto base_path = std::filesystem::path{output_dir} / ("llamacpp-" + model_name + output.type_suffix);
// Save logits/embeddings to binary file.
{
std::filesystem::path filepath{base_path.string() + ".bin"};
std::ofstream file{filepath, std::ios::binary};
if (!file) {
throw std::runtime_error("failed to open binary output file: " + filepath.string());
}
file.write(reinterpret_cast<const char*>(output.data_ptr), output.data_size * sizeof(float));
LOG("Data saved to %s\n", filepath.c_str());
}
// Save logits/embeddings to text file.
{
std::filesystem::path filepath{base_path.string() + ".txt"};
std::ofstream file{filepath};
if (!file) {
throw std::runtime_error("failed to open text output file: " + filepath.string());
}
for (int i = 0; i < output.data_size; i++) {
file << i << ": " << output.data_ptr[i] << '\n';
}
LOG("Data saved to %s\n", filepath.c_str());
}
// Save prompt and tokens to text file.
{
std::filesystem::path filepath{base_path.string() + "-prompt.txt"};
std::ofstream file{filepath};
if (!file) {
throw std::runtime_error("failed to open prompt output file: " + filepath.string());
}
file << "prompt: " << output.prompt << '\n';
file << "n_tokens: " << output.tokens.size() << '\n';
file << "token ids: ";
for (size_t i = 0; i < output.tokens.size(); i++) {
file << output.tokens[i];
if (i + 1 < output.tokens.size()) {
file << ", ";
}
}
file << '\n';
LOG("Prompt saved to %s\n", filepath.c_str());
}
// Save token ids to binary file.
{
std::filesystem::path filepath{base_path.string() + "-tokens.bin"};
std::ofstream file{filepath, std::ios::binary};
if (!file) {
throw std::runtime_error("failed to open tokens binary file: " + filepath.string());
}
file.write(reinterpret_cast<const char*>(output.tokens.data()), output.tokens.size() * sizeof(llama_token));
LOG("Tokens saved to %s\n", filepath.c_str());
}
}
static void print_tokenized_prompt(llama_context * ctx, const std::vector<llama_token> & tokens, const std::string & prompt) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
LOG("Model add_bos: %s\n", llama_vocab_get_add_bos(vocab) ? "true" : "false");
LOG("Input prompt: \"%s\"\n", prompt.c_str());
LOG("Token ids (%zu):\n", tokens.size());
for (auto id : tokens) {
std::string piece(128, '\0');
int n = llama_token_to_piece(vocab, id, piece.data(), piece.size(), 0, true);
if (n < 0) {
LOG_ERR("failed to convert token %d to piece\n", id);
continue;
}
piece.resize(n);
LOG("%s(%d) ", piece.c_str(), id);
}
LOG("\n");
}
static bool run(llama_context * ctx, const common_params & params) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
if (tokens.empty()) {
LOG_ERR("%s : there are not input tokens to process - (try to provide a prompt with '-p')\n", __func__);
return false;
}
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}
print_tokenized_prompt(ctx, tokens, params.prompt);
if (params.save_logits) {
output_data output {ctx, model, params};
std::filesystem::path model_path{params.model.path};
std::string model_name{model_path.stem().string()};
save_output_data(output, model_name, params.logits_output_dir);
}
return true;
}
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DEBUG, print_usage)) {
return 1;
}
common_init();
llama_backend_init();
llama_numa_init(params.numa);
callback_data cb_data(params, params.tensor_filter);
auto llama_init = common_init_from_params(params);
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__);
return 1;
}
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
LOG_INF("\n");
}
if (!run(ctx, params)) {
return 1;
}
LOG("\n");
llama_perf_context_print(ctx);
llama_backend_free();
return 0;
}

View File

@ -553,6 +553,7 @@ int main(int argc, char ** argv) {
model_params.n_gpu_layers = params.n_gpu_layers;
model_params.devices = params.devices.data();
model_params.use_mmap = params.use_mmap;
model_params.use_direct_io = params.use_direct_io;
model_params.use_mlock = params.use_mlock;
model_params.check_tensors = params.check_tensors;

View File

@ -33,7 +33,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd_out, int embd_norm) {
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
@ -65,8 +65,8 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
}
float * out = output + embd_pos * n_embd;
common_embd_normalize(embd, out, n_embd, embd_norm);
float * out = output + embd_pos * n_embd_out;
common_embd_normalize(embd, out, n_embd_out, embd_norm);
}
}
@ -252,8 +252,8 @@ int main(int argc, char ** argv) {
}
// allocate output
const int n_embd = llama_model_n_embd(model);
std::vector<float> embeddings(n_embd_count * n_embd, 0);
const int n_embd_out = llama_model_n_embd_out(model);
std::vector<float> embeddings(n_embd_count * n_embd_out, 0);
float * emb = embeddings.data();
// break into batches
@ -267,8 +267,8 @@ int main(int argc, char ** argv) {
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch || s >= n_seq_max) {
float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
float * out = emb + e * n_embd_out;
batch_decode(ctx, batch, out, s, n_embd_out, params.embd_normalize);
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
s = 0;
common_batch_clear(batch);
@ -280,8 +280,8 @@ int main(int argc, char ** argv) {
}
// final batch
float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
float * out = emb + e * n_embd_out;
batch_decode(ctx, batch, out, s, n_embd_out, params.embd_normalize);
if (params.embd_out.empty()) {
LOG("\n");
@ -289,19 +289,19 @@ int main(int argc, char ** argv) {
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
for (int j = 0; j < n_embd_count; j++) {
LOG("embedding %d: ", j);
for (int i = 0; i < std::min(3, n_embd); i++) {
for (int i = 0; i < std::min(3, n_embd_out); i++) {
if (params.embd_normalize == 0) {
LOG("%6.0f ", emb[j * n_embd + i]);
LOG("%6.0f ", emb[j * n_embd_out + i]);
} else {
LOG("%9.6f ", emb[j * n_embd + i]);
LOG("%9.6f ", emb[j * n_embd_out + i]);
}
}
LOG(" ... ");
for (int i = n_embd - 3; i < n_embd; i++) {
for (int i = n_embd_out - 3; i < n_embd_out; i++) {
if (params.embd_normalize == 0) {
LOG("%6.0f ", emb[j * n_embd + i]);
LOG("%6.0f ", emb[j * n_embd_out + i]);
} else {
LOG("%9.6f ", emb[j * n_embd + i]);
LOG("%9.6f ", emb[j * n_embd_out + i]);
}
}
LOG("\n");
@ -320,9 +320,9 @@ int main(int argc, char ** argv) {
for (uint32_t i = 0; i < n_cls_out; i++) {
// NOTE: if you change this log - update the tests in ci/run.sh
if (n_cls_out == 1) {
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd_out]);
} else {
LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str());
LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd_out + i], cls_out_labels[i].c_str());
}
}
}
@ -330,11 +330,11 @@ int main(int argc, char ** argv) {
// print the first part of the embeddings or for a single prompt, the full embedding
for (int j = 0; j < n_prompts; j++) {
LOG("embedding %d: ", j);
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd_out) : n_embd_out); i++) {
if (params.embd_normalize == 0) {
LOG("%6.0f ", emb[j * n_embd + i]);
LOG("%6.0f ", emb[j * n_embd_out + i]);
} else {
LOG("%9.6f ", emb[j * n_embd + i]);
LOG("%9.6f ", emb[j * n_embd_out + i]);
}
}
LOG("\n");
@ -350,7 +350,7 @@ int main(int argc, char ** argv) {
LOG("\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
float sim = common_embd_similarity_cos(emb + i * n_embd_out, emb + j * n_embd_out, n_embd_out);
LOG("%6.2f ", sim);
}
LOG("%1.10s", prompts[i].c_str());
@ -368,9 +368,9 @@ int main(int argc, char ** argv) {
if (notArray) LOG(" {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
LOG("[");
for (int i = 0;;) { // at least one iteration (n_embd > 0)
LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd_out + i]);
i++;
if (i < n_embd) LOG(","); else break;
if (i < n_embd_out) LOG(","); else break;
}
LOG(notArray ? "]\n }" : "]");
j++;
@ -383,7 +383,7 @@ int main(int argc, char ** argv) {
for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
LOG(" [");
for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
float sim = common_embd_similarity_cos(emb + i * n_embd_out, emb + j * n_embd_out, n_embd_out);
LOG("%6.2f", sim);
j++;
if (j < n_embd_count) LOG(", "); else break;
@ -397,7 +397,7 @@ int main(int argc, char ** argv) {
if (notArray) LOG("\n}\n");
} else if (params.embd_out == "raw") {
print_raw_embeddings(emb, n_embd_count, n_embd, model, pooling_type, params.embd_normalize);
print_raw_embeddings(emb, n_embd_count, n_embd_out, model, pooling_type, params.embd_normalize);
}
LOG("\n");

View File

@ -61,7 +61,7 @@ causal-run-converted-model:
@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh
causal-verify-logits: causal-run-original-model causal-run-converted-model
@./scripts/causal/compare-logits.py
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/compare-logits.py
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
causal-run-original-embeddings:
@ -138,16 +138,13 @@ embedding-run-original-model-st: embedding-run-original-model
embedding-run-converted-model:
@./scripts/embedding/run-converted-model.sh $(CONVERTED_EMBEDDING_MODEL) \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") \
$(if $(USE_POOLING),--pooling)
embedding-run-converted-model-st: USE_POOLING=1
embedding-run-converted-model-st: embedding-run-converted-model
$(if $(EMBD_NORMALIZE),--embd-normalize "$(EMBD_NORMALIZE)")
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-verify-logits-st: embedding-run-original-model-st embedding-run-converted-model-st
embedding-verify-logits-st: embedding-run-original-model-st embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")

View File

@ -198,14 +198,13 @@ model, and the other is a text file which allows for manual visual inspection.
#### Using SentenceTransformer with numbered layers
For models that have numbered SentenceTransformer layers (01_Pooling, 02_Dense,
03_Dense, 04_Normalize), use the `-st` targets to apply all these layers:
03_Dense, 04_Normalize), these will be applied automatically when running the
converted model but currently there is a separate target to run the original
version:
```console
# Run original model with SentenceTransformer (applies all numbered layers)
(venv) $ make embedding-run-original-model-st
# Run converted model with pooling enabled
(venv) $ make embedding-run-converted-model-st
```
This will use the SentenceTransformer library to load and run the model, which
@ -213,6 +212,17 @@ automatically applies all the numbered layers in the correct order. This is
particularly useful when comparing with models that should include these
additional transformation layers beyond just the base model output.
The type of normalization can be specified for the converted model but is not
strictly necessary as the verification uses cosine similarity and the magnitude
of the output vectors does not affect this. But the normalization type can be
specified as an argument to the target which might be useful for manual
inspection:
```console
(venv) $ make embedding-verify-logits-st EMBD_NORMALIZE=1
```
The original model will apply the normalization according to the normalization
layer specified in the modules.json configuration file.
### Model conversion
After updates have been made to [gguf-py](../../gguf-py) to add support for the
new model the model can be converted to GGUF format using the following command:

View File

@ -1,268 +0,0 @@
#include "llama.h"
#include "common.h"
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <ctype.h>
#include <filesystem>
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [-pooling] [-embd-norm <norm>] [prompt]\n", argv[0]);
printf("\n");
printf(" -embd-norm: normalization type for pooled embeddings (default: 2)\n");
printf(" -1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm\n");
printf("\n");
}
int main(int argc, char ** argv) {
std::string model_path;
std::string prompt = "Hello, my name is";
int ngl = 0;
bool embedding_mode = false;
bool pooling_enabled = false;
int32_t embd_norm = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
{
int i = 1;
for (; i < argc; i++) {
if (strcmp(argv[i], "-m") == 0) {
if (i + 1 < argc) {
model_path = argv[++i];
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-ngl") == 0) {
if (i + 1 < argc) {
try {
ngl = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-embd-mode") == 0) {
embedding_mode = true;
} else if (strcmp(argv[i], "-pooling") == 0) {
pooling_enabled = true;
} else if (strcmp(argv[i], "-embd-norm") == 0) {
if (i + 1 < argc) {
try {
embd_norm = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} else {
// prompt starts here
break;
}
}
if (model_path.empty()) {
print_usage(argc, argv);
return 1;
}
if (i < argc) {
prompt = argv[i++];
for (; i < argc; i++) {
prompt += " ";
prompt += argv[i];
}
}
}
ggml_backend_load_all();
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
// Extract basename from model_path
const char * basename = strrchr(model_path.c_str(), '/');
basename = (basename == NULL) ? model_path.c_str() : basename + 1;
char model_name[256];
strncpy(model_name, basename, 255);
model_name[255] = '\0';
char * dot = strrchr(model_name, '.');
if (dot != NULL && strcmp(dot, ".gguf") == 0) {
*dot = '\0';
}
printf("Model name: %s\n", model_name);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
std::vector<llama_token> prompt_tokens(n_prompt);
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_prompt;
ctx_params.n_batch = n_prompt;
ctx_params.no_perf = false;
if (embedding_mode) {
ctx_params.embeddings = true;
ctx_params.pooling_type = pooling_enabled ? LLAMA_POOLING_TYPE_MEAN : LLAMA_POOLING_TYPE_NONE;
ctx_params.n_ubatch = ctx_params.n_batch;
}
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
printf("Input prompt: \"%s\"\n", prompt.c_str());
printf("Tokenized prompt (%d tokens): ", n_prompt);
for (auto id : prompt_tokens) {
char buf[128];
int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
if (n < 0) {
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
return 1;
}
std::string s(buf, n);
printf("%s (%d)", s.c_str(), id);
}
printf("\n");
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
float * data_ptr;
int data_size;
const char * type;
std::vector<float> embd_out;
if (embedding_mode) {
const int n_embd = llama_model_n_embd(model);
const int n_embd_count = pooling_enabled ? 1 : batch.n_tokens;
const int n_embeddings = n_embd * n_embd_count;
float * embeddings;
type = "-embeddings";
if (llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE) {
embeddings = llama_get_embeddings_seq(ctx, 0);
embd_out.resize(n_embeddings);
printf("Normalizing embeddings using norm: %d\n", embd_norm);
common_embd_normalize(embeddings, embd_out.data(), n_embeddings, embd_norm);
embeddings = embd_out.data();
} else {
embeddings = llama_get_embeddings(ctx);
}
printf("Embedding dimension: %d\n", n_embd);
printf("\n");
// Print embeddings in the specified format
for (int j = 0; j < n_embd_count; j++) {
printf("embedding %d: ", j);
// Print first 3 values
for (int i = 0; i < 3 && i < n_embd; i++) {
printf("%9.6f ", embeddings[j * n_embd + i]);
}
printf(" ... ");
// Print last 3 values
for (int i = n_embd - 3; i < n_embd; i++) {
if (i >= 0) {
printf("%9.6f ", embeddings[j * n_embd + i]);
}
}
printf("\n");
}
printf("\n");
printf("Embeddings size: %d\n", n_embeddings);
data_ptr = embeddings;
data_size = n_embeddings;
} else {
float * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
const int n_logits = llama_vocab_n_tokens(vocab);
type = "";
printf("Vocab size: %d\n", n_logits);
data_ptr = logits;
data_size = n_logits;
}
std::filesystem::create_directory("data");
// Save data to binary file
char bin_filename[512];
snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type);
printf("Saving data to %s\n", bin_filename);
FILE * f = fopen(bin_filename, "wb");
if (f == NULL) {
fprintf(stderr, "%s: error: failed to open binary output file\n", __func__);
return 1;
}
fwrite(data_ptr, sizeof(float), data_size, f);
fclose(f);
// Also save as text for debugging
char txt_filename[512];
snprintf(txt_filename, sizeof(txt_filename), "data/llamacpp-%s%s.txt", model_name, type);
f = fopen(txt_filename, "w");
if (f == NULL) {
fprintf(stderr, "%s: error: failed to open text output file\n", __func__);
return 1;
}
for (int i = 0; i < data_size; i++) {
fprintf(f, "%d: %.6f\n", i, data_ptr[i]);
}
fclose(f);
if (!embedding_mode) {
printf("First 10 logits: ");
for (int i = 0; i < 10 && i < data_size; i++) {
printf("%.6f ", data_ptr[i]);
}
printf("\n");
printf("Last 10 logits: ");
for (int i = data_size - 10; i < data_size; i++) {
if (i >= 0) printf("%.6f ", data_ptr[i]);
}
printf("\n\n");
}
printf("Data saved to %s\n", bin_filename);
printf("Data saved to %s\n", txt_filename);
llama_free(ctx);
llama_model_free(model);
return 0;
}

View File

@ -3,10 +3,11 @@
import sys
import numpy as np
from pathlib import Path
import os
# Add utils directory to path for direct script execution
sys.path.insert(0, str(Path(__file__).parent.parent / "utils"))
from common import get_model_name_from_env_path # type: ignore[import-not-found]
from common import get_model_name_from_env_path, compare_tokens, exit_with_warning # type: ignore[import-not-found]
def quick_logits_check(pytorch_file, llamacpp_file):
"""Lightweight sanity check before NMSE"""
@ -38,6 +39,7 @@ def quick_logits_check(pytorch_file, llamacpp_file):
return True
def main():
model_path = os.environ.get('MODEL_PATH')
model_name = get_model_name_from_env_path('MODEL_PATH')
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
@ -58,6 +60,12 @@ def main():
print("Checked all required files were found. Proceeding...\n")
# Verify tokens as they are a prerequisite for logits comparison.
print("🔍 Token Comparison Check")
print("=" * 40)
if not compare_tokens(f"pytorch-{model_name}", f"llamacpp-{llamacpp_model_name}"):
exit_with_warning("\n❌ Token mismatch detected", model_path)
print()
print("🔍 GGML Model Validation for model ", model_name)
print("=" * 40)
@ -73,8 +81,7 @@ def main():
print(" Ok to proceed with NMSE check...")
sys.exit(0)
else:
print(f"❌ NOK: Top 10 predictions don't match - generation will differ")
sys.exit(1)
exit_with_warning(f"❌ NOK: Top 10 predictions don't match - generation will differ", model_path)
if __name__ == "__main__":
main()

View File

@ -67,7 +67,7 @@ with torch.no_grad():
last_hidden_states = outputs.hidden_states[-1]
# Get embeddings for all tokens
token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension
token_embeddings = last_hidden_states[0].float().cpu().numpy() # Remove batch dimension
print(f"Hidden states shape: {last_hidden_states.shape}")
print(f"Token embeddings shape: {token_embeddings.shape}")

View File

@ -13,6 +13,6 @@ if [ -z "$CONVERTED_MODEL" ]; then
exit 1
fi
cmake --build ../../build --target llama-logits -j8
cmake --build ../../build --target llama-debug -j8
../../build/bin/llama-logits -m $CONVERTED_MODEL -embd-mode "Hello world today"
../../build/bin/llama-debug -m $CONVERTED_MODEL --embedding -p "Hello world today" --save-logits

View File

@ -21,6 +21,6 @@ fi
echo $CONVERTED_MODEL
echo $MODEL_TESTING_PROMPT
cmake --build ../../build --target llama-logits -j8
cmake --build ../../build --target llama-debug -j8
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "$MODEL_TESTING_PROMPT"
../../build/bin/llama-debug -m "$CONVERTED_MODEL" -p "$MODEL_TESTING_PROMPT" --save-logits

View File

@ -7,12 +7,11 @@ import importlib
import torch
import numpy as np
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
# Add parent directory to path for imports
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from utils.common import debug_hook
from utils.common import debug_hook, save_output_data
def parse_arguments():
parser = argparse.ArgumentParser(description="Process model with specified path")
@ -126,6 +125,7 @@ def main():
device = next(model.parameters()).device
prompt = get_prompt(args)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
token_ids = input_ids[0].cpu().tolist()
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")
@ -151,19 +151,6 @@ def main():
print(f"Last token logits shape: {last_logits.shape}")
print(f"Vocab size: {len(last_logits)}")
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}.bin"
txt_filename = data_dir / f"pytorch-{model_name}.txt"
# Save to file for comparison
last_logits.astype(np.float32).tofile(bin_filename)
# Also save as text file for easy inspection
with open(txt_filename, "w") as f:
for i, logit in enumerate(last_logits):
f.write(f"{i}: {logit:.6f}\n")
# Print some sample logits for quick verification
print(f"First 10 logits: {last_logits[:10]}")
print(f"Last 10 logits: {last_logits[-10:]}")
@ -175,8 +162,7 @@ def main():
token = tokenizer.decode([idx])
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
print(f"Saved bin logits to: {bin_filename}")
print(f"Saved txt logist to: {txt_filename}")
save_output_data(last_logits, token_ids, prompt, model_name)
if __name__ == "__main__":
main()

View File

@ -5,7 +5,7 @@ set -e
# Parse command line arguments
CONVERTED_MODEL=""
PROMPTS_FILE=""
USE_POOLING=""
EMBD_NORMALIZE="2"
while [[ $# -gt 0 ]]; do
case $1 in
@ -13,9 +13,9 @@ while [[ $# -gt 0 ]]; do
PROMPTS_FILE="$2"
shift 2
;;
--pooling)
USE_POOLING="1"
shift
--embd-normalize)
EMBD_NORMALIZE="$2"
shift 2
;;
*)
if [ -z "$CONVERTED_MODEL" ]; then
@ -50,10 +50,5 @@ fi
echo $CONVERTED_MODEL
cmake --build ../../build --target llama-logits -j8
# TODO: update logits.cpp to accept a --file/-f option for the prompt
if [ -n "$USE_POOLING" ]; then
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode -pooling "$PROMPT"
else
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "$PROMPT"
fi
cmake --build ../../build --target llama-debug -j8
../../build/bin/llama-debug -m "$CONVERTED_MODEL" --embedding -p "$PROMPT" --save-logits --embd-normalize $EMBD_NORMALIZE

View File

@ -3,13 +3,15 @@
import argparse
import os
import sys
import numpy as np
import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoConfig, AutoModel
import torch
# Add parent directory to path for imports
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from utils.common import save_output_data
def parse_arguments():
parser = argparse.ArgumentParser(description='Run original embedding model')
@ -169,6 +171,7 @@ def main():
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_ids = tokens.cpu().tolist()
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
@ -185,6 +188,7 @@ def main():
)
tokens = encoded['input_ids'][0]
token_ids = tokens.cpu().tolist()
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
@ -228,24 +232,11 @@ def main():
print()
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
flattened_embeddings = all_embeddings.flatten()
flattened_embeddings.astype(np.float32).tofile(bin_filename)
with open(txt_filename, "w") as f:
idx = 0
for j in range(n_embd_count):
for value in all_embeddings[j]:
f.write(f"{idx}: {value:.6f}\n")
idx += 1
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
print("")
print(f"Saved bin embeddings to: {bin_filename}")
print(f"Saved txt embeddings to: {txt_filename}")
save_output_data(flattened_embeddings, token_ids, prompt_text, model_name, type_suffix="-embeddings")
if __name__ == "__main__":

View File

@ -3,6 +3,11 @@
import os
import sys
import torch
import transformers
import json
import textwrap
import numpy as np
from pathlib import Path
def get_model_name_from_env_path(env_path_name):
@ -148,3 +153,147 @@ def setup_rope_debug(model_module_path: str, function_name: str = "apply_rotary_
# Patch it
setattr(module, function_name, debug_rope)
print(f"RoPE debug patching applied to {model_module_path}.{function_name}")
def save_output_data(data, tokens, prompt, model_name, type_suffix="", output_dir="data"):
"""
Save output data (logits/embeddings), tokens, and prompt to files.
Args:
data: numpy array of floats (logits or embeddings)
tokens: list or array of token IDs
prompt: string containing the input prompt
model_name: name of the model
type_suffix: optional suffix like "-embeddings" (default: "")
output_dir: directory to save files (default: "data")
Creates the following files in output_dir:
- pytorch-{model_name}{type_suffix}.bin
- pytorch-{model_name}{type_suffix}.txt
- pytorch-{model_name}{type_suffix}-prompt.txt
- pytorch-{model_name}{type_suffix}-tokens.bin
"""
data_dir = Path(output_dir)
data_dir.mkdir(exist_ok=True)
base_path = data_dir / f"pytorch-{model_name}{type_suffix}"
# Convert and flatten logits/embeddings
data = data.cpu().numpy() if isinstance(data, torch.Tensor) else np.asarray(data)
data = data.flatten() if data.ndim > 1 else data
# Save logits/embedding files
data.astype(np.float32).tofile(f"{base_path}.bin")
print(f"Data saved to {base_path}.bin")
with open(f"{base_path}.txt", "w") as f:
f.writelines(f"{i}: {value:.6f}\n" for i, value in enumerate(data))
print(f"Data saved to {base_path}.txt")
# Convert and flatten tokens
tokens = tokens.cpu().numpy() if isinstance(tokens, torch.Tensor) else np.asarray(tokens)
tokens = tokens.flatten() if tokens.ndim > 1 else tokens
# Save token binary file
tokens.astype(np.int32).tofile(f"{base_path}-tokens.bin")
print(f"Tokens saved to {base_path}-tokens.bin")
# Save prompt file
with open(f"{base_path}-prompt.txt", "w") as f:
f.write(f"prompt: {prompt}\n")
f.write(f"n_tokens: {len(tokens)}\n")
f.write(f"token ids: {', '.join(str(int(tid)) for tid in tokens)}\n")
print(f"Prompt saved to {base_path}-prompt.txt")
def compare_tokens(original, converted, type_suffix="", output_dir="data"):
data_dir = Path(output_dir)
# Read tokens from both models
tokens1_file = data_dir / f"{original}{type_suffix}-tokens.bin"
tokens2_file = data_dir / f"{converted}{type_suffix}-tokens.bin"
if not tokens1_file.exists():
print(f"Error: Token file not found: {tokens1_file}")
return False
if not tokens2_file.exists():
print(f"Error: Token file not found: {tokens2_file}")
return False
tokens1 = np.fromfile(tokens1_file, dtype=np.int32)
tokens2 = np.fromfile(tokens2_file, dtype=np.int32)
print(f"\nComparing tokens between:")
print(f" Original : {original} ({len(tokens1)} tokens)")
print(f" Converted: {converted} ({len(tokens2)} tokens)")
if len(tokens1) != len(tokens2):
print(f"\n❌ Token count mismatch: {len(tokens1)} vs {len(tokens2)}")
return False
if np.array_equal(tokens1, tokens2):
print(f"\n✅ All {len(tokens1)} tokens match!")
return True
mismatches = np.where(tokens1 != tokens2)[0]
print(f"\n❌ Found {len(mismatches)} mismatched tokens:")
num_to_show = min(len(mismatches), 10)
for idx in mismatches[:num_to_show]:
print(f" Position {idx}: {tokens1[idx]} vs {tokens2[idx]}")
if len(mismatches) > num_to_show:
print(f" ... and {len(mismatches) - num_to_show} more mismatches")
return False
def show_version_warning(current_version, model_version):
if not model_version:
return False
try:
from packaging.version import parse, InvalidVersion
try:
return parse(current_version) < parse(model_version)
except InvalidVersion:
return current_version != model_version
except ImportError:
return current_version != model_version
def get_model_transformers_version(model_path):
if not model_path:
return None
config_path = Path(model_path) / "config.json"
if not config_path.is_file():
return None
try:
with open(config_path, "r", encoding="utf-8") as f:
config = json.load(f)
return config.get("transformers_version")
except (IOError, json.JSONDecodeError) as e:
print(f"Warning: Could not read or parse {config_path}: {e}", file=sys.stderr)
return None
def exit_with_warning(message, model_path):
print(message)
if model_path and transformers is not None:
model_transformers_version = get_model_transformers_version(model_path)
transformers_version = transformers.__version__
if show_version_warning(transformers_version, model_transformers_version):
warning_message = f"""
=====================================================================
Verification failure might be due to a transformers version mismatch:
Current transformers version: {transformers_version}
Model's required version : {model_transformers_version}
Consider installing the version specified by the model's config:
pip install transformers=={model_transformers_version}
=====================================================================
"""
print(textwrap.dedent(warning_message))
sys.exit(1)

View File

@ -0,0 +1,76 @@
#!/usr/bin/env python3
import argparse
import sys
from common import compare_tokens # type: ignore
def parse_arguments():
parser = argparse.ArgumentParser(
description='Compare tokens between two models',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
%(prog)s pytorch-gemma-3-270m-it llamacpp-gemma-3-270m-it-bf16
"""
)
parser.add_argument(
'original',
help='Original model name'
)
parser.add_argument(
'converted',
help='Converted model name'
)
parser.add_argument(
'-s', '--suffix',
default='',
help='Type suffix (e.g., "-embeddings")'
)
parser.add_argument(
'-d', '--data-dir',
default='data',
help='Directory containing token files (default: data)'
)
parser.add_argument(
'-v', '--verbose',
action='store_true',
help='Print prompts from both models'
)
return parser.parse_args()
def main():
args = parse_arguments()
if args.verbose:
from pathlib import Path
data_dir = Path(args.data_dir)
prompt1_file = data_dir / f"{args.original}{args.suffix}-prompt.txt"
prompt2_file = data_dir / f"{args.converted}{args.suffix}-prompt.txt"
if prompt1_file.exists():
print(f"\nOriginal model prompt ({args.original}):")
print(f" {prompt1_file.read_text().strip()}")
if prompt2_file.exists():
print(f"\nConverted model prompt ({args.converted}):")
print(f" {prompt2_file.read_text().strip()}")
print()
result = compare_tokens(
args.original,
args.converted,
type_suffix=args.suffix,
output_dir=args.data_dir
)
# Enable the script to be used in shell scripts so that they can check
# the exit code for success/failure.
sys.exit(0 if result else 1)
if __name__ == "__main__":
main()

View File

@ -4,8 +4,10 @@ import numpy as np
import argparse
import os
import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, AutoModel
from common import compare_tokens, exit_with_warning # type: ignore[import-not-found]
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
@ -157,9 +159,24 @@ def main():
else:
prompt = args.prompt
python_emb_path = Path(args.python_embeddings)
cpp_emb_path = Path(args.cpp_embeddings)
# Extract base names (e.g., "pytorch-model-name-embeddings.bin" -> "pytorch-model-name")
python_model_name = python_emb_path.stem.replace("-embeddings", "")
cpp_model_name = cpp_emb_path.stem.replace("-embeddings", "")
print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
print("=" * 70)
# First verify tokens match before comparing embeddings
print("\n🔍 Token Comparison Check")
print("=" * 70)
data_dir = python_emb_path.parent
if not compare_tokens(python_model_name, cpp_model_name, type_suffix="-embeddings", output_dir=str(data_dir)):
exit_with_warning("\n❌ Token mismatch detected", args.model_path)
print()
# Single prompt detailed comparison
print(f"\nTesting with prompt: '{prompt}'")
@ -219,7 +236,7 @@ def main():
elif avg_cross_sim > 0.70:
print("⚠️ FAIR: Models have some differences")
else:
print("❌ POOR: Models are significantly different")
exit_with_warning("❌ POOR: Models are significantly different", args.model_path)
if __name__ == "__main__":
main()

View File

@ -217,8 +217,8 @@ int main(int argc, char ** argv) {
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
// allocate output
const int n_embd = llama_model_n_embd(model);
std::vector<float> embeddings(n_chunks * n_embd, 0);
const int n_embd_out = llama_model_n_embd_out(model);
std::vector<float> embeddings(n_chunks * n_embd_out, 0);
float * emb = embeddings.data();
// break into batches
@ -232,8 +232,8 @@ int main(int argc, char ** argv) {
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch || s >= llama_n_seq_max(ctx)) {
float * out = emb + p * n_embd;
batch_process(ctx, batch, out, s, n_embd);
float * out = emb + p * n_embd_out;
batch_process(ctx, batch, out, s, n_embd_out);
common_batch_clear(batch);
p += s;
s = 0;
@ -245,12 +245,12 @@ int main(int argc, char ** argv) {
}
// final batch
float * out = emb + p * n_embd;
batch_process(ctx, batch, out, s, n_embd);
float * out = emb + p * n_embd_out;
batch_process(ctx, batch, out, s, n_embd_out);
// save embeddings to chunks
for (int i = 0; i < n_chunks; i++) {
chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
chunks[i].embedding = std::vector<float>(emb + i * n_embd_out, emb + (i + 1) * n_embd_out);
// clear tokens as they are no longer needed
chunks[i].tokens.clear();
}
@ -266,8 +266,8 @@ int main(int argc, char ** argv) {
batch_add_seq(query_batch, query_tokens, 0);
std::vector<float> query_emb(n_embd, 0);
batch_process(ctx, query_batch, query_emb.data(), 1, n_embd);
std::vector<float> query_emb(n_embd_out, 0);
batch_process(ctx, query_batch, query_emb.data(), 1, n_embd_out);
common_batch_clear(query_batch);
@ -275,7 +275,7 @@ int main(int argc, char ** argv) {
{
std::vector<std::pair<int, float>> similarities;
for (int i = 0; i < n_chunks; i++) {
float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd_out);
similarities.push_back(std::make_pair(i, sim));
}

View File

@ -234,6 +234,11 @@
#if UINTPTR_MAX == 0xFFFFFFFF
#define GGML_MEM_ALIGN 4
#elif defined(__EMSCRIPTEN__)
// emscripten uses max_align_t == 8, so we need GGML_MEM_ALIGN == 8 for 64-bit wasm.
// (for 32-bit wasm, the first conditional is true and GGML_MEM_ALIGN stays 4.)
// ref: https://github.com/ggml-org/llama.cpp/pull/18628
#define GGML_MEM_ALIGN 8
#else
#define GGML_MEM_ALIGN 16
#endif

View File

@ -144,7 +144,7 @@ extern "C" {
// device description: short informative description of the device, could be the model name
const char * (*get_description)(ggml_backend_dev_t dev);
// device memory in bytes
// device memory in bytes: 0 bytes to indicate no memory to report
void (*get_memory)(ggml_backend_dev_t dev, size_t * free, size_t * total);
// device type

View File

@ -32,14 +32,12 @@ if (BLAS_FOUND)
pkg_check_modules(DepBLAS openblas)
endif()
elseif (${GGML_BLAS_VENDOR} MATCHES "FLAME")
add_compile_definitions(GGML_BLAS_USE_BLIS)
pkg_check_modules(DepBLAS blis)
elseif (${GGML_BLAS_VENDOR} MATCHES "ATLAS")
pkg_check_modules(DepBLAS blas-atlas)
elseif (${GGML_BLAS_VENDOR} MATCHES "FlexiBLAS")
pkg_check_modules(DepBLAS flexiblas_api)
elseif (${GGML_BLAS_VENDOR} MATCHES "Intel")
add_compile_definitions(GGML_BLAS_USE_MKL)
# all Intel* libraries share the same include path
pkg_check_modules(DepBLAS mkl-sdl)
elseif (${GGML_BLAS_VENDOR} MATCHES "NVHPC")
@ -74,10 +72,26 @@ if (BLAS_FOUND)
target_compile_options(ggml-blas PRIVATE ${BLAS_LINKER_FLAGS})
if ("${BLAS_INCLUDE_DIRS}" MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
if ("${GGML_BLAS_VENDOR}" STREQUAL "")
message(WARNING "GGML_BLAS_VENDOR is not set; some methods may not link properly.")
endif()
if ("${GGML_BLAS_VENDOR}" MATCHES "Intel" OR ("${BLAS_INCLUDE_DIRS}" MATCHES "mkl" AND "${GGML_BLAS_VENDOR}" MATCHES "Generic"))
add_compile_definitions(GGML_BLAS_USE_MKL)
endif()
if ("${GGML_BLAS_VENDOR}" MATCHES "OpenBLAS")
add_compile_definitions(GGML_BLAS_USE_OPENBLAS)
endif()
if ("${GGML_BLAS_VENDOR}" MATCHES "FLAME" OR "${GGML_BLAS_VENDOR}" MATCHES "AOCL" OR "${GGML_BLAS_VENDOR}" MATCHES "AOCL_mt")
add_compile_definitions(GGML_BLAS_USE_BLIS)
endif()
if ("${GGML_BLAS_VENDOR}" MATCHES "NVPL")
add_compile_definitions(GGML_BLAS_USE_NVPL)
endif()
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
else()

View File

@ -115,15 +115,11 @@ static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct gg
#endif
}
#if defined(OPENBLAS_VERSION)
#if defined(GGML_BLAS_USE_OPENBLAS)
openblas_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_BLIS)
#elif defined(GGML_BLAS_USE_BLIS)
bli_thread_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_NVPL)
#elif defined(GGML_BLAS_USE_NVPL)
nvpl_blas_set_num_threads(ctx->n_threads);
#endif
@ -288,7 +284,7 @@ ggml_backend_t ggml_backend_blas_init(void) {
/* .context = */ ctx,
};
#if defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
#if defined(GGML_BLAS_USE_OPENBLAS) && defined(GGML_USE_OPENMP)
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
}
@ -329,7 +325,7 @@ static const char * ggml_backend_blas_device_get_description(ggml_backend_dev_t
return "BLIS";
#elif defined(GGML_BLAS_USE_NVPL)
return "NVPL";
#elif defined(OPENBLAS_VERSION)
#elif defined(GGML_BLAS_USE_OPENBLAS)
return "OpenBLAS";
#else
return "BLAS";

View File

@ -1963,7 +1963,7 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context & ctx, ggml_tensor *
acl_tensor_ptr acl_weight_tensor;
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
static bool weight_to_nz = parse_bool(get_env_as_lowercase("GGML_CANN_WEIGHT_NZ").value_or("on"));
if (weight_to_nz && is_matmul_weight(weight)) {
acl_weight_tensor = ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims, ACL_FORMAT_FRACTAL_NZ);
} else {

View File

@ -103,7 +103,7 @@ const ggml_cann_device_info & ggml_cann_info();
void ggml_cann_set_device(int32_t device);
int32_t ggml_cann_get_device();
std::optional<std::string> get_env(const std::string & name);
std::optional<std::string> get_env_as_lowercase(const std::string & name);
bool parse_bool(const std::string & value);
int parse_integer(const std::string & value);

View File

@ -105,10 +105,10 @@ int32_t ggml_cann_get_device() {
}
/**
* @brief Get the value of the specified environment variable (name).
* @brief Get the value of the specified environment variable (name) as lowercase.
* if not empty, return a std::string object
*/
std::optional<std::string> get_env(const std::string & name) {
std::optional<std::string> get_env_as_lowercase(const std::string & name) {
const char * val = std::getenv(name.c_str());
if (!val) {
return std::nullopt;
@ -122,7 +122,7 @@ std::optional<std::string> get_env(const std::string & name) {
* @brief Verify whether the environment variable is a valid value.
*/
bool parse_bool(const std::string & value) {
std::unordered_set<std::string> valid_values = { "on", "1", "yes", "y", "enable", "true" };
static const std::unordered_set<std::string> valid_values = { "on", "1", "yes", "y", "enable", "true" };
return valid_values.find(value) != valid_values.end();
}
@ -259,7 +259,7 @@ struct ggml_cann_pool_buf_prio : public ggml_cann_pool {
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_buf_prio(int device) : device(device) {
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
disable_clean = parse_bool(get_env_as_lowercase("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
}
/**
@ -452,7 +452,7 @@ struct ggml_cann_pool_buf : public ggml_cann_pool {
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_buf(int device) : device(device) {
disable_clean = parse_bool(get_env("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
disable_clean = parse_bool(get_env_as_lowercase("GGML_CANN_DISABLE_BUF_POOL_CLEAN").value_or(""));
}
/**
@ -764,7 +764,7 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
* @return A unique pointer to the created CANN pool.
*/
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(int device) {
std::string mem_pool_type = get_env("GGML_CANN_MEM_POOL").value_or("");
std::string mem_pool_type = get_env_as_lowercase("GGML_CANN_MEM_POOL").value_or("");
if (mem_pool_type == "prio") {
GGML_LOG_INFO("%s: device %d use buffer pool with priority queue\n", __func__, device);
@ -1217,7 +1217,7 @@ static void ggml_backend_cann_buffer_set_tensor(ggml_backend_buffer_t buffer,
// Why aclrtSynchronizeDevice?
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
static bool weight_to_nz = parse_bool(get_env_as_lowercase("GGML_CANN_WEIGHT_NZ").value_or("on"));
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpy((char *) tensor->data + offset, size, data, size, ACL_MEMCPY_HOST_TO_DEVICE));
if (weight_to_nz && is_matmul_weight((const ggml_tensor *) tensor)) {
@ -1442,7 +1442,7 @@ static size_t ggml_backend_cann_buffer_type_get_alloc_size(ggml_backend_buffer_t
int64_t ne0 = tensor->ne[0];
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
static bool weight_to_nz = parse_bool(get_env_as_lowercase("GGML_CANN_WEIGHT_NZ").value_or("on"));
// last line must bigger than 32, because every single op deal at
// least 32 bytes.
@ -2136,7 +2136,7 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
#endif // USE_ACL_GRAPH
// Only perform the graph execution if CANN graphs are not enabled, or we are capturing the graph.
// With the use of CANN graphs, the execution will be performed by the graph launch.
static bool opt_fusion = parse_bool(get_env("GGML_CANN_OPERATOR_FUSION").value_or(""));
static bool opt_fusion = parse_bool(get_env_as_lowercase("GGML_CANN_OPERATOR_FUSION").value_or(""));
if (!use_cann_graph || cann_graph_capture_required) {
for (int i = 0; i < cgraph->n_nodes; i++) {
@ -2201,7 +2201,7 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
#ifdef USE_ACL_GRAPH
bool use_cann_graph = true;
static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
static bool prefill_use_graph = parse_bool(get_env_as_lowercase("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
if (!prefill_use_graph) {
// Do not use acl_graph for prefill.
for (int i = 0; i < cgraph->n_nodes; i++) {
@ -2541,27 +2541,6 @@ static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
}
/**
* @brief Determines if a tensor operation should be offloaded to the CANN
* backend.
*
* This function checks if a given tensor operation should be offloaded to the
* CANN backend based on the operation type and the size of the tensor. It
* returns true if the second dimension (ne[1]) of the tensor is greater than or
* equal to the minimum batch size and the operation is not GGML_OP_GET_ROWS.
*
* @param backend Pointer to the CANN backend.
* @param op Pointer to the tensor operation to check.
* @return bool Returns true if the operation should be offloaded, otherwise
* false.
*/
static bool ggml_backend_cann_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
GGML_UNUSED(dev);
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
}
/**
* @brief Records an event on the CANN backend stream.
*
@ -2637,6 +2616,7 @@ struct ggml_backend_cann_device_context {
int device;
std::string name;
std::string description;
int op_offload_min_batch_size;
};
static const char * ggml_backend_cann_device_get_name(ggml_backend_dev_t dev) {
@ -2713,6 +2693,26 @@ static ggml_backend_buffer_type_t ggml_backend_cann_device_get_host_buffer_type(
return ggml_backend_cann_host_buffer_type();
}
/**
* @brief Determines if a tensor operation should be offloaded to the CANN
* backend.
*
* This function checks if a given tensor operation should be offloaded to the
* CANN backend based on the operation type and the size of the tensor. It
* returns true if the second dimension (ne[1]) of the tensor is greater than or
* equal to the minimum batch size and the operation is not GGML_OP_GET_ROWS.
*
* @param backend Pointer to the CANN backend.
* @param op Pointer to the tensor operation to check.
* @return bool Returns true if the operation should be offloaded, otherwise
* false.
*/
static bool ggml_backend_cann_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
ggml_backend_cann_device_context * dev_ctx = (ggml_backend_cann_device_context *)dev->context;
return op->ne[1] >= dev_ctx->op_offload_min_batch_size && op->op != GGML_OP_GET_ROWS;
}
/**
* @brief Creates a new event for the CANN backend device.
*
@ -2829,12 +2829,14 @@ ggml_backend_reg_t ggml_backend_cann_reg() {
if (!initialized) {
aclInit(nullptr);
ggml_backend_cann_reg_context * ctx = new ggml_backend_cann_reg_context;
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
for (int i = 0; i < ggml_cann_info().device_count; i++) {
ggml_backend_cann_device_context * dev_ctx = new ggml_backend_cann_device_context();
dev_ctx->description = aclrtGetSocName();
dev_ctx->device = i;
dev_ctx->name = GGML_CANN_NAME + std::to_string(i);
dev_ctx->op_offload_min_batch_size = min_batch_size;
ggml_cann_set_device(i);
ggml_backend_dev_t dev = new ggml_backend_device{ /* .iface = */ ggml_backend_cann_device_interface,
/* .reg = */ &reg,

View File

@ -47,7 +47,10 @@ if (CUDAToolkit_FOUND)
# check Modules/Internal/CMakeCUDAArchitecturesValidate.cmake in the CMake git repository instead.
# However, the architectures 120a-real and 121a-real should work with basically any CMake version and
# until the release of e.g. Rubin there is no benefit to shipping virtual architectures for Blackwell.
list(APPEND CMAKE_CUDA_ARCHITECTURES 120a-real 121a-real)
list(APPEND CMAKE_CUDA_ARCHITECTURES 120a-real)
endif()
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.9")
list(APPEND CMAKE_CUDA_ARCHITECTURES 121a-real)
endif()
endif()
endif()

View File

@ -1036,7 +1036,7 @@ struct ggml_tensor_extra_gpu {
#define USE_CUDA_GRAPH
#endif
struct ggml_graph_node_properties {
struct ggml_cuda_graph_node_properties {
void * node_address;
ggml_op node_op;
int64_t ne[GGML_MAX_DIMS];
@ -1061,10 +1061,25 @@ struct ggml_cuda_graph {
std::vector<cudaGraphNode_t> nodes;
bool disable_due_to_gpu_arch = false;
bool disable_due_to_too_many_updates = false;
bool disable_due_to_failed_graph_capture = false;
int number_consecutive_updates = 0;
bool cuda_graphs_enabled = false;
std::vector<ggml_graph_node_properties> ggml_graph_properties;
std::vector<ggml_cuda_graph_node_properties> props;
void record_update(bool use_graph, bool update_required) {
if (use_graph && update_required) {
number_consecutive_updates++;
} else {
number_consecutive_updates = 0;
}
if (number_consecutive_updates >= 4) {
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
disable_due_to_too_many_updates = true;
}
}
bool is_enabled() const {
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
return !(disable_due_to_gpu_arch || disable_cuda_graphs_due_to_env || disable_due_to_too_many_updates);
}
#endif
};

View File

@ -11,10 +11,12 @@
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
// log(2) = 0.6931, by adding this to the KQ maximum used for the softmax the numerical range representable
// by the VKQ accumulators is effectively being shifted up by a factor of 8.
// by the VKQ accumulators is effectively being shifted up by a factor of 2.
// This reduces issues with numerical overflow but also causes larger values to be flushed to zero.
// However, as the output from FlashAttention will usually be used as an input for a matrix multiplication this should be negligible.
#define FATTN_KQ_MAX_OFFSET 0.6931f
// Still, the value range should be shifted as much as necessary but as little as possible.
// The macro on the following line shifts it by a factor of 2**3=8, as was needed to fix https://github.com/ggml-org/llama.cpp/issues/18606 .
#define FATTN_KQ_MAX_OFFSET (3.0f*0.6931f)
typedef void (* fattn_kernel_t)(
const char * __restrict__ Q,

View File

@ -2853,9 +2853,9 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
}
#ifdef USE_CUDA_GRAPH
static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
bool use_cuda_graph) {
static bool ggml_cuda_graph_check_compability(ggml_cgraph * cgraph) {
bool use_cuda_graph = true;
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected";
@ -2915,41 +2915,41 @@ static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
return use_cuda_graph;
}
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
graph_node_properties->node_address = node->data;
graph_node_properties->node_op = node->op;
static void ggml_cuda_graph_node_set_properties(ggml_cuda_graph_node_properties * props, ggml_tensor * node) {
props->node_address = node->data;
props->node_op = node->op;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
graph_node_properties->ne[i] = node->ne[i];
graph_node_properties->nb[i] = node->nb[i];
props->ne[i] = node->ne[i];
props->nb[i] = node->nb[i];
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
props->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
}
memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
memcpy(props->op_params, node->op_params, GGML_MAX_OP_PARAMS);
}
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
if (node->data != graph_node_properties->node_address &&
static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_graph_node_properties * props) {
if (node->data != props->node_address &&
node->op != GGML_OP_VIEW) {
return false;
}
if (node->op != graph_node_properties->node_op) {
if (node->op != props->node_op) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (node->ne[i] != graph_node_properties->ne[i]) {
if (node->ne[i] != props->ne[i]) {
return false;
}
if (node->nb[i] != graph_node_properties->nb[i]) {
if (node->nb[i] != props->nb[i]) {
return false;
}
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node->src[i] &&
node->src[i]->data != graph_node_properties->src_address[i] &&
node->src[i]->data != props->src_address[i] &&
node->op != GGML_OP_VIEW
) {
return false;
@ -2957,44 +2957,55 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
}
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
return true;
}
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
static bool ggml_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
bool cuda_graph_update_required = false;
bool res = false;
if (cuda_ctx->cuda_graph->instance == nullptr) {
cuda_graph_update_required = true;
res = true;
}
// Check if the graph size has changed
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cuda_graph_update_required = true;
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
if (cuda_ctx->cuda_graph->props.size() != (size_t)cgraph->n_nodes + cgraph->n_leafs) {
res = true;
cuda_ctx->cuda_graph->props.resize(cgraph->n_nodes + cgraph->n_leafs);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
// and store properties to allow this comparison for the next token
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = true;
if (!cuda_graph_update_required) {
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
bool props_match = true;
if (!res) {
props_match = ggml_cuda_graph_node_properties_match(cgraph->nodes[i], &cuda_ctx->cuda_graph->props[i]);
}
if (!has_matching_properties) {
cuda_graph_update_required = true;
if (!props_match) {
res = true;
}
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
ggml_cuda_graph_node_set_properties(&cuda_ctx->cuda_graph->props[i], cgraph->nodes[i]);
}
return cuda_graph_update_required;
for (int i = 0; i < cgraph->n_leafs; i++) {
bool props_match= true;
if (!res) {
props_match = ggml_cuda_graph_node_properties_match(cgraph->leafs[i], &cuda_ctx->cuda_graph->props[cgraph->n_nodes + i]);
}
if (!props_match) {
res = true;
}
ggml_cuda_graph_node_set_properties(&cuda_ctx->cuda_graph->props[cgraph->n_nodes + i], cgraph->leafs[i]);
}
return res;
}
static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
static void ggml_cuda_graph_update_executable(ggml_backend_cuda_context * cuda_ctx) {
#if CUDART_VERSION >= 12000
cudaGraphExecUpdateResultInfo result_info;
@ -3225,10 +3236,11 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, const bool use_cuda_graph, const bool cuda_graph_update_required) {
bool graph_evaluated_or_captured = false;
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
ggml_cuda_stream_context & stream_ctx = cuda_ctx->stream_context();
bool is_concurrent_event_active = false;
@ -3698,7 +3710,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
}
if (cuda_graph_update_required) { // Update graph executable
update_cuda_graph_executable(cuda_ctx);
ggml_cuda_graph_update_executable(cuda_ctx);
}
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
@ -3708,43 +3720,25 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
}
}
static bool ggml_cuda_set_cuda_graph_enabled(ggml_backend_cuda_context * cuda_ctx) {
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx) {
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
// Objects required for CUDA Graph
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
bool use_cuda_graph = true;
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
}
}
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
// or previous graph capture failure.
// Also disable for multi-gpu for now. TO DO investigate
if (disable_cuda_graphs_due_to_env
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
use_cuda_graph = false;
}
cuda_ctx->cuda_graph->cuda_graphs_enabled = use_cuda_graph;
return cuda_ctx->cuda_graph->is_enabled();
#else
bool use_cuda_graph = false;
return false;
#endif // USE_CUDA_GRAPH
return use_cuda_graph;
}
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
@ -3755,30 +3749,14 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
// graph_optimize calls set_cuda_graph_enabled, in-case it not called (i.e. graph_compute is directly called)
// we call it here instead.
#ifdef USE_CUDA_GRAPH
use_cuda_graph = ggml_cuda_set_cuda_graph_enabled(cuda_ctx);
use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx);
if (use_cuda_graph) {
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
if (cuda_ctx->cuda_graph->is_enabled()) {
cuda_graph_update_required = ggml_cuda_graph_update_required(cuda_ctx, cgraph);
use_cuda_graph = ggml_cuda_graph_check_compability(cgraph);
use_cuda_graph = check_node_graph_compatibility(cgraph, use_cuda_graph);
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
cuda_ctx->cuda_graph->number_consecutive_updates++;
} else {
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
}
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
cuda_ctx->cuda_graph->cuda_graphs_enabled = false;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
#endif
}
cuda_ctx->cuda_graph->record_update(use_cuda_graph, cuda_graph_update_required);
}
#endif // USE_CUDA_GRAPH
@ -3792,9 +3770,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
bool graph_evaluated_or_captured = false;
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
ggml_cuda_graph_evaluate_and_capture(cuda_ctx, cgraph, use_cuda_graph, cuda_graph_update_required);
return GGML_STATUS_SUCCESS;
}
@ -3827,7 +3803,7 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
const bool use_cuda_graph = ggml_cuda_set_cuda_graph_enabled(cuda_ctx);
const bool use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx);
static bool enable_graph_optimization = [] {
const char * env = getenv("GGML_CUDA_GRAPH_OPT");
@ -4146,6 +4122,7 @@ struct ggml_backend_cuda_device_context {
std::string name;
std::string description;
std::string pci_bus_id;
int op_offload_min_batch_size;
};
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
@ -4700,11 +4677,9 @@ static int64_t get_op_batch_size(const ggml_tensor * op) {
}
static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
return get_op_batch_size(op) >= min_batch_size;
GGML_UNUSED(dev);
return get_op_batch_size(op) >= dev_ctx->op_offload_min_batch_size;
}
static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) {
@ -4872,6 +4847,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
for (int i = 0; i < ggml_cuda_info().device_count; i++) {
ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
@ -4885,6 +4861,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
char pci_bus_id[16] = {};
snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.0", prop.pciDomainID, prop.pciBusID, prop.pciDeviceID);
dev_ctx->pci_bus_id = pci_bus_id;
dev_ctx->op_offload_min_batch_size = min_batch_size;
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,

View File

@ -34,13 +34,11 @@ void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
// CUDA_GRAPHS_DISABLED
((ncols > 65536) &&
((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
ctx.cuda_graph->disable_due_to_failed_graph_capture)) ||
ctx.cuda_graph->is_enabled())) ||
// CUDA_GRAPHS ENABLED
((ncols > 32768) &&
!((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
ctx.cuda_graph->disable_due_to_failed_graph_capture))) {
ctx.cuda_graph->is_enabled()))) {
#else
(ncols > 65536)) {
#endif // USE_CUDA_GRAPH

View File

@ -190,7 +190,7 @@ void ggml_cuda_mul_mat_q(
{
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s12 = src1->nb[2] / ts_src1;
const int64_t s13 = src1->nb[2] / ts_src1;
const int64_t s13 = src1->nb[3] / ts_src1;
if (use_native_mxfp4) {
quantize_mmq_mxfp4_cuda(src1_d, ids_src1.get(), src1_q8_1.get(), src0->type, ne10, s11, s12, s13,
@ -333,6 +333,31 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11, int64_t
}
if (amd_wmma_available(cc)) {
if (GGML_CUDA_CC_IS_RDNA3(cc)) {
// High expert counts are almost always better on MMQ due to
// the synchronization overhead in the cuBLAS/hipBLAS path:
// https://github.com/ggml-org/llama.cpp/pull/18202
if (n_experts >= 64) {
return true;
}
// For some quantization types MMQ can have lower peak TOPS than hipBLAS
// so it's only faster for sufficiently small batch sizes:
switch (type) {
case GGML_TYPE_Q2_K:
return ne11 <= 128;
case GGML_TYPE_Q6_K:
return ne11 <= (GGML_CUDA_CC_IS_RDNA3_0(cc) ? 128 : 256);
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
return GGML_CUDA_CC_IS_RDNA3_5(cc) || ne11 <= 128;
default:
return true;
}
}
// For RDNA4 MMQ is consistently faster than dequantization + hipBLAS:
// https://github.com/ggml-org/llama.cpp/pull/18537#issuecomment-3706422301
return true;
}

View File

@ -114,7 +114,7 @@ __global__ void __launch_bounds__(splitD, 1)
#endif // __clang__
// assumes as many threads as d_state
template <int splitH, int d_state>
template <int c_factor, int d_state>
__global__ void __launch_bounds__(d_state, 1)
ssm_scan_f32_group(
const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
@ -125,20 +125,25 @@ __global__ void __launch_bounds__(d_state, 1)
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
const int64_t s_off, const int64_t n_head, const int64_t d_head, const int64_t n_group, const int64_t n_tok) {
const int head_idx = (blockIdx.x * splitH) / d_head;
const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float);
const int seq_idx = blockIdx.y;
const int warp = threadIdx.x / WARP_SIZE;
const int lane = threadIdx.x % WARP_SIZE;
const int warp_idx = blockIdx.x * c_factor + warp;
const int head_idx = warp_idx / d_head;
const int head_off = (warp_idx % d_head) * sizeof(float);
const int seq_idx = blockIdx.y;
const int group_off = (head_idx / (n_head / n_group)) * d_state * sizeof(float);
const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float));
const float * dt_block = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float));
const float * A_block = (const float *) ((const char *) src3 + head_idx * src3_nb1);
const float * B_block = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off));
const float * C_block = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off));
float * y_block = dst + (seq_idx * n_tok * n_head * d_head) + blockIdx.x * splitH;
float * s_block = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
// TODO: refactor strides to be in elements/floats instead of bytes to be cleaner and consistent with the rest of the codebase
const float * s0_warp = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
const float * x_warp = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + (warp_idx * sizeof(float)));
const float * dt_warp = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float));
const float * A_warp = (const float *) ((const char *) src3 + head_idx * src3_nb1);
const float * B_warp = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off));
const float * C_warp = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off));
float * y_warp = dst + (seq_idx * n_tok * n_head * d_head) + warp_idx;
float * s_warp = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
// strides across n_seq_tokens
const int stride_x = src1_nb2 / sizeof(float);
@ -147,80 +152,42 @@ __global__ void __launch_bounds__(d_state, 1)
const int stride_C = src5_nb2 / sizeof(float);
const int stride_y = n_head * d_head;
float state[splitH];
// for the parallel accumulation
__shared__ float stateC[splitH * d_state];
float state[c_factor];
float state_sum = 0.0f;
#pragma unroll
for (int j = 0; j < splitH; j++) {
state[j] = s0_block[j * d_state + threadIdx.x];
for (int j = 0; j < c_factor; j++) {
state[j] = s0_warp[WARP_SIZE * j + lane];
}
for (int64_t i = 0; i < n_tok; i++) {
// TODO: only calculate dA and dt_soft_plus once per head instead of every splitH head elements
// TODO: only calculate B and C once per head group
// NOTE: dt_soft_plus, dA and x_dt have the same value across threads here.
float dt_soft_plus = dt_block[i * stride_dt];
if (dt_soft_plus <= 20.0f) {
dt_soft_plus = log1pf(expf(dt_soft_plus));
}
const float dA = expf(dt_soft_plus * A_block[0]);
const float B = B_block[i * stride_B + threadIdx.x];
const float C = C_block[i * stride_C + threadIdx.x];
// NOTE: dt_soft_plus, dA and x_dt have the same value for a warp here.
// Recalculation is intentional; sharing via shuffles/smem proved slower due to sync overhead.
const float dt_soft_plus = (dt_warp[i * stride_dt] <= 20.0f ? log1pf(expf(dt_warp[i * stride_dt])) : dt_warp[i * stride_dt]);
// across d_head
state_sum = 0.0f;
const float dA = expf(dt_soft_plus * A_warp[0]);
const float x_dt = x_warp[i * stride_x] * dt_soft_plus;
#pragma unroll
for (int j = 0; j < splitH; j++) {
const float x_dt = x_block[i * stride_x + j] * dt_soft_plus;
state[j] = (state[j] * dA) + (B * x_dt);
stateC[j * d_state + threadIdx.x] = state[j] * C;
for (int j = 0; j < c_factor; j++) {
const float B_val = B_warp[i * stride_B + WARP_SIZE * j + lane];
const float C_val = C_warp[i * stride_C + WARP_SIZE * j + lane];
state[j] = (state[j] * dA) + (B_val * x_dt);
state_sum += state[j] * C_val;
}
__syncthreads();
// parallel accumulation for output
state_sum = warp_reduce_sum(state_sum);
// parallel accumulation for stateC
// TODO: simplify
{
static_assert((d_state & -d_state) == d_state, "the state size has to be a power of 2");
static_assert((splitH & -splitH) == splitH, "splitH has to be a power of 2");
// reduce until w matches the warp size
// TODO: does this work even when the physical warp size is 64?
#pragma unroll
for (int w = d_state; w > WARP_SIZE; w >>= 1) {
// (assuming there are d_state threads)
#pragma unroll
for (int j = 0; j < ((w >> 1) * splitH + d_state - 1) / d_state; j++) {
// TODO: check for bank conflicts
const int k = (threadIdx.x % (w >> 1)) + (d_state * (threadIdx.x / (w >> 1))) + j * d_state * (d_state / (w >> 1));
stateC[k] += stateC[k + (w >> 1)];
}
__syncthreads();
}
static_assert(splitH >= d_state / WARP_SIZE);
#pragma unroll
for (int j = 0; j < splitH / (d_state / WARP_SIZE); j++) {
float y = stateC[(threadIdx.x % WARP_SIZE) + d_state * (threadIdx.x / WARP_SIZE) + j * d_state * (d_state / WARP_SIZE)];
y = warp_reduce_sum(y);
// store the above accumulations
if (threadIdx.x % WARP_SIZE == 0) {
const int k = threadIdx.x / WARP_SIZE + j * (d_state / WARP_SIZE);
y_block[i * stride_y + k] = y;
}
}
if (lane == 0) {
y_warp[i * stride_y] = state_sum;
}
}
// write back the state
#pragma unroll
for (int j = 0; j < splitH; j++) {
s_block[j * d_state + threadIdx.x] = state[j];
for (int j = 0; j < c_factor; j++) {
s_warp[WARP_SIZE * j + lane] = state[j];
}
}
@ -231,27 +198,24 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim,
const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq,
cudaStream_t stream) {
const int threads = 128;
// NOTE: if you change conditions here, be sure to update the corresponding supports_op condition!
if (src3_nb1 == sizeof(float)) {
// Mamba-2
if (d_state == 128) {
GGML_ASSERT(d_state % threads == 0);
// NOTE: can be any power of two between 4 and 64
const int splitH = 16;
GGML_ASSERT(head_dim % splitH == 0);
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
ssm_scan_f32_group<16, 128><<<blocks, threads, 0, stream>>>(
constexpr int threads = 128;
constexpr int num_warps = threads/WARP_SIZE;
const dim3 blocks((n_head * head_dim + (num_warps - 1)) / num_warps, n_seq, 1);
ssm_scan_f32_group<128/WARP_SIZE, 128><<<blocks, threads, 0, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
} else if (d_state == 256) { // Falcon-H1
const int threads = 256;
// NOTE: can be any power of two between 8 and 64
const int splitH = 16;
GGML_ASSERT(head_dim % splitH == 0);
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
ssm_scan_f32_group<16, 256><<<blocks, threads, 0, stream>>>(
constexpr int threads = 256;
constexpr int num_warps = threads/WARP_SIZE;
const dim3 blocks((n_head * head_dim + (num_warps - 1)) / num_warps, n_seq, 1);
ssm_scan_f32_group<256/WARP_SIZE, 256><<<blocks, threads, 0, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
@ -260,6 +224,7 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
}
} else {
// Mamba-1
constexpr int threads = 128;
GGML_ASSERT(n_head % threads == 0);
GGML_ASSERT(head_dim == 1);
GGML_ASSERT(n_group == 1);

View File

@ -1773,6 +1773,37 @@ static bool hex_supported_dims2(const struct ggml_tensor * x, const struct ggml_
return true;
}
static bool ggml_hexagon_supported_flash_attn_ext(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * src3 = op->src[3];
const struct ggml_tensor * src4 = op->src[4];
const struct ggml_tensor * dst = op;
// Check for F16 support only as requested
if ((src0->type != GGML_TYPE_F16 && src0->type != GGML_TYPE_F32) || src1->type != GGML_TYPE_F16 || src2->type != GGML_TYPE_F16) {
return false;
}
if (src3 && src3->type != GGML_TYPE_F16) { // mask
return false;
}
if (src4 && src4->type != GGML_TYPE_F32) { // sinks
return false;
}
// For now we support F32 or F16 output as htp backend often converts output on the fly if needed,
// but the op implementation writes to F16 or F32.
// Let's assume dst can be F32 or F16.
if (dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16) {
return false;
}
return opt_experimental;
}
static bool hex_supported_src0_type(ggml_type t) {
return t == GGML_TYPE_F32;
}
@ -1815,12 +1846,11 @@ static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * s
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (src1->type != GGML_TYPE_F32 || dst->type != GGML_TYPE_F32) {
if (dst->type != GGML_TYPE_F32) {
return false;
}
// TODO: add support for non-cont tensors
if (!ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
if (src1->type != GGML_TYPE_F32 && src1->type != GGML_TYPE_F16) {
return false;
}
@ -1836,7 +1866,6 @@ static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * s
return false; // typically the lm-head which would be too large for VTCM
}
// if ((src0->ne[2] != src1->ne[2] || src0->ne[3] != src1->ne[3])) return false;
if ((src1->ne[2] != 1 || src1->ne[3] != 1)) {
return false;
}
@ -1885,21 +1914,10 @@ static bool ggml_hexagon_supported_mul_mat_id(const struct ggml_hexagon_session
}
break;
case GGML_TYPE_F16:
if (!opt_experimental) {
return false;
}
break;
default:
return false;
}
// TODO: add support for non-cont tensors
if (!ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
return false;
}
return true;
}
@ -2060,6 +2078,46 @@ static bool ggml_hexagon_supported_softmax(const struct ggml_hexagon_session * s
return true;
}
static bool ggml_hexagon_supported_set_rows(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0]; // values
const struct ggml_tensor * src1 = op->src[1]; // indices
const struct ggml_tensor * dst = op;
if (src0->type != GGML_TYPE_F32) {
return false;
}
if (src1->type != GGML_TYPE_I32 && src1->type != GGML_TYPE_I64) {
return false;
}
if (dst->type != GGML_TYPE_F16) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_get_rows(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0]; // values
const struct ggml_tensor * src1 = op->src[1]; // indices
const struct ggml_tensor * dst = op;
if (src0->type != GGML_TYPE_F32) {
return false;
}
if (src1->type != GGML_TYPE_I32 && src1->type != GGML_TYPE_I64) {
return false;
}
if (dst->type != GGML_TYPE_F32) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const int32_t * op_params = &op->op_params[0];
@ -2154,6 +2212,11 @@ static size_t htp_req_buff_init(htp_tensor *h, dspqueue_buffer * d, const ggml_t
d->offset = (uint8_t *) t->data - buf->base;
d->size = ggml_nbytes(t);
if (!d->size) {
// Some requests contain srcs where ggml_nbytes() returns 0 but the rest of the op is non-empty
d->size = 64;
}
switch (type) {
case DSPQBUF_TYPE_DSP_WRITE_CPU_READ:
// Flush CPU
@ -2239,6 +2302,17 @@ static inline size_t init_binary_req(htp_general_req * req, dspqueue_buffer * bu
return n_bufs;
}
static inline size_t init_get_rows_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
req->op = HTP_OP_GET_ROWS;
size_t n_bufs = 0;
n_bufs += htp_req_buff_init(&req->src0, &bufs[n_bufs], t->src[0], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->src1, &bufs[n_bufs], t->src[1], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->dst, &bufs[n_bufs], t, DSPQBUF_TYPE_DSP_WRITE_CPU_READ);
return n_bufs;
}
template <bool _is_src0_constant>
static inline size_t init_binary_id_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
switch (t->op) {
@ -2266,6 +2340,17 @@ static inline size_t init_binary_id_req(htp_general_req * req, dspqueue_buffer *
return n_bufs;
}
static inline size_t init_set_rows_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
req->op = HTP_OP_SET_ROWS;
size_t n_bufs = 0;
n_bufs += htp_req_buff_init(&req->src0, &bufs[n_bufs], t->src[0], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->src1, &bufs[n_bufs], t->src[1], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->dst, &bufs[n_bufs], t, DSPQBUF_TYPE_DSP_WRITE_CPU_READ);
return n_bufs;
}
static inline size_t init_unary_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
memcpy(&req->op_params, &t->op_params, sizeof(t->op_params));
@ -2277,6 +2362,11 @@ static inline size_t init_unary_req(htp_general_req * req, dspqueue_buffer * buf
supported = true;
break;
case GGML_OP_SCALE:
req->op = HTP_OP_SCALE;
supported = true;
break;
case GGML_OP_UNARY:
if (ggml_get_unary_op(t) == GGML_UNARY_OP_SILU) {
req->op = HTP_OP_UNARY_SILU;
@ -2331,6 +2421,21 @@ static inline size_t init_rope_req(htp_general_req * req, dspqueue_buffer * bufs
return n_bufs;
}
static inline size_t init_flash_attn_ext_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
memcpy(&req->op_params, &t->op_params, sizeof(t->op_params));
req->op = HTP_OP_FLASH_ATTN_EXT;
size_t n_bufs = 0;
n_bufs += htp_req_buff_init(&req->src0, &bufs[n_bufs], t->src[0], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->src1, &bufs[n_bufs], t->src[1], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->src2, &bufs[n_bufs], t->src[2], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->src3, &bufs[n_bufs], t->src[3], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->src4, &bufs[n_bufs], t->src[4], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->dst, &bufs[n_bufs], t, DSPQBUF_TYPE_DSP_WRITE_CPU_READ);
return n_bufs;
}
static const char * ggml_backend_hexagon_name(ggml_backend_t backend) {
auto sess = static_cast<ggml_hexagon_session *>(backend->context);
return sess->name.c_str();
@ -2417,6 +2522,7 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
ggml_hexagon_dispatch_op<init_binary_id_req<false>>(sess, node, flags);
break;
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
ggml_hexagon_dispatch_op<init_unary_req>(sess, node, flags);
break;
case GGML_OP_UNARY:
@ -2439,6 +2545,18 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
ggml_hexagon_dispatch_op<init_rope_req>(sess, node, flags);
break;
case GGML_OP_FLASH_ATTN_EXT:
ggml_hexagon_dispatch_op<init_flash_attn_ext_req>(sess, node, flags);
break;
case GGML_OP_SET_ROWS:
ggml_hexagon_dispatch_op<init_set_rows_req>(sess, node, flags);
break;
case GGML_OP_GET_ROWS:
ggml_hexagon_dispatch_op<init_get_rows_req>(sess, node, flags);
break;
default:
GGML_ABORT("\nggml-hex: graph-compute %s is not supported\n", ggml_op_desc(node));
}
@ -2778,6 +2896,7 @@ static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, cons
break;
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
supp = ggml_hexagon_supported_unary(sess, op);
break;
@ -2805,6 +2924,18 @@ static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, cons
supp = ggml_hexagon_supported_rope(sess, op);
break;
case GGML_OP_FLASH_ATTN_EXT:
supp = ggml_hexagon_supported_flash_attn_ext(sess, op);
break;
case GGML_OP_SET_ROWS:
supp = ggml_hexagon_supported_set_rows(sess, op);
break;
case GGML_OP_GET_ROWS:
supp = ggml_hexagon_supported_get_rows(sess, op);
break;
default:
break;
}

View File

@ -28,6 +28,9 @@ add_library(${HTP_LIB} SHARED
softmax-ops.c
act-ops.c
rope-ops.c
flash-attn-ops.c
set-rows-ops.c
get-rows-ops.c
)
target_compile_definitions(${HTP_LIB} PRIVATE

View File

@ -0,0 +1,566 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-dma.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
// Dot product of FP32 and FP16 vectors, accumulating to float
static inline void hvx_dot_f32_f16_aa(float * restrict r, const void * restrict y, const void * restrict x, unsigned int n, float s) {
const HVX_Vector * restrict vy = (const HVX_Vector * restrict) y; // fp32
const HVX_Vector * restrict vx = (const HVX_Vector * restrict) x; // fp16
uint32_t nvec = n / VLEN_FP16; // num full fp16 hvx vectors
uint32_t nloe = n % VLEN_FP16; // leftover elements
const HVX_Vector zero = Q6_V_vsplat_R(0);
HVX_Vector rsum = Q6_V_vsplat_R(0);
uint32_t i = 0;
#pragma unroll(4)
for (i = 0; i < nvec; i++) {
// Load y (fp32) and convert into fp16
HVX_Vector y0_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+0], zero); // 32 elements
HVX_Vector y1_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+1], zero); // 32 elements
HVX_Vector y_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(y1_qf, y0_qf)));
// Load x (fp16)
HVX_Vector x_hf = vx[i];
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
}
if (nloe) {
// Load y (fp32) and convert into fp16
HVX_Vector y0_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+0], zero); // 32 elements
HVX_Vector y1_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+1], zero); // 32 elements
HVX_Vector y_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(y1_qf, y0_qf)));
// Load x (fp16)
HVX_Vector x_hf = vx[i];
// Zero-out unused elements
// Note that we need to clear both x and y because they may contain NANs
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe * 2);
x_hf = Q6_V_vand_QV(bmask, x_hf);
y_hf = Q6_V_vand_QV(bmask, y_hf);
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
}
rsum = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(rsum), hvx_vec_splat_fp32(s));
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_qf32_reduce_sum(rsum));
hvx_vec_store_u(r, 4, rsum);
}
// Dot product of two F16 vectors, accumulating to float
static inline void hvx_dot_f16_f16_aa(float * restrict r, const void * restrict x, const void * restrict y, unsigned int n, float s) {
const HVX_Vector * restrict vx = (const HVX_Vector * restrict) x; // fp16
const HVX_Vector * restrict vy = (const HVX_Vector * restrict) y; // fp16
uint32_t nvec = n / VLEN_FP16; // num full fp16 hvx vectors
uint32_t nloe = n % VLEN_FP16; // leftover elements
const HVX_Vector zero = Q6_V_vsplat_R(0);
HVX_Vector rsum = Q6_V_vsplat_R(0);
uint32_t i = 0;
#pragma unroll(4)
for (i = 0; i < nvec; i++) {
HVX_Vector y_hf = vy[i];
HVX_Vector x_hf = vx[i];
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
}
if (nloe) {
HVX_Vector y_hf = vy[i];
// Load x (fp16) and zero-out unused elements
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe * 2);
HVX_Vector x_hf = Q6_V_vand_QV(bmask, vx[i]);
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
}
rsum = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(rsum), hvx_vec_splat_fp32(s));
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_qf32_reduce_sum(rsum));
hvx_vec_store_u(r, 4, rsum);
}
// MAD: y (F32) += x (F16) * v (float)
static inline void hvx_mad_f32_f16_aa(float * restrict y, const void * restrict x, int n, float s) {
const HVX_Vector * restrict ptr_x = (const HVX_Vector *) x;
HVX_Vector * restrict ptr_y = (HVX_Vector *) y;
uint32_t nvec = n / VLEN_FP16; // num full fp16 hvx vectors
uint32_t nloe = n % VLEN_FP16; // leftover elements
HVX_Vector S = hvx_vec_splat_fp16(s);
uint32_t i = 0;
#pragma unroll(4)
for (i = 0; i < nvec; ++i) {
// Multiply x * s -> pair of F32 vectors
HVX_VectorPair xs_p = Q6_Wqf32_vmpy_VhfVhf(Q6_Vh_vshuff_Vh(ptr_x[i]), S);
ptr_y[i*2] = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_V_lo_W(xs_p), ptr_y[i*2]));
ptr_y[i*2+1] = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_V_hi_W(xs_p), ptr_y[i*2+1]));
}
if (nloe) {
HVX_VectorPair xs_p = Q6_Wqf32_vmpy_VhfVhf(Q6_Vh_vshuff_Vh(ptr_x[i]), S);
HVX_Vector xs = Q6_V_lo_W(xs_p);
i = 2 * i; // index for ptr_y
if (nloe >= 32) {
ptr_y[i] = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(xs, ptr_y[i]));
nloe -= 32; ++i; xs = Q6_V_hi_W(xs_p);
}
if (nloe) {
HVX_Vector xy = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(xs, ptr_y[i]));
hvx_vec_store_u(&ptr_y[i], nloe * 4, xy);
}
}
}
#define FLASH_ATTN_BLOCK_SIZE 128
static void flash_attn_ext_f16_thread(struct htp_ops_context * octx, int ith, int nth) {
const struct htp_tensor * q = &octx->src0;
const struct htp_tensor * k = &octx->src1;
const struct htp_tensor * v = &octx->src2;
const struct htp_tensor * mask = (octx->src3.data) ? &octx->src3 : NULL;
const struct htp_tensor * sinks = (octx->src4.data) ? &octx->src4 : NULL;
struct htp_tensor * dst = &octx->dst;
const uint32_t neq0 = q->ne[0];
const uint32_t neq1 = q->ne[1];
const uint32_t neq2 = q->ne[2];
const uint32_t neq3 = q->ne[3];
const uint32_t nek0 = k->ne[0];
const uint32_t nek1 = k->ne[1];
const uint32_t nek2 = k->ne[2];
const uint32_t nek3 = k->ne[3];
const uint32_t nev0 = v->ne[0];
const uint32_t nev1 = v->ne[1];
const uint32_t nev2 = v->ne[2];
const uint32_t nev3 = v->ne[3];
const uint32_t nbq1 = q->nb[1];
const uint32_t nbq2 = q->nb[2];
const uint32_t nbq3 = q->nb[3];
const uint32_t nbk1 = k->nb[1];
const uint32_t nbk2 = k->nb[2];
const uint32_t nbk3 = k->nb[3];
const uint32_t nbv1 = v->nb[1];
const uint32_t nbv2 = v->nb[2];
const uint32_t nbv3 = v->nb[3];
const uint32_t ne1 = dst->ne[1];
const uint32_t ne2 = dst->ne[2];
const uint32_t ne3 = dst->ne[3];
const uint32_t nb1 = dst->nb[1];
const uint32_t nb2 = dst->nb[2];
const uint32_t nb3 = dst->nb[3];
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (float *) octx->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) octx->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (float *) octx->op_params + 2, sizeof(float));
if (logit_softcap != 0) {
scale /= logit_softcap;
}
// total rows in q
const uint32_t nr = neq1*neq2*neq3;
const uint32_t dr = (nr + nth - 1) / nth;
const uint32_t ir0 = dr * ith;
const uint32_t ir1 = MIN(ir0 + dr, nr);
if (ir0 >= ir1) return;
dma_queue * dma = octx->ctx->dma[ith];
const uint32_t DK = nek0;
const uint32_t DV = nev0;
const size_t size_q_row = DK * ((q->type == HTP_TYPE_F32) ? 4 : 2);
const size_t size_q_row_padded = htp_round_up(size_q_row, 128);
const size_t size_k_row = DK * sizeof(__fp16);
const size_t size_v_row = DV * sizeof(__fp16);
const size_t size_m_row = FLASH_ATTN_BLOCK_SIZE * sizeof(__fp16); // Treat block as one row for mask
const size_t size_k_row_padded = htp_round_up(size_k_row, 128);
const size_t size_v_row_padded = htp_round_up(size_v_row, 128);
const size_t size_k_block = size_k_row_padded * FLASH_ATTN_BLOCK_SIZE;
const size_t size_v_block = size_v_row_padded * FLASH_ATTN_BLOCK_SIZE;
const size_t size_m_block = htp_round_up(FLASH_ATTN_BLOCK_SIZE * sizeof(__fp16), 128);
// Scratchpad buffers for Q, K, V, Mask, and VKQ32 accumulator
uint8_t * spad_q = octx->src0_spad.data + octx->src0_spad.size_per_thread * ith;
uint8_t * spad_k = octx->src1_spad.data + octx->src1_spad.size_per_thread * ith;
uint8_t * spad_v = octx->src2_spad.data + octx->src2_spad.size_per_thread * ith;
uint8_t * spad_m = octx->src3_spad.data + octx->src3_spad.size_per_thread * ith;
uint8_t * spad_a = octx->dst_spad.data + octx->dst_spad.size_per_thread * ith;
const uint32_t n_head = neq2;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
for (uint32_t ir = ir0; ir < ir1; ++ir) {
const uint32_t iq3 = fastdiv(ir, &octx->src0_div21);
const uint32_t iq2 = fastdiv(ir - iq3*neq2*neq1, &octx->src0_div1);
const uint32_t iq1 = (ir - iq3*neq2*neq1 - iq2 * neq1);
const uint32_t ik3 = fastdiv(iq3, &octx->broadcast_rk3);
const uint32_t ik2 = fastdiv(iq2, &octx->broadcast_rk2);
const uint32_t iv3 = fastdiv(iq3, &octx->broadcast_rv3);
const uint32_t iv2 = fastdiv(iq2, &octx->broadcast_rv2);
// Fetch Q row
const uint8_t * q_row_ptr = (const uint8_t *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3);
dma_queue_push(dma, dma_make_ptr(spad_q, q_row_ptr), size_q_row_padded, nbq1, size_q_row, 1);
const uint32_t h = iq2; // head index
const float slope = (max_bias > 0.0f) ? (h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1)) : 1.0f;
float S = 0.0f; // sum
float M = -INFINITY; // maximum KQ value
// Clear accumulator
float * VKQ32 = (float *) spad_a;
memset(VKQ32, 0, DV * sizeof(float));
const __fp16 * mp_base = NULL;
if (mask) {
const uint32_t im2 = fastmodulo(iq2, mask->ne[2], &octx->src3_div2);
const uint32_t im3 = fastmodulo(iq3, mask->ne[3], &octx->src3_div3);
mp_base = (const __fp16 *) ((const uint8_t *) mask->data + iq1*mask->nb[1] + im2*mask->nb[2] + im3*mask->nb[3]);
}
const uint32_t n_blocks = (nek1 + FLASH_ATTN_BLOCK_SIZE - 1) / FLASH_ATTN_BLOCK_SIZE;
// Prefetch first two blocks
for (uint32_t ib = 0; ib < MIN(n_blocks, 2); ++ib) {
const uint32_t ic_start = ib * FLASH_ATTN_BLOCK_SIZE;
const uint32_t current_block_size = MIN(FLASH_ATTN_BLOCK_SIZE, nek1 - ic_start);
// K
const uint8_t * k_src = (const uint8_t *) k->data + (ic_start*nbk1 + ik2*nbk2 + ik3*nbk3);
uint8_t * k_dst = spad_k + (ib % 2) * size_k_block;
dma_queue_push(dma, dma_make_ptr(k_dst, k_src), size_k_row_padded, nbk1, size_k_row, current_block_size);
// V
const uint8_t * v_src = (const uint8_t *) v->data + (ic_start*nbv1 + iv2*nbv2 + iv3*nbv3);
uint8_t * v_dst = spad_v + (ib % 2) * size_v_block;
dma_queue_push(dma, dma_make_ptr(v_dst, v_src), size_v_row_padded, nbv1, size_v_row, current_block_size);
// Mask
if (mask) {
const uint8_t * m_src = (const uint8_t *) (mp_base + ic_start);
uint8_t * m_dst = spad_m + (ib % 2) * size_m_block;
// Mask is 1D contiguous for this row
dma_queue_push(dma, dma_make_ptr(m_dst, m_src), current_block_size * 2, current_block_size * 2, current_block_size * 2, 1);
}
}
const uint8_t * q_ptr_vtcm = dma_queue_pop(dma).dst;
for (uint32_t ib = 0; ib < n_blocks; ++ib) {
const uint32_t ic_start = ib * FLASH_ATTN_BLOCK_SIZE;
const uint32_t current_block_size = MIN(FLASH_ATTN_BLOCK_SIZE, nek1 - ic_start);
// Wait for DMA
uint8_t * k_base = dma_queue_pop(dma).dst; // K
uint8_t * v_base = dma_queue_pop(dma).dst; // V
__fp16 * m_base = mask ? dma_queue_pop(dma).dst : NULL; // M
// Inner loop processing the block from VTCM
uint32_t ic = 0;
// Process in blocks of 32 (VLEN_FP32)
for (; ic + VLEN_FP32 <= current_block_size; ic += VLEN_FP32) {
// 1. Compute scores
float __attribute__((aligned(VLEN))) scores_arr[VLEN_FP32];
for (int j = 0; j < VLEN_FP32; ++j) {
const uint32_t cur_ic = ic + j;
const uint8_t * k_ptr = k_base + cur_ic * size_k_row_padded;
if (q->type == HTP_TYPE_F32) {
hvx_dot_f32_f16_aa(&scores_arr[j], q_ptr_vtcm, k_ptr, DK, scale);
} else {
hvx_dot_f16_f16_aa(&scores_arr[j], q_ptr_vtcm, k_ptr, DK, scale);
}
}
HVX_Vector scores = *(HVX_Vector *) scores_arr;
// 2. Softcap
if (logit_softcap != 0.0f) {
scores = hvx_vec_tanh_fp32(scores);
scores = Q6_Vqf32_vmpy_VsfVsf(scores, hvx_vec_splat_fp32(logit_softcap));
scores = Q6_Vsf_equals_Vqf32(scores);
}
// 3. Mask
if (mask) {
const __fp16 * mp = m_base + ic;
HVX_Vector m_vals_fp16 = *(const HVX_UVector *) mp;
HVX_Vector one_fp16 = Q6_Vh_vsplat_R(0x3c00);
HVX_VectorPair m_vals_fp32_pair = Q6_Wqf32_vmpy_VhfVhf(Q6_Vh_vshuff_Vh(m_vals_fp16), one_fp16);
HVX_Vector m_vals_fp32 = Q6_Vsf_equals_Vqf32(Q6_V_lo_W(m_vals_fp32_pair));
HVX_Vector slope_vec = hvx_vec_splat_fp32(slope);
HVX_Vector add_val = Q6_Vqf32_vmpy_VsfVsf(m_vals_fp32, slope_vec);
scores = Q6_Vqf32_vadd_VsfVsf(scores, Q6_Vsf_equals_Vqf32(add_val));
scores = Q6_Vsf_equals_Vqf32(scores);
}
// 4. Online Softmax Update
HVX_Vector v_max = hvx_vec_reduce_max_fp32(scores);
float m_block = hvx_vec_get_fp32(v_max);
float M_old = M;
float M_new = (m_block > M) ? m_block : M;
M = M_new;
float ms = expf(M_old - M_new);
hvx_scale_f32_aa((uint8_t *) VKQ32, (const uint8_t *) VKQ32, DV, ms);
S = S * ms;
HVX_Vector M_new_vec = hvx_vec_splat_fp32(M_new);
HVX_Vector scores_shifted = Q6_Vqf32_vsub_VsfVsf(scores, M_new_vec);
HVX_Vector P = hvx_vec_exp_fp32(Q6_Vsf_equals_Vqf32(scores_shifted));
HVX_Vector p_sum_vec = hvx_vec_fp32_reduce_sum(P);
float p_sum = hvx_vec_get_fp32(p_sum_vec);
S += p_sum;
// 5. Accumulate V
float __attribute__((aligned(VLEN))) p_arr[VLEN_FP32];
*(HVX_Vector*)p_arr = P;
for (int j = 0; j < VLEN_FP32; ++j) {
const uint32_t cur_ic = ic + j;
const uint8_t * v_ptr = v_base + cur_ic * size_v_row_padded;
hvx_mad_f32_f16_aa(VKQ32, v_ptr, DV, p_arr[j]);
}
}
// Leftover
for (; ic < current_block_size; ++ic) {
float s_val;
const uint8_t * k_ptr = k_base + ic * size_k_row_padded;
if (q->type == HTP_TYPE_F32) {
hvx_dot_f32_f16_aa(&s_val, q_ptr_vtcm, k_ptr, DK, scale);
} else {
hvx_dot_f16_f16_aa(&s_val, q_ptr_vtcm, k_ptr, DK, scale);
}
if (logit_softcap != 0.0f) {
s_val = logit_softcap * tanhf(s_val);
}
if (mask) {
const float m_val = m_base[ic];
s_val += slope * m_val;
}
const float Mold = M;
float ms = 1.0f;
float vs = 1.0f;
if (s_val > M) {
M = s_val;
ms = expf(Mold - M);
hvx_scale_f32_aa((uint8_t *) VKQ32, (const uint8_t *) VKQ32, DV, ms);
} else {
vs = expf(s_val - M);
}
const uint8_t * v_ptr = v_base + ic * size_v_row_padded;
hvx_mad_f32_f16_aa(VKQ32, v_ptr, DV, vs);
S = S * ms + vs;
}
// Issue DMA for next+1 block (if exists)
if (ib + 2 < n_blocks) {
const uint32_t next_ib = ib + 2;
const uint32_t next_ic_start = next_ib * FLASH_ATTN_BLOCK_SIZE;
const uint32_t next_block_size = MIN(FLASH_ATTN_BLOCK_SIZE, nek1 - next_ic_start);
// K
const uint8_t * k_src = (const uint8_t *) k->data + (next_ic_start*nbk1 + ik2*nbk2 + ik3*nbk3);
dma_queue_push(dma, dma_make_ptr(k_base, k_src), size_k_row_padded, nbk1, size_k_row, next_block_size);
// V
const uint8_t * v_src = (const uint8_t *) v->data + (next_ic_start*nbv1 + iv2*nbv2 + iv3*nbv3);
dma_queue_push(dma, dma_make_ptr(v_base, v_src), size_v_row_padded, nbv1, size_v_row, next_block_size);
// Mask
if (mask) {
const uint8_t * m_src = (const uint8_t *) (mp_base + next_ic_start);
dma_queue_push(dma, dma_make_ptr(m_base, m_src), next_block_size * 2, next_block_size * 2, next_block_size * 2, 1);
}
}
}
// sinks
if (sinks) {
const float s = ((float *)((char *) sinks->data))[h];
float ms = 1.0f;
float vs = 1.0f;
if (s > M) {
ms = expf(M - s);
hvx_scale_f32_aa((uint8_t *) VKQ32, (const uint8_t *) VKQ32, DV, ms);
} else {
vs = expf(s - M);
}
S = S * ms + vs;
}
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
hvx_scale_f32_aa((uint8_t *) VKQ32, (const uint8_t *) VKQ32, DV, S_inv);
// Store result
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// dst is permuted
uint8_t * dst_ptr = (uint8_t *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1) * nb1;
if (dst->type == HTP_TYPE_F32) {
hvx_copy_fp32_ua(dst_ptr, (uint8_t *) VKQ32, DV);
} else if (dst->type == HTP_TYPE_F16) {
hvx_copy_fp16_fp32_ua(dst_ptr, (uint8_t *) VKQ32, DV);
}
}
}
static void htp_flash_attn_ext_job(unsigned int n, unsigned int i, void * data) {
struct htp_ops_context * octx = data;
flash_attn_ext_f16_thread(octx, i, n);
}
int op_flash_attn_ext(struct htp_ops_context * octx) {
const struct htp_tensor * q = &octx->src0;
const struct htp_tensor * k = &octx->src1;
const struct htp_tensor * v = &octx->src2;
const struct htp_tensor * mask = (octx->src3.type != HTP_TYPE_COUNT) ? &octx->src3 : NULL;
struct htp_tensor * dst = &octx->dst;
// Check support
if ((q->type != HTP_TYPE_F16 && q->type != HTP_TYPE_F32) ||
k->type != HTP_TYPE_F16 ||
v->type != HTP_TYPE_F16) {
return HTP_STATUS_NO_SUPPORT;
}
octx->src0_div21 = init_fastdiv_values(q->ne[2] * q->ne[1]);
octx->src0_div1 = init_fastdiv_values(q->ne[1]);
octx->broadcast_rk2 = init_fastdiv_values(q->ne[2]/k->ne[2]);
octx->broadcast_rk3 = init_fastdiv_values(q->ne[3]/k->ne[3]);
octx->broadcast_rv2 = init_fastdiv_values(q->ne[2]/v->ne[2]);
octx->broadcast_rv3 = init_fastdiv_values(q->ne[3]/v->ne[3]);
if (mask) {
octx->src3_div2 = init_fastdiv_values(mask->ne[2]);
octx->src3_div3 = init_fastdiv_values(mask->ne[3]);
}
size_t size_q_row_padded = htp_round_up(q->ne[0] * (q->type == HTP_TYPE_F32 ? 4 : 2), 128);
size_t size_k_row_padded = htp_round_up(k->ne[0] * sizeof(__fp16), 128);
size_t size_v_row_padded = htp_round_up(v->ne[0] * sizeof(__fp16), 128);
size_t size_q_block = size_q_row_padded * 1; // single row for now
size_t size_k_block = size_k_row_padded * FLASH_ATTN_BLOCK_SIZE;
size_t size_v_block = size_v_row_padded * FLASH_ATTN_BLOCK_SIZE;
size_t size_m_block = htp_round_up(FLASH_ATTN_BLOCK_SIZE * sizeof(__fp16), 128);
size_t size_vkq_acc = htp_round_up(v->ne[0] * sizeof(float), 128); // VKQ32
octx->src0_spad.size_per_thread = size_q_block * 1;
octx->src1_spad.size_per_thread = size_k_block * 2;
octx->src2_spad.size_per_thread = size_v_block * 2;
octx->src3_spad.size_per_thread = mask ? size_m_block * 2 : 0;
octx->dst_spad.size_per_thread = size_vkq_acc;
octx->src0_spad.size = octx->src0_spad.size_per_thread * octx->n_threads;
octx->src1_spad.size = octx->src1_spad.size_per_thread * octx->n_threads;
octx->src2_spad.size = octx->src2_spad.size_per_thread * octx->n_threads;
octx->src3_spad.size = octx->src3_spad.size_per_thread * octx->n_threads;
octx->dst_spad.size = octx->dst_spad.size_per_thread * octx->n_threads;
size_t total_spad = octx->src0_spad.size + octx->src1_spad.size + octx->src2_spad.size + octx->src3_spad.size + octx->dst_spad.size;
if (octx->ctx->vtcm_size < total_spad) {
return HTP_STATUS_VTCM_TOO_SMALL;
}
octx->src0_spad.data = octx->ctx->vtcm_base;
octx->src1_spad.data = octx->src0_spad.data + octx->src0_spad.size;
octx->src2_spad.data = octx->src1_spad.data + octx->src1_spad.size;
octx->src3_spad.data = octx->src2_spad.data + octx->src2_spad.size;
octx->dst_spad.data = octx->src3_spad.data + octx->src3_spad.size;
if (!(octx->flags & HTP_OPFLAGS_SKIP_COMPUTE)) {
worker_pool_run_func(octx->ctx->worker_pool, htp_flash_attn_ext_job, octx, octx->n_threads);
}
return HTP_STATUS_OK;
}

View File

@ -0,0 +1,112 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
#define get_rows_preamble \
const uint32_t ne00 = octx->src0.ne[0]; \
const uint32_t ne01 = octx->src0.ne[1]; \
const uint32_t ne02 = octx->src0.ne[2]; \
const uint32_t ne03 = octx->src0.ne[3]; \
\
const uint32_t ne10 = octx->src1.ne[0]; \
const uint32_t ne11 = octx->src1.ne[1]; \
const uint32_t ne12 = octx->src1.ne[2]; \
\
const uint32_t nb01 = octx->src0.nb[1]; \
const uint32_t nb02 = octx->src0.nb[2]; \
const uint32_t nb03 = octx->src0.nb[3]; \
\
const uint32_t nb10 = octx->src1.nb[0]; \
const uint32_t nb11 = octx->src1.nb[1]; \
const uint32_t nb12 = octx->src1.nb[2]; \
\
const uint32_t nb1 = octx->dst.nb[1]; \
const uint32_t nb2 = octx->dst.nb[2]; \
const uint32_t nb3 = octx->dst.nb[3]; \
\
const uint32_t nr = ne10 * ne11 * ne12;
static int get_rows_thread_f32_f32(struct htp_ops_context * octx, const int nth, const int ith) {
get_rows_preamble;
// parallelize by src1 elements (which correspond to dst rows)
const uint32_t dr = octx->src1_nrows_per_thread;
const uint32_t ir0 = dr * ith;
const uint32_t ir1 = (ir0 + dr < nr) ? (ir0 + dr) : nr;
const bool is_i32 = (octx->src1.type == HTP_TYPE_I32);
for (uint32_t i = ir0; i < ir1; ++i) {
const uint32_t i12 = fastdiv(i, &octx->get_rows_div_ne10_ne11);
const uint32_t rem = i - i12 * ne11 * ne10;
const uint32_t i11 = fastdiv(rem, &octx->get_rows_div_ne10);
const uint32_t i10 = rem - i11 * ne10;
const uintptr_t src1_addr = octx->src1.data + i10*nb10 + i11*nb11 + i12*nb12;
uint32_t i01 = is_i32 ? *(int32_t *)src1_addr : *(int64_t *)src1_addr;
if (i01 >= ne01) {
// invalid index, skip for now to avoid crash
continue;
}
const uintptr_t src0_ptr = octx->src0.data + i01*nb01 + i11*nb02 + i12*nb03;
const uintptr_t dst_ptr = octx->dst.data + i10*nb1 + i11*nb2 + i12*nb3;
hvx_copy_fp32_uu((uint8_t *)dst_ptr, (const uint8_t *)src0_ptr, ne00);
}
return HTP_STATUS_OK;
}
static void get_rows_work_f32_f32(unsigned int n, unsigned int i, void *data) {
get_rows_thread_f32_f32((struct htp_ops_context *) data, n, i);
}
int op_get_rows(struct htp_ops_context * octx) {
get_rows_preamble;
if (octx->src0.type != HTP_TYPE_F32) {
return HTP_STATUS_NO_SUPPORT;
}
if (octx->dst.type != HTP_TYPE_F32) {
return HTP_STATUS_NO_SUPPORT;
}
if (octx->src1.type != HTP_TYPE_I32 && octx->src1.type != HTP_TYPE_I64) {
return HTP_STATUS_NO_SUPPORT;
}
if (octx->flags & HTP_OPFLAGS_SKIP_COMPUTE) {
return HTP_STATUS_OK;
}
octx->get_rows_div_ne10 = init_fastdiv_values(octx->src1.ne[0]);
octx->get_rows_div_ne10_ne11 = init_fastdiv_values(octx->src1.ne[0] * octx->src1.ne[1]);
const uint32_t n_jobs = MIN(nr, octx->n_threads);
octx->src1_nrows_per_thread = (nr + n_jobs - 1) / n_jobs;
worker_pool_run_func(octx->ctx->worker_pool, get_rows_work_f32_f32, octx, n_jobs);
return HTP_STATUS_OK;
}

View File

@ -11,11 +11,6 @@
#define HTP_MAX_NTHREADS 10
// FIXME: move these into matmul-ops
#define HTP_SPAD_SRC0_NROWS 16
#define HTP_SPAD_SRC1_NROWS 16
#define HTP_SPAD_DST_NROWS 2
// Main context for htp DSP backend
struct htp_context {
dspqueue_t queue;

View File

@ -36,6 +36,8 @@ enum htp_data_type {
HTP_TYPE_F16 = 1,
HTP_TYPE_Q4_0 = 2,
HTP_TYPE_Q8_0 = 8,
HTP_TYPE_I32 = 26,
HTP_TYPE_I64 = 27,
HTP_TYPE_MXFP4 = 39,
HTP_TYPE_COUNT
};
@ -57,6 +59,10 @@ enum htp_op {
HTP_OP_SOFTMAX = 11,
HTP_OP_ADD_ID = 12,
HTP_OP_ROPE = 13,
HTP_OP_FLASH_ATTN_EXT = 14,
HTP_OP_SET_ROWS = 15,
HTP_OP_SCALE = 16,
HTP_OP_GET_ROWS = 17,
INVALID
};
@ -137,6 +143,8 @@ struct htp_general_req {
struct htp_tensor src0; // Input0 tensor
struct htp_tensor src1; // Input1 tensor
struct htp_tensor src2; // Input2 tensor
struct htp_tensor src3; // Input3 tensor
struct htp_tensor src4; // Input4 tensor
struct htp_tensor dst; // Output tensor
// should be multiple of 64 bytes (cacheline)
@ -152,6 +160,6 @@ struct htp_general_rsp {
};
#define HTP_MAX_MESSAGE_SIZE sizeof(struct htp_general_req)
#define HTP_MAX_PACKET_BUFFERS 4
#define HTP_MAX_PACKET_BUFFERS 8
#endif /* HTP_MSG_H */

View File

@ -13,6 +13,7 @@
struct htp_spad {
uint8_t * data;
size_t stride;
size_t size;
size_t size_per_thread;
};
@ -26,11 +27,14 @@ struct htp_ops_context {
struct htp_tensor src0;
struct htp_tensor src1;
struct htp_tensor src2;
struct htp_tensor src3;
struct htp_tensor src4;
struct htp_tensor dst;
struct htp_spad src0_spad;
struct htp_spad src1_spad;
struct htp_spad src2_spad;
struct htp_spad src3_spad;
struct htp_spad dst_spad;
worker_pool_context_t * wpool; // worker pool
@ -49,6 +53,27 @@ struct htp_ops_context {
struct fastdiv_values src1_div3; // fastdiv values for ne3
struct fastdiv_values src1_div21; // fastdiv values for ne2 * ne1
struct fastdiv_values src3_div1; // fastdiv values for ne1
struct fastdiv_values src3_div2; // fastdiv values for ne2
struct fastdiv_values src3_div3; // fastdiv values for ne3
struct fastdiv_values src3_div21; // fastdiv values for ne2 * ne1
struct fastdiv_values broadcast_rk2;
struct fastdiv_values broadcast_rk3;
struct fastdiv_values broadcast_rv2;
struct fastdiv_values broadcast_rv3;
struct fastdiv_values mm_div_ne12_ne1; // fastdiv values for ne12 * ne1
struct fastdiv_values mm_div_ne1; // fastdiv values for ne1
struct fastdiv_values mm_div_r2; // fastdiv values for ne12 / ne02
struct fastdiv_values mm_div_r3; // fastdiv values for ne13 / ne03
struct fastdiv_values set_rows_div_ne12; // fastdiv values for ne12
struct fastdiv_values set_rows_div_ne11; // fastdiv values for ne11
struct fastdiv_values get_rows_div_ne10; // fastdiv values for ne10
struct fastdiv_values get_rows_div_ne10_ne11; // fastdiv values for ne10 * ne11
uint32_t flags;
};
@ -60,5 +85,8 @@ int op_activations(struct htp_ops_context * octx);
int op_softmax(struct htp_ops_context * octx);
int op_add_id(struct htp_ops_context * octx);
int op_rope(struct htp_ops_context * octx);
int op_flash_attn_ext(struct htp_ops_context * octx);
int op_set_rows(struct htp_ops_context * octx);
int op_get_rows(struct htp_ops_context * octx);
#endif /* HTP_OPS_H */

View File

@ -848,55 +848,6 @@ float hvx_self_sum_f32(const uint8_t * restrict src, const int num_elems) {
return hvx_vec_get_fp32(Q6_Vsf_equals_Vqf32(v));
}
void hvx_scale_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, const float scale) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_scale_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_scale_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector scale_vec = hvx_vec_splat_fp32(scale);
if (0 == unaligned_loop) {
HVX_Vector * vec_in1 = (HVX_Vector *) src;
HVX_Vector * vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, scale_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, scale_vec);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, scale_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
float hvx_self_max_f32(const uint8_t * restrict src, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
@ -1065,3 +1016,5 @@ void hvx_clamp_scalar_f32(const uint8_t * restrict src,
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, in_vec);
}
}

View File

@ -41,15 +41,24 @@ static inline HVX_Vector Q6_Vsf_equals_Vw(HVX_Vector const in)
}
#endif
static inline HVX_Vector hvx_vec_splat_fp32(float i) {
static inline HVX_Vector hvx_vec_splat_fp32(float v) {
union {
float f;
int32_t i;
} fp32 = { .f = i };
float f;
uint32_t i;
} fp32 = { .f = v };
return Q6_V_vsplat_R(fp32.i);
}
static inline HVX_Vector hvx_vec_splat_fp16(float v) {
union {
__fp16 f;
uint16_t i;
} fp16 = { .f = v };
return Q6_Vh_vsplat_R(fp16.i);
}
static inline void hvx_vec_store_u(void * addr, uint32_t n, HVX_Vector v) {
// Rotate as needed.
v = Q6_V_vlalign_VVR(v, v, (size_t) addr);
@ -242,6 +251,120 @@ static inline void hvx_copy_fp32_au(uint8_t * restrict dst, const uint8_t * rest
}
}
// copy n fp32 elements : source is unaligned, destination unaligned
static inline void hvx_copy_fp32_uu(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_UVector * restrict vdst = (HVX_UVector *) dst;
HVX_UVector * restrict vsrc = (HVX_UVector *) src;
assert((unsigned long) dst % 128 == 0);
uint32_t nvec = n / 32;
uint32_t nloe = n % 32;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
HVX_Vector v = vsrc[i];
vdst[i] = v;
}
if (nloe) {
HVX_Vector v = vsrc[i];
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(float), v);
}
}
// copy/convert n fp32 elements into n fp16 elements : source is unaligned, destination is unaligned
static inline void hvx_copy_fp16_fp32_uu(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_UVector * restrict vdst = (HVX_UVector *) dst; // fp16
HVX_UVector * restrict vsrc = (HVX_UVector *) src; // fp32
const HVX_Vector zero = Q6_V_vsplat_R(0);
uint32_t nvec = n / 64;
uint32_t nloe = n % 64;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
// Load y (fp32) and convert into fp16
HVX_Vector s0_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+0], zero); // 32 elements
HVX_Vector s1_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+1], zero); // 32 elements
HVX_Vector s_hf = Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(s1_qf, s0_qf));
vdst[i] = Q6_Vh_vdeal_Vh(s_hf);
}
if (nloe) {
// Load y (fp32) and convert into fp16
HVX_Vector s0_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+0], zero); // 32 elements
HVX_Vector s1_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+1], zero); // 32 elements
HVX_Vector s_hf = Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(s1_qf, s0_qf));
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(__fp16), Q6_Vh_vdeal_Vh(s_hf));
}
}
// copy/convert n fp32 elements into n fp16 elements : source is aligned, destination is unaligned
static inline void hvx_copy_fp16_fp32_ua(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_UVector * restrict vdst = (HVX_UVector *) dst; // fp16
HVX_Vector * restrict vsrc = (HVX_Vector *) src; // fp32
const HVX_Vector zero = Q6_V_vsplat_R(0);
uint32_t nvec = n / 64;
uint32_t nloe = n % 64;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
// Load y (fp32) and convert into fp16
HVX_Vector s0_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+0], zero); // 32 elements
HVX_Vector s1_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+1], zero); // 32 elements
HVX_Vector s_hf = Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(s1_qf, s0_qf));
vdst[i] = Q6_Vh_vdeal_Vh(s_hf);
}
if (nloe) {
// Load y (fp32) and convert into fp16
HVX_Vector s0_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+0], zero); // 32 elements
HVX_Vector s1_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+1], zero); // 32 elements
HVX_Vector s_hf = Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(s1_qf, s0_qf));
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(__fp16), Q6_Vh_vdeal_Vh(s_hf));
}
}
// copy/convert n fp32 elements into n fp16 elements : source is unaligned, destination is aligned
static inline void hvx_copy_fp16_fp32_au(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
HVX_Vector * restrict vdst = (HVX_Vector *) dst; // fp16
HVX_UVector * restrict vsrc = (HVX_UVector *) src; // fp32
const HVX_Vector zero = Q6_V_vsplat_R(0);
uint32_t nvec = n / 64;
uint32_t nloe = n % 64;
uint32_t i = 0;
#pragma unroll(4)
for (; i < nvec; i++) {
// Load y (fp32) and convert into fp16
HVX_Vector s0_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+0], zero); // 32 elements
HVX_Vector s1_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+1], zero); // 32 elements
HVX_Vector s_hf = Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(s1_qf, s0_qf));
vdst[i] = Q6_Vh_vdeal_Vh(s_hf);
}
if (nloe) {
// Load y (fp32) and convert into fp16
HVX_Vector s0_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+0], zero); // 32 elements
HVX_Vector s1_qf = Q6_Vqf32_vsub_VsfVsf(vsrc[i*2+1], zero); // 32 elements
HVX_Vector s_hf = Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(s1_qf, s0_qf));
hvx_vec_store_u((void *) &vdst[i], nloe * sizeof(__fp16), Q6_Vh_vdeal_Vh(s_hf));
}
}
// bcast 1 fp32 element from source to n fp32 elements in destination : destination is aligned
static inline void hvx_bcast_fp32_a(uint8_t * restrict dst, float elem, uint32_t n) {
HVX_Vector * restrict vdst = (HVX_Vector *) dst;
@ -273,8 +396,6 @@ static __attribute__((always_inline)) int32_t is_in_one_chunk(void * addr, uint3
return right_off <= chunk_size;
}
static void hvx_vec_dump_fp16_n(char * pref, HVX_Vector v, uint32_t n) {
HVX_VectorAlias u = { .v = v };
@ -531,13 +652,13 @@ static inline HVX_Vector hvx_vec_abs_fp32(HVX_Vector v) {
}
static inline HVX_Vector hvx_vec_neg_fp32(HVX_Vector v) {
#if __HTP_ARCH__ > 75
#if __HVX_ARCH__ > 75
return Q6_Vsf_vfneg_Vsf(v);
#else
// neg by setting the fp32 sign bit
HVX_Vector mask = Q6_V_vsplat_R(0x80000000);
return Q6_V_vxor_VV(v, mask);
#endif // __HTP_ARCH__ > 75
#endif // __HVX_ARCH__ > 75
}
// ====================================================
@ -976,6 +1097,24 @@ static inline HVX_Vector hvx_vec_fast_sigmoid_fp32_guard(HVX_Vector v,
return Q6_V_vmux_QVV(pred_min, out, Q6_V_vzero());
}
static inline HVX_Vector hvx_vec_tanh_fp32(HVX_Vector x) {
// tanh(x) = 2 * sigmoid(2x) - 1
HVX_Vector two = hvx_vec_splat_fp32(2.0f);
HVX_Vector one = hvx_vec_splat_fp32(1.0f);
HVX_Vector x2 = Q6_Vqf32_vmpy_VsfVsf(x, two);
static const float kMinExp = -87.f; // 0
static const float kMaxExp = 87.f; // 1
HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
HVX_Vector min_exp = hvx_vec_splat_fp32(kMinExp);
HVX_Vector sig2x = hvx_vec_fast_sigmoid_fp32_guard(Q6_Vsf_equals_Vqf32(x2), one, max_exp, min_exp);
HVX_Vector res = Q6_Vqf32_vmpy_VsfVsf(sig2x, two);
res = Q6_Vqf32_vsub_Vqf32Vsf(res, one);
return Q6_Vsf_equals_Vqf32(res);
}
static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
int step_of_1 = num_elems >> 5;
int remaining = num_elems - step_of_1 * VLEN_FP32;
@ -1056,6 +1195,115 @@ static inline void hvx_sigmoid_f32(const uint8_t * restrict src, uint8_t * restr
}
}
static inline void hvx_scale_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src, const int n, const float scale) {
int nvec = n / VLEN_FP32;
int nloe = n % VLEN_FP32;
HVX_Vector vs = hvx_vec_splat_fp32(scale);
HVX_Vector * vsrc = (HVX_Vector *) src;
HVX_Vector * vdst = (HVX_Vector *) dst;
uint32_t i = 0;
#pragma unroll(4)
for (i = 0; i < nvec; ++i) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(vsrc[i], vs);
vdst[i] = Q6_Vsf_equals_Vqf32(v);
}
if (nloe) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(vsrc[i], vs);
hvx_vec_store_u((void *) &vdst[i], nloe * 4, Q6_Vsf_equals_Vqf32(v));
}
}
static inline void hvx_scale_f32_uu(uint8_t * restrict dst, const uint8_t * restrict src, const int n, const float scale) {
int nvec = n / VLEN_FP32;
int nloe = n % VLEN_FP32;
HVX_Vector vs = hvx_vec_splat_fp32(scale);
HVX_UVector * vsrc = (HVX_UVector *) src;
HVX_UVector * vdst = (HVX_UVector *) dst;
uint32_t i = 0;
#pragma unroll(4)
for (i = 0; i < nvec; ++i) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(vsrc[i], vs);
vdst[i] = Q6_Vsf_equals_Vqf32(v);
}
if (nloe) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(vsrc[i], vs);
hvx_vec_store_u((void *) &vdst[i], nloe * 4, Q6_Vsf_equals_Vqf32(v));
}
}
static inline void hvx_scale_f32(uint8_t * restrict dst, const uint8_t * restrict src, const int n, const float scale) {
if (htp_is_aligned((void *) src, VLEN) && htp_is_aligned((void *) dst, VLEN)) {
hvx_scale_f32_aa(dst, src, n, scale);
} else {
hvx_scale_f32_uu(dst, src, n, scale);
}
}
static inline void hvx_scale_offset_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src, const int n, const float scale, const float offset) {
int nvec = n / VLEN_FP32;
int nloe = n % VLEN_FP32;
HVX_Vector vs = hvx_vec_splat_fp32(scale);
HVX_Vector vo = hvx_vec_splat_fp32(offset);
HVX_Vector * vsrc = (HVX_Vector *) src;
HVX_Vector * vdst = (HVX_Vector *) dst;
uint32_t i = 0;
#pragma unroll(4)
for (i = 0; i < nvec; ++i) {
HVX_Vector v = Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vmpy_VsfVsf(vsrc[i], vs), vo);
vdst[i] = Q6_Vsf_equals_Vqf32(v);
}
if (nloe) {
HVX_Vector v = Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vmpy_VsfVsf(vsrc[i], vs), vo);
hvx_vec_store_u((void *) &vdst[i], nloe * 4, Q6_Vsf_equals_Vqf32(v));
}
}
static inline void hvx_scale_offset_f32_uu(uint8_t * restrict dst, const uint8_t * restrict src, const int n, const float scale, const float offset) {
int nvec = n / VLEN_FP32;
int nloe = n % VLEN_FP32;
HVX_Vector vs = hvx_vec_splat_fp32(scale);
HVX_Vector vo = hvx_vec_splat_fp32(offset);
HVX_UVector * vsrc = (HVX_UVector *) src;
HVX_UVector * vdst = (HVX_UVector *) dst;
uint32_t i = 0;
#pragma unroll(4)
for (i = 0; i < nvec; ++i) {
HVX_Vector v = Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vmpy_VsfVsf(vsrc[i], vs), vo);
vdst[i] = Q6_Vsf_equals_Vqf32(v);
}
if (nloe) {
HVX_Vector v = Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vmpy_VsfVsf(vsrc[i], vs), vo);
hvx_vec_store_u((void *) &vdst[i], nloe * 4, Q6_Vsf_equals_Vqf32(v));
}
}
static inline void hvx_scale_offset_f32(uint8_t * restrict dst, const uint8_t * restrict src, const int n, const float scale, const float offset) {
if (htp_is_aligned((void *) src, VLEN) && htp_is_aligned((void *) dst, VLEN)) {
hvx_scale_offset_f32_aa(dst, src, n, scale, offset);
} else {
hvx_scale_offset_f32_uu(dst, src, n, scale, offset);
}
}
float hvx_sum_of_squares_f32(const uint8_t * restrict src, const int num_elems);
void hvx_mul_f32(const uint8_t * restrict src0,
@ -1090,7 +1338,6 @@ void hvx_sub_f32_opt(const uint8_t * restrict src0,
uint8_t * restrict dst,
const int num_elems);
void hvx_sub_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems);
void hvx_scale_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, const float scale);
void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems);
void hvx_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems);
void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, bool negate);

View File

@ -443,6 +443,45 @@ static void proc_matmul_req(struct htp_context * ctx,
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 1, &prof);
}
static void proc_get_rows_req(struct htp_context * ctx, struct htp_general_req * req, struct dspqueue_buffer * bufs) {
struct dspqueue_buffer rsp_bufs[1];
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[0].fd = bufs[2].fd;
rsp_bufs[0].ptr = bufs[2].ptr;
rsp_bufs[0].offset = bufs[2].offset;
rsp_bufs[0].size = bufs[2].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.src1 = req->src1;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.src1.data = (uint32_t) bufs[1].ptr;
octx.dst.data = (uint32_t) bufs[2].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_get_rows(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 1, &prof);
}
static void proc_matmul_id_req(struct htp_context * ctx,
struct htp_general_req * req,
struct dspqueue_buffer * bufs,
@ -668,7 +707,7 @@ static void proc_rope_req(struct htp_context * ctx,
uint32_t n_bufs) {
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
int write_idx = (n_bufs == 4) ? 3 : 2;
int write_idx = n_bufs - 1;
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[0].fd = bufs[write_idx].fd;
@ -716,6 +755,102 @@ static void proc_rope_req(struct htp_context * ctx,
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 1, &prof);
}
static void proc_set_rows_req(struct htp_context * ctx, struct htp_general_req * req, struct dspqueue_buffer * bufs) {
struct dspqueue_buffer rsp_bufs[1];
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[0].fd = bufs[2].fd;
rsp_bufs[0].ptr = bufs[2].ptr;
rsp_bufs[0].offset = bufs[2].offset;
rsp_bufs[0].size = bufs[2].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.src1 = req->src1;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.src1.data = (uint32_t) bufs[1].ptr;
octx.dst.data = (uint32_t) bufs[2].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_set_rows(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 1, &prof);
}
static void proc_flash_attn_ext_req(struct htp_context * ctx,
struct htp_general_req * req,
struct dspqueue_buffer * bufs,
uint32_t n_bufs) {
// Setup Op context
struct htp_ops_context octx;
memset(&octx, 0, sizeof(octx));
octx.ctx = ctx;
octx.n_threads = ctx->n_threads;
octx.src0 = req->src0;
octx.src1 = req->src1;
octx.src2 = req->src2;
octx.src3 = req->src3;
octx.src4 = req->src4;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
memcpy(octx.op_params, req->op_params, sizeof(octx.op_params));
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.src1.data = (uint32_t) bufs[1].ptr;
octx.src2.data = (uint32_t) bufs[2].ptr;
int last_buf = 3;
if (octx.src3.ne[0]) {
octx.src3.data = (uint32_t) bufs[last_buf++].ptr; // mask is valid
}
if (octx.src4.ne[0]) {
octx.src4.data = (uint32_t) bufs[last_buf++].ptr; // sinks is valid
}
octx.dst.data = (uint32_t) bufs[last_buf].ptr;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_flash_attn_ext(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
struct dspqueue_buffer rsp_buf = bufs[last_buf];
rsp_buf.flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
send_htp_rsp(ctx, req->op, rsp_status, &bufs[last_buf], 1, &prof);
}
static void htp_packet_callback(dspqueue_t queue, int error, void * context) {
struct htp_context * ctx = (struct htp_context *) context;
@ -790,6 +925,7 @@ static void htp_packet_callback(dspqueue_t queue, int error, void * context) {
break;
case HTP_OP_RMS_NORM:
case HTP_OP_SCALE:
if (n_bufs != 2) {
FARF(ERROR, "Bad unary-req buffer list");
continue;
@ -833,6 +969,30 @@ static void htp_packet_callback(dspqueue_t queue, int error, void * context) {
proc_rope_req(ctx, &req, bufs, n_bufs);
break;
case HTP_OP_FLASH_ATTN_EXT:
if (!(n_bufs >= 4 && n_bufs <= 6)) {
FARF(ERROR, "Bad flash-attn-ext-req buffer list");
continue;
}
proc_flash_attn_ext_req(ctx, &req, bufs, n_bufs);
break;
case HTP_OP_SET_ROWS:
if (n_bufs != 3) {
FARF(ERROR, "Bad set-rows-req buffer list");
continue;
}
proc_set_rows_req(ctx, &req, bufs);
break;
case HTP_OP_GET_ROWS:
if (n_bufs != 3) {
FARF(ERROR, "Bad get-rows-req buffer list");
continue;
}
proc_get_rows_req(ctx, &req, bufs);
break;
default:
FARF(ERROR, "Unknown Op %u", req.op);
break;

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,168 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-msg.h"
#include "htp-ops.h"
#include "hvx-utils.h"
#include "ops-utils.h"
#define set_rows_preamble \
const uint32_t ne00 = octx->src0.ne[0]; \
const uint32_t ne01 = octx->src0.ne[1]; \
const uint32_t ne02 = octx->src0.ne[2]; \
const uint32_t ne03 = octx->src0.ne[3]; \
\
const uint32_t ne10 = octx->src1.ne[0]; \
const uint32_t ne11 = octx->src1.ne[1]; \
const uint32_t ne12 = octx->src1.ne[2]; \
\
const uint32_t nb01 = octx->src0.nb[1]; \
const uint32_t nb02 = octx->src0.nb[2]; \
const uint32_t nb03 = octx->src0.nb[3]; \
\
const uint32_t nb10 = octx->src1.nb[0]; \
const uint32_t nb11 = octx->src1.nb[1]; \
const uint32_t nb12 = octx->src1.nb[2]; \
\
const uint32_t nb1 = octx->dst.nb[1]; \
const uint32_t nb2 = octx->dst.nb[2]; \
const uint32_t nb3 = octx->dst.nb[3]; \
\
const uint32_t ne1 = octx->dst.ne[1]; \
\
const uint32_t nr = ne01;
static int set_rows_thread_f32_f32(struct htp_ops_context * octx, const int nth, const int ith) {
set_rows_preamble;
// parallelize by rows of src0
const uint32_t dr = octx->src0_nrows_per_thread;
const uint32_t ir0 = dr * ith;
const uint32_t ir1 = (ir0 + dr < nr) ? (ir0 + dr) : nr;
const bool is_i32 = (octx->src1.type == HTP_TYPE_I32);
for (uint32_t i03 = 0; i03 < ne03; ++i03) {
for (uint32_t i02 = 0; i02 < ne02; ++i02) {
for (uint32_t i = ir0; i < ir1; ++i) {
const uint32_t i12 = fastmodulo(i03, ne12, &octx->set_rows_div_ne12);
const uint32_t i11 = fastmodulo(i02, ne11, &octx->set_rows_div_ne11);
const uint32_t i10 = i;
const uintptr_t src1_addr = octx->src1.data + i10*nb10 + i11*nb11 + i12*nb12;
uint32_t i1 = is_i32 ? *(int32_t *)src1_addr : *(int64_t *)src1_addr;
if (i1 >= ne1) {
// ignore invalid indices
continue;
}
const uintptr_t src0_ptr = octx->src0.data + i*nb01 + i02*nb02 + i03*nb03;
const uintptr_t dst_ptr = octx->dst.data + i1*nb1 + i02*nb2 + i03*nb3;
// copy row
hvx_copy_fp32_uu((uint8_t *)dst_ptr, (const uint8_t *)src0_ptr, ne00);
}
}
}
return HTP_STATUS_OK;
}
static int set_rows_thread_f16_f32(struct htp_ops_context * octx, const int nth, const int ith) {
set_rows_preamble;
// parallelize by rows of src0
const uint32_t dr = octx->src0_nrows_per_thread;
const uint32_t ir0 = dr * ith;
const uint32_t ir1 = (ir0 + dr < nr) ? (ir0 + dr) : nr;
const bool is_i32 = (octx->src1.type == HTP_TYPE_I32);
for (uint32_t i03 = 0; i03 < ne03; ++i03) {
for (uint32_t i02 = 0; i02 < ne02; ++i02) {
for (uint32_t i = ir0; i < ir1; ++i) {
const uint32_t i12 = fastmodulo(i03, ne12, &octx->set_rows_div_ne12);
const uint32_t i11 = fastmodulo(i02, ne11, &octx->set_rows_div_ne11);
const uint32_t i10 = i;
const uintptr_t src1_addr = octx->src1.data + i10*nb10 + i11*nb11 + i12*nb12;
uint32_t i1 = is_i32 ? *(int32_t *)src1_addr : *(int64_t *)src1_addr;
if (i1 >= ne1) {
// ignore invalid indices
continue;
}
const uint8_t* src0_ptr = (const uint8_t *) octx->src0.data + i*nb01 + i02*nb02 + i03*nb03;
uint8_t* dst_ptr = (uint8_t *) octx->dst.data + i1*nb1 + i02*nb2 + i03*nb3;
hvx_copy_fp16_fp32_uu(dst_ptr, src0_ptr, ne00);
}
}
}
return HTP_STATUS_OK;
}
static void set_rows_work_f16_f32(unsigned int n, unsigned int i, void *data) {
set_rows_thread_f16_f32((struct htp_ops_context *) data, n, i);
}
static void set_rows_work_f32_f32(unsigned int n, unsigned int i, void *data) {
set_rows_thread_f32_f32((struct htp_ops_context *) data, n, i);
}
int op_set_rows(struct htp_ops_context * octx) {
set_rows_preamble;
if (octx->src0.type != HTP_TYPE_F32) {
return HTP_STATUS_NO_SUPPORT;
}
if (octx->dst.type != HTP_TYPE_F32 && octx->dst.type != HTP_TYPE_F16) {
return HTP_STATUS_NO_SUPPORT;
}
if (octx->src1.type != HTP_TYPE_I32 && octx->src1.type != HTP_TYPE_I64) {
return HTP_STATUS_NO_SUPPORT;
}
if (octx->flags & HTP_OPFLAGS_SKIP_COMPUTE) {
return HTP_STATUS_OK;
}
octx->set_rows_div_ne12 = init_fastdiv_values(ne12);
octx->set_rows_div_ne11 = init_fastdiv_values(ne11);
const uint32_t n_jobs = MIN(nr, octx->n_threads);
octx->src0_nrows_per_thread = (nr + n_jobs - 1) / n_jobs;
switch(octx->dst.type) {
case HTP_TYPE_F32:
worker_pool_run_func(octx->ctx->worker_pool, set_rows_work_f32_f32, octx, n_jobs);
break;
case HTP_TYPE_F16:
worker_pool_run_func(octx->ctx->worker_pool, set_rows_work_f16_f32, octx, n_jobs);
break;
default:
return HTP_STATUS_NO_SUPPORT;
}
return HTP_STATUS_OK;
}

View File

@ -238,7 +238,7 @@ static void softmax_htp_f32(int nth, int ith, struct softmax_th_ctx * softmax_ct
hvx_fast_softmax_prep_f32((const uint8_t *) sp, (uint8_t *) wp0, ne00, softmax_ctx->scale,
(const uint8_t *) mp_f32, slope);
} else {
hvx_scale_f32((const uint8_t *) sp, (uint8_t *) wp0, ne00, softmax_ctx->scale);
hvx_scale_f32((uint8_t *) wp0, (const uint8_t *) sp, ne00, softmax_ctx->scale);
if (mp_f32) {
if (softmax_ctx->use_f16) {
for (int i = 0; i < ne00; ++i) {
@ -258,7 +258,7 @@ static void softmax_htp_f32(int nth, int ith, struct softmax_th_ctx * softmax_ct
float max = hvx_self_max_f32((const uint8_t *) wp0, ne00);
float sum = hvx_softmax_f32((const uint8_t *) wp0, (uint8_t *) wp2, (uint8_t *) wp1, ne00, max);
sum = sum > 0.0 ? (1.0 / sum) : 1;
hvx_scale_f32((const uint8_t *) wp2, (uint8_t *) dp, ne00, sum);
hvx_scale_f32((uint8_t *) dp, (const uint8_t *) wp2, ne00, sum);
}
}
}

View File

@ -83,6 +83,31 @@ static void hvx_fast_rms_norm_f32(const uint8_t * restrict src,
}
}
static void scale_htp_f32(const float * restrict src,
float * restrict dst,
uint8_t * restrict spad,
const uint32_t num_rows,
const uint32_t row_elems,
const size_t row_size,
int32_t * op_params,
int opt_path) {
float scale = 0.f;
float bias = 0.f;
memcpy(&scale, &op_params[0], sizeof(float));
memcpy(&bias, &op_params[1], sizeof(float));
for (uint32_t ir = 0; ir < num_rows; ir++) {
const float * restrict src_local = src + (ir * row_elems);
float * restrict dst_local = dst + (ir * row_elems);
if (ir + 1 < num_rows) {
htp_l2fetch(src_local + row_elems, 1, row_size, row_size);
}
hvx_scale_offset_f32((uint8_t *) dst_local, (const uint8_t *) src_local, row_elems, scale, bias);
}
}
static void rms_norm_htp_f32(const float * restrict src,
float * restrict dst,
uint8_t * restrict spad,
@ -110,7 +135,7 @@ static void rms_norm_htp_f32(const float * restrict src,
const float mean = sum / row_elems;
const float scale = 1.0f / sqrtf(mean + epsilon);
hvx_scale_f32((const uint8_t *) src_local, (uint8_t *) dst_local, row_elems, scale);
hvx_scale_f32((uint8_t *) dst_local, (const uint8_t *) src_local, row_elems, scale);
}
}
}
@ -162,6 +187,9 @@ static void unary_job_f32_per_thread(const struct htp_tensor * src,
case HTP_OP_RMS_NORM:
rms_norm_htp_f32(src_th, dst_th, spad_th, src0_end_row - src0_start_row, ne0, nb1, op_params, opt_path);
break;
case HTP_OP_SCALE:
scale_htp_f32(src_th, dst_th, spad_th, src0_end_row - src0_start_row, ne0, nb1, op_params, opt_path);
break;
default:
break;
@ -195,6 +223,10 @@ static int execute_op_unary_f32(struct htp_ops_context * octx) {
unary_op_func = unary_job_dispatcher_f32;
op_type = "rmsnorm-f32";
break;
case HTP_OP_SCALE:
unary_op_func = unary_job_dispatcher_f32;
op_type = "scale-f32";
break;
default:
FARF(ERROR, "Unsupported unary Op %u\n", octx->op);

View File

@ -219,6 +219,8 @@ struct ggml_metal_device_props {
bool use_shared_buffers;
bool supports_gpu_family_apple7;
int op_offload_min_batch_size;
};
ggml_metal_device_t ggml_metal_device_init(void);

View File

@ -782,6 +782,8 @@ ggml_metal_device_t ggml_metal_device_init(void) {
dev->props.supports_gpu_family_apple7 = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7];
dev->props.op_offload_min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
dev->props.max_buffer_size = dev->mtl_device.maxBufferLength;
dev->props.max_working_set_size = dev->mtl_device.recommendedMaxWorkingSetSize;
dev->props.max_theadgroup_memory_size = dev->mtl_device.maxThreadgroupMemoryLength;

View File

@ -625,14 +625,11 @@ static int64_t get_op_batch_size(const ggml_tensor * op) {
}
static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
return (op->op == GGML_OP_MUL_MAT ||
op->op == GGML_OP_MUL_MAT_ID) &&
get_op_batch_size(op) >= min_batch_size;
GGML_UNUSED(dev);
GGML_UNUSED(op);
get_op_batch_size(op) >= ggml_metal_device_get_props(ctx_dev)->op_offload_min_batch_size;
}
static ggml_backend_device_i ggml_backend_metal_device_i = {

View File

@ -9148,6 +9148,7 @@ typedef decltype(kernel_mul_mm_id_map0<1>) kernel_mul_mm_id_map0_t;
template [[host_name("kernel_mul_mm_id_map0_ne20_1" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<1>;
template [[host_name("kernel_mul_mm_id_map0_ne20_2" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<2>;
template [[host_name("kernel_mul_mm_id_map0_ne20_4" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<4>;
template [[host_name("kernel_mul_mm_id_map0_ne20_5" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<5>;
template [[host_name("kernel_mul_mm_id_map0_ne20_6" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<6>;
template [[host_name("kernel_mul_mm_id_map0_ne20_8" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<8>;
template [[host_name("kernel_mul_mm_id_map0_ne20_10")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<10>;

View File

@ -57,6 +57,7 @@ set(GGML_OPENCL_KERNELS
add
add_id
argsort
fill
clamp
cpy
cvt
@ -120,6 +121,8 @@ set(GGML_OPENCL_KERNELS
tsembd
upscale
tanh
expm1
softplus
pad
repeat
mul_mat_f16_f32

View File

@ -489,6 +489,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
cl_kernel kernel_relu;
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
cl_kernel kernel_fill;
cl_kernel kernel_clamp;
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
@ -537,6 +538,10 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_pad;
cl_kernel kernel_tanh_f32_nd;
cl_kernel kernel_tanh_f16_nd;
cl_kernel kernel_expm1_f32_nd;
cl_kernel kernel_expm1_f16_nd;
cl_kernel kernel_softplus_f32_nd;
cl_kernel kernel_softplus_f16_nd;
cl_kernel kernel_upscale;
cl_kernel kernel_upscale_bilinear;
cl_kernel kernel_concat_f32_contiguous;
@ -787,6 +792,24 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// fill
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "fill.cl.h"
};
#else
const std::string kernel_src = read_file("fill.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_fill = clCreateKernel(prog, "kernel_fill_f32", &err), err));
GGML_LOG_CONT(".");
CL_CHECK(clReleaseProgram(prog));
}
// clamp
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -1780,6 +1803,56 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
}
}
// expm1
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "expm1.cl.h"
};
#else
const std::string kernel_src = read_file("expm1.cl");
#endif
cl_program prog;
if (!kernel_src.empty()) {
prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_expm1_f32_nd = clCreateKernel(prog, "kernel_expm1_f32_nd", &err), err));
CL_CHECK((backend_ctx->kernel_expm1_f16_nd = clCreateKernel(prog, "kernel_expm1_f16_nd", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: expm1 kernel source not found or empty. Expm1 operation will not be available.\n");
prog = nullptr;
backend_ctx->kernel_expm1_f32_nd = nullptr;
backend_ctx->kernel_expm1_f16_nd = nullptr;
}
CL_CHECK(clReleaseProgram(prog));
}
// softplus
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "softplus.cl.h"
};
#else
const std::string kernel_src = read_file("softplus.cl");
#endif
cl_program prog;
if (!kernel_src.empty()) {
prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_softplus_f32_nd = clCreateKernel(prog, "kernel_softplus_f32_nd", &err), err));
CL_CHECK((backend_ctx->kernel_softplus_f16_nd = clCreateKernel(prog, "kernel_softplus_f16_nd", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: softplus kernel source not found or empty. Softplus operation will not be available.\n");
prog = nullptr;
backend_ctx->kernel_softplus_f32_nd = nullptr;
backend_ctx->kernel_softplus_f16_nd = nullptr;
}
CL_CHECK(clReleaseProgram(prog));
}
// upscale
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -3089,6 +3162,12 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_UNARY_OP_TANH:
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
case GGML_UNARY_OP_EXPM1:
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
case GGML_UNARY_OP_SOFTPLUS:
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
default:
return false;
}
@ -3104,6 +3183,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
default:
return false;
}
case GGML_OP_FILL:
return op->type == GGML_TYPE_F32 && ggml_is_contiguous(op);
case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SOFT_MAX:
@ -4266,8 +4347,8 @@ static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_
}
static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
*free = 1;
*total = 1;
*free = 0;
*total = 0;
GGML_UNUSED(dev);
}
@ -5860,6 +5941,36 @@ static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, co
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_fill(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src0);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offsetd = extrad->offset + dst->view_offs;
float v = 0.0f;
memcpy(&v, ((int32_t *) dst->op_params), sizeof(float));
const int64_t n = ggml_nelements(dst);
cl_kernel kernel = backend_ctx->kernel_fill;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(float), &v));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(float), &n));
size_t local_work_size[1] = { 256 };
size_t global_work_size[1] = { ((size_t)n + local_work_size[0] - 1) / local_work_size[0] * local_work_size[0] };
backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size, dst);
}
static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -6413,6 +6524,210 @@ static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_expm1(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0_abs = extra0->offset + src0->view_offs;
cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
cl_kernel kernel;
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_expm1_f32_nd;
} else if (dst->type == GGML_TYPE_F16) {
kernel = backend_ctx->kernel_expm1_f16_nd;
} else {
GGML_ASSERT(false && "Unsupported type for ggml_cl_expm1");
}
GGML_ASSERT(kernel != nullptr);
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int ne10 = dst->ne[0];
const int ne11 = dst->ne[1];
const int ne12 = dst->ne[2];
const int ne13 = dst->ne[3];
const cl_ulong nb10 = dst->nb[0];
const cl_ulong nb11 = dst->nb[1];
const cl_ulong nb12 = dst->nb[2];
const cl_ulong nb13 = dst->nb[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
size_t global_work_size[3];
if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
return;
}
global_work_size[0] = (size_t)ne10;
global_work_size[1] = (size_t)ne11;
global_work_size[2] = (size_t)ne12;
size_t lws0 = 16, lws1 = 4, lws2 = 1;
if (ne10 < 16) lws0 = ne10;
if (ne11 < 4) lws1 = ne11;
if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
size_t local_work_size[] = {lws0, lws1, lws2};
size_t* local_work_size_ptr = local_work_size;
if (!backend_ctx->non_uniform_workgroups) {
if (global_work_size[0] % local_work_size[0] != 0 ||
global_work_size[1] % local_work_size[1] != 0 ||
global_work_size[2] % local_work_size[2] != 0) {
local_work_size_ptr = NULL;
}
}
if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_softplus(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0_abs = extra0->offset + src0->view_offs;
cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
cl_kernel kernel;
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_softplus_f32_nd;
} else if (dst->type == GGML_TYPE_F16) {
kernel = backend_ctx->kernel_softplus_f16_nd;
} else {
GGML_ASSERT(false && "Unsupported type for ggml_cl_softplus");
}
GGML_ASSERT(kernel != nullptr);
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int ne10 = dst->ne[0];
const int ne11 = dst->ne[1];
const int ne12 = dst->ne[2];
const int ne13 = dst->ne[3];
const cl_ulong nb10 = dst->nb[0];
const cl_ulong nb11 = dst->nb[1];
const cl_ulong nb12 = dst->nb[2];
const cl_ulong nb13 = dst->nb[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
size_t global_work_size[3];
if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
return;
}
global_work_size[0] = (size_t)ne10;
global_work_size[1] = (size_t)ne11;
global_work_size[2] = (size_t)ne12;
size_t lws0 = 16, lws1 = 4, lws2 = 1;
if (ne10 < 16) lws0 = ne10;
if (ne11 < 4) lws1 = ne11;
if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
size_t local_work_size[] = {lws0, lws1, lws2};
size_t* local_work_size_ptr = local_work_size;
if (!backend_ctx->non_uniform_workgroups) {
if (global_work_size[0] % local_work_size[0] != 0 ||
global_work_size[1] % local_work_size[1] != 0 ||
global_work_size[2] % local_work_size[2] != 0) {
local_work_size_ptr = NULL;
}
}
if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -9586,6 +9901,18 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_tanh;
break;
case GGML_UNARY_OP_EXPM1:
if (!any_on_device) {
return false;
}
func = ggml_cl_expm1;
break;
case GGML_UNARY_OP_SOFTPLUS:
if (!any_on_device) {
return false;
}
func = ggml_cl_softplus;
break;
default:
return false;
} break;
@ -9595,6 +9922,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_glu;
break;
case GGML_OP_FILL:
if (!any_on_device) {
return false;
}
func = ggml_cl_fill;
break;
case GGML_OP_CLAMP:
if (!any_on_device) {
return false;

View File

@ -0,0 +1,82 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// expm1
//------------------------------------------------------------------------------
kernel void kernel_expm1_f32_nd(
global void * p_src0_base,
ulong off_src0_abs,
global void * p_dst_base,
ulong off_dst_abs,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*dst_val_ptr = exp(*src_val_ptr) - 1;
}
}
}
kernel void kernel_expm1_f16_nd(
global void * p_src0_base,
ulong off_src0_abs,
global void * p_dst_base,
ulong off_dst_abs,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*dst_val_ptr = exp(*src_val_ptr) - 1;
}
}
}

View File

@ -0,0 +1,17 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// fill
//------------------------------------------------------------------------------
__kernel void kernel_fill_f32(
__global float *dst,
ulong offsetd,
float v,
int n
) {
dst = (global float*)((global char*)dst + offsetd);
if(get_global_id(0) < n){
dst[get_global_id(0)] = v;
}
}

View File

@ -0,0 +1,88 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// softplus
//------------------------------------------------------------------------------
inline float softplus_f32(float x){
float ax = fabs(x);
float m = fmax(x, 0.0f);
return log1p(exp(-ax)) + m;
}
kernel void kernel_softplus_f32_nd(
global void * p_src0_base,
ulong off_src0_abs,
global void * p_dst_base,
ulong off_dst_abs,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*dst_val_ptr = softplus_f32(*src_val_ptr);
}
}
}
kernel void kernel_softplus_f16_nd(
global void * p_src0_base,
ulong off_src0_abs,
global void * p_dst_base,
ulong off_dst_abs,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*dst_val_ptr = (half)(softplus_f32((float)(*src_val_ptr)));
}
}
}

View File

@ -4286,6 +4286,7 @@ struct ggml_backend_sycl_device_context {
int device;
std::string name;
std::string description;
int op_offload_min_batch_size;
};
static const char * ggml_backend_sycl_device_get_name(ggml_backend_dev_t dev) {
@ -4674,9 +4675,8 @@ static int64_t get_op_batch_size(const ggml_tensor * op) {
}
static bool ggml_backend_sycl_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
return get_op_batch_size(op) >= min_batch_size;
GGML_UNUSED(dev);
ggml_backend_sycl_device_context * sycl_ctx = (ggml_backend_sycl_device_context *)dev->context;
return get_op_batch_size(op) >= sycl_ctx->op_offload_min_batch_size;
}
static ggml_backend_event_t
@ -4799,6 +4799,7 @@ ggml_backend_reg_t ggml_backend_sycl_reg() {
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_backend_sycl_reg_context * ctx = new ggml_backend_sycl_reg_context;
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
ggml_backend_sycl_device_context * dev_ctx = new ggml_backend_sycl_device_context;
@ -4812,6 +4813,7 @@ ggml_backend_reg_t ggml_backend_sycl_reg() {
prop, dpct::dev_mgr::instance().get_device(i))));
dev_ctx->description = prop.get_name();
dev_ctx->op_offload_min_batch_size = min_batch_size;
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_sycl_device_interface,

View File

@ -550,6 +550,8 @@ struct vk_device_struct {
uint64_t max_memory_allocation_size;
uint64_t max_buffer_size;
uint64_t suballocation_block_size;
uint64_t min_imported_host_pointer_alignment;
bool external_memory_host {};
bool fp16;
bool bf16;
bool pipeline_robustness;
@ -568,6 +570,7 @@ struct vk_device_struct {
bool uma;
bool prefer_host_memory;
bool float_controls_rte_fp16;
bool subgroup_basic;
bool subgroup_arithmetic;
bool subgroup_shuffle;
bool subgroup_ballot;
@ -1502,6 +1505,11 @@ template <> void init_pushconst_fastdiv(vk_op_sum_rows_push_constants &p) {
init_fastdiv_values(p.ne01, p.ne0_1mp, p.ne0_1L);
}
struct vk_quantize_q8_1_push_constants {
uint32_t ne;
uint32_t num_blocks;
};
// Allow pre-recording command buffers
struct vk_staging_memcpy {
vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
@ -2410,7 +2418,8 @@ static std::vector<uint32_t> ggml_vk_find_memory_properties(const vk::PhysicalDe
return indices;
}
static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std::initializer_list<vk::MemoryPropertyFlags> & req_flags_list) {
static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std::initializer_list<vk::MemoryPropertyFlags> & req_flags_list,
void *import_ptr = nullptr) {
VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags_list.begin()[0]) << ", " << to_string(req_flags_list.begin()[req_flags_list.size()-1]) << ")");
if (size > device->max_buffer_size) {
throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device buffer size limit");
@ -2439,6 +2448,12 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std
nullptr,
};
vk::ExternalMemoryBufferCreateInfo external_memory_bci;
if (import_ptr) {
external_memory_bci.handleTypes = vk::ExternalMemoryHandleTypeFlagBits::eHostAllocationEXT;
buffer_create_info.setPNext(&external_memory_bci);
}
buf->buffer = device->device.createBuffer(buffer_create_info);
vk::MemoryRequirements mem_req = device->device.getBufferMemoryRequirements(buf->buffer);
@ -2453,35 +2468,80 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std
mem_flags_info.setPNext(&mem_priority_info);
}
for (auto it = req_flags_list.begin(); it != req_flags_list.end(); it++) {
const auto & req_flags = *it;
const std::vector<uint32_t> memory_type_indices = ggml_vk_find_memory_properties(&mem_props, &mem_req, req_flags);
if (memory_type_indices.empty()) {
continue;
if (import_ptr) {
vk::MemoryHostPointerPropertiesEXT host_pointer_props;
try {
host_pointer_props = device->device.getMemoryHostPointerPropertiesEXT(vk::ExternalMemoryHandleTypeFlagBits::eHostAllocationEXT, import_ptr);
} catch (vk::SystemError& e) {
GGML_LOG_WARN("ggml_vulkan: Failed getMemoryHostPointerPropertiesEXT (%s)\n", e.what());
device->device.destroyBuffer(buf->buffer);
return {};
}
buf->memory_property_flags = req_flags;
vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties();
bool done = false;
uint32_t memory_type_idx;
vk::MemoryPropertyFlags property_flags = *req_flags_list.begin();
for (memory_type_idx = 0; memory_type_idx < 32; ++memory_type_idx) {
if (!(host_pointer_props.memoryTypeBits & (1u << memory_type_idx))) {
continue;
}
if (!(mem_req.memoryTypeBits & (1u << memory_type_idx))) {
continue;
}
for (auto mtype_it = memory_type_indices.begin(); mtype_it != memory_type_indices.end(); mtype_it++) {
try {
buf->device_memory = device->device.allocateMemory({ mem_req.size, *mtype_it, &mem_flags_info });
done = true;
vk::MemoryType memory_type = mem_props.memoryTypes[memory_type_idx];
// check for visible+coherent+cached. Other flags (e.g. devicelocal) are allowed
if ((memory_type.propertyFlags & property_flags) == property_flags) {
property_flags = memory_type.propertyFlags;
break;
} catch (const vk::SystemError& e) {
// loop and retry
// during last attempt throw the exception
if (it + 1 == req_flags_list.end() && mtype_it + 1 == memory_type_indices.end()) {
device->device.destroyBuffer(buf->buffer);
throw e;
}
}
}
if (memory_type_idx == 32) {
GGML_LOG_WARN("ggml_vulkan: Memory type for host allocation not found\n");
device->device.destroyBuffer(buf->buffer);
return {};
}
if (done) {
break;
buf->memory_property_flags = mem_props.memoryTypes[memory_type_idx].propertyFlags;
try {
vk::ImportMemoryHostPointerInfoEXT import_info;
import_info.handleType = vk::ExternalMemoryHandleTypeFlagBits::eHostAllocationEXT;
import_info.pHostPointer = import_ptr;
import_info.setPNext(&mem_flags_info);
buf->device_memory = device->device.allocateMemory({ size, memory_type_idx, &import_info });
} catch (const vk::SystemError& e) {
}
} else {
for (auto it = req_flags_list.begin(); it != req_flags_list.end(); it++) {
const auto & req_flags = *it;
const std::vector<uint32_t> memory_type_indices = ggml_vk_find_memory_properties(&mem_props, &mem_req, req_flags);
if (memory_type_indices.empty()) {
continue;
}
buf->memory_property_flags = req_flags;
bool done = false;
for (auto mtype_it = memory_type_indices.begin(); mtype_it != memory_type_indices.end(); mtype_it++) {
try {
buf->device_memory = device->device.allocateMemory({ mem_req.size, *mtype_it, &mem_flags_info });
done = true;
break;
} catch (const vk::SystemError& e) {
// loop and retry
// during last attempt throw the exception
if (it + 1 == req_flags_list.end() && mtype_it + 1 == memory_type_indices.end()) {
device->device.destroyBuffer(buf->buffer);
throw e;
}
}
}
if (done) {
break;
}
}
}
@ -2492,8 +2552,12 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std
buf->ptr = nullptr;
if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
buf->ptr = device->device.mapMemory(buf->device_memory, 0, VK_WHOLE_SIZE);
if (import_ptr) {
buf->ptr = import_ptr;
} else {
if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
buf->ptr = device->device.mapMemory(buf->device_memory, 0, VK_WHOLE_SIZE);
}
}
device->device.bindBufferMemory(buf->buffer, buf->device_memory, 0);
@ -2938,6 +3002,15 @@ static void ggml_vk_load_shaders(vk_device& device) {
if ((device->architecture == AMD_GCN) && (device->driver_id != vk::DriverId::eAmdProprietary)) {
m_warptile_mmq = m_warptile_mmq_int = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 };
m_warptile_mmqid = m_warptile_mmqid_int = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 };
} else if (device->vendor_id == VK_VENDOR_ID_AMD && device->coopmat_support) {
// This is intentionally using tx_m values, slight performance increase
l_warptile = { 256, 128, 128, 16, subgroup_size_8, 64, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
l_warptile_mmq = l_warptile_mmq_int = { 256, 128, 128, 32, subgroup_size_8, 64, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
l_warptile_mmq_int_k = { 256, 128, 128, 32, subgroup_size_16, 64, 1, 4, 2, 1, subgroup_size_16 };
} else if (device->vendor_id == VK_VENDOR_ID_INTEL && device->coopmat_support && device->architecture == INTEL_XE2) {
// Xe2/Xe3 with coopmat enabled - warptile performance tuning
l_warptile = { 512, 128, 128, 16, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
l_warptile_mmq = { 512, 128, 128, 32, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
}
l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 };
@ -3278,12 +3351,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
GGML_ASSERT(device->subgroup_ballot);
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_subgroup_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id);
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_subgroup_f16_f32, wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id);
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id);
}
#endif
@ -3391,9 +3464,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
#endif
if (device->subgroup_ballot && device->subgroup_require_full_support && subgroup_min_size_16) {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile_id, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_subgroup_f16_f32, wg_denoms, warptile_id, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile_id, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_subgroup_f16_f32, wg_denoms, warptile_id, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_subgroup_q4_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size);
@ -3435,9 +3508,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
}
#endif
} else {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_q4_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
@ -3552,9 +3625,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
#endif
if (device->subgroup_ballot && device->subgroup_require_full_support && subgroup_min_size_16) {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_subgroup_f16, , wg_denoms, warptile_id, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_subgroup_f16_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_subgroup_f16, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_subgroup_f16_f32, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size_16);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_subgroup_q4_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size);
@ -3578,9 +3651,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_subgroup_iq4_nl_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size);
CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f32acc, matmul_id_subgroup_mxfp4_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, mul_mat_subgroup_size);
} else {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
@ -3620,6 +3693,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
m_wg_denoms = { 64, 64, 1 };
s_wg_denoms = { 32, 32, 1 };
if (device->vendor_id == VK_VENDOR_ID_INTEL && device->architecture == INTEL_XE2) {
// Xe2/Xe3 - bf16 warptile performance tuning
l_warptile = { 512, 128, 128, 16, subgroup_size_8, 32, 2, 4, 4, 1, subgroup_size_8 };
}
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
}
@ -3773,22 +3851,22 @@ static void ggml_vk_load_shaders(vk_device& device) {
const uint32_t subgroup_size_int = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size;
const uint32_t wg_size_subgroup_int = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_int : (subgroup_size_int * 4);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_q8_1_f32", arr_dmmv_id_q4_0_q8_1_f32_len[reduc], arr_dmmv_id_q4_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_q8_1_f32", arr_dmmv_id_q4_1_q8_1_f32_len[reduc], arr_dmmv_id_q4_1_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_q8_1_f32", arr_dmmv_id_q5_0_q8_1_f32_len[reduc], arr_dmmv_id_q5_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_q8_1_f32", arr_dmmv_id_q5_1_q8_1_f32_len[reduc], arr_dmmv_id_q5_1_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_q8_1_f32", arr_dmmv_id_q8_0_q8_1_f32_len[reduc], arr_dmmv_id_q8_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_q8_1_f32", arr_dmmv_id_q4_0_q8_1_f32_len[reduc], arr_dmmv_id_q4_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_q8_1_f32", arr_dmmv_id_q4_1_q8_1_f32_len[reduc], arr_dmmv_id_q4_1_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_q8_1_f32", arr_dmmv_id_q5_0_q8_1_f32_len[reduc], arr_dmmv_id_q5_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_q8_1_f32", arr_dmmv_id_q5_1_q8_1_f32_len[reduc], arr_dmmv_id_q5_1_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_q8_1_f32", arr_dmmv_id_q8_0_q8_1_f32_len[reduc], arr_dmmv_id_q8_0_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_MXFP4], "mul_mat_vec_id_mxfp4_q8_1_f32", arr_dmmv_id_mxfp4_q8_1_f32_len[reduc], arr_dmmv_id_mxfp4_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_MXFP4], "mul_mat_vec_id_mxfp4_q8_1_f32", arr_dmmv_id_mxfp4_q8_1_f32_len[reduc], arr_dmmv_id_mxfp4_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq_int, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_q8_1_f32", arr_dmmv_id_q2_k_q8_1_f32_len[reduc], arr_dmmv_id_q2_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 2*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_q8_1_f32", arr_dmmv_id_q3_k_q8_1_f32_len[reduc], arr_dmmv_id_q3_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_q8_1_f32", arr_dmmv_id_q4_k_q8_1_f32_len[reduc], arr_dmmv_id_q4_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_q8_1_f32", arr_dmmv_id_q5_k_q8_1_f32_len[reduc], arr_dmmv_id_q5_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_q8_1_f32", arr_dmmv_id_q6_k_q8_1_f32_len[reduc], arr_dmmv_id_q6_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_q8_1_f32", arr_dmmv_id_q2_k_q8_1_f32_len[reduc], arr_dmmv_id_q2_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 2*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_q8_1_f32", arr_dmmv_id_q3_k_q8_1_f32_len[reduc], arr_dmmv_id_q3_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_q8_1_f32", arr_dmmv_id_q4_k_q8_1_f32_len[reduc], arr_dmmv_id_q4_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_q8_1_f32", arr_dmmv_id_q5_k_q8_1_f32_len[reduc], arr_dmmv_id_q5_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_q8_1_f32", arr_dmmv_id_q6_k_q8_1_f32_len[reduc], arr_dmmv_id_q6_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_IQ1_S], "mul_mat_vec_id_iq1_s_q8_1_f32", arr_dmmv_id_iq1_s_q8_1_f32_len[reduc], arr_dmmv_id_iq1_s_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(0), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(0)}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_IQ1_M], "mul_mat_vec_id_iq1_m_q8_1_f32", arr_dmmv_id_iq1_m_q8_1_f32_len[reduc], arr_dmmv_id_iq1_m_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(0), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(0)}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_IQ1_S], "mul_mat_vec_id_iq1_s_q8_1_f32", arr_dmmv_id_iq1_s_q8_1_f32_len[reduc], arr_dmmv_id_iq1_s_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_iq_int(0), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(0)}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_IQ1_M], "mul_mat_vec_id_iq1_m_q8_1_f32", arr_dmmv_id_iq1_m_q8_1_f32_len[reduc], arr_dmmv_id_iq1_m_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_iq_int(0), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(0)}, 1, true, use_subgroups, subgroup_size_int);
}
#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
}
@ -3876,9 +3954,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_split_k_reduce, "fa_split_k_reduce", fa_split_k_reduce_len, fa_split_k_reduce_data, "main", 3, 5 * sizeof(uint32_t), {1, device->subgroup_size, 1}, {device->subgroup_size}, 1, true);
if (device->subgroup_clustered && device->subgroup_require_full_support) {
ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_subgroup_len, quantize_q8_1_x4_subgroup_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true);
ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_subgroup_len, quantize_q8_1_x4_subgroup_data, "main", 2, sizeof(vk_quantize_q8_1_push_constants), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true);
} else {
ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_len, quantize_q8_1_x4_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_len, quantize_q8_1_x4_data, "main", 2, sizeof(vk_quantize_q8_1_push_constants), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1);
}
for (uint32_t i = 0; i < p021_max_gqa_ratio; ++i) {
@ -4086,9 +4164,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_add1_f16_f32, "add1_f16_f32", add1_f16_f32_len, add1_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add1_f32_f32, "add1_f32_f32", add1_f32_f32_len, add1_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_arange_f32, "arange_f32", arange_f32_len, arange_f32_data, "main", 1, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_arange_f32, "arange_f32", arange_f32_len, arange_f32_data, "main", 1, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_fill_f32, "fill_f32", fill_f32_len, fill_f32_data, "main", 1, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_fill_f32, "fill_f32", fill_f32_len, fill_f32_data, "main", 1, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
#define CREATE_GLU(name) \
if (device->float_controls_rte_fp16) { \
@ -4234,8 +4312,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv7_f32, "rwkv_wkv7_f32", rwkv_wkv7_f32_len, rwkv_wkv7_f32_data, "main", 8, sizeof(vk_op_rwkv_wkv7_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
if (device->subgroup_arithmetic && device->subgroup_require_full_support) {
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_128_f32", ssm_scan_subgroup_f32_len, ssm_scan_subgroup_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1, true, true);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_256_f32", ssm_scan_subgroup_f32_len, ssm_scan_subgroup_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1, true, true);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_128_f32", ssm_scan_subgroup_f32_len, ssm_scan_subgroup_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size}, 1, true, true);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_256_f32", ssm_scan_subgroup_f32_len, ssm_scan_subgroup_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size}, 1, true, true);
} else {
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_128_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1, true, true);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_256_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1, true, true);
@ -4447,6 +4525,8 @@ static vk_device ggml_vk_get_device(size_t idx) {
} else if (strcmp("VK_EXT_memory_priority", properties.extensionName) == 0 &&
getenv("GGML_VK_ENABLE_MEMORY_PRIORITY")) {
device->memory_priority = true;
} else if (strcmp("VK_EXT_external_memory_host", properties.extensionName) == 0) {
device->external_memory_host = true;
}
}
@ -4461,6 +4541,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
vk::PhysicalDeviceVulkan12Properties vk12_props;
vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR shader_integer_dot_product_props;
vk::PhysicalDeviceExternalMemoryHostPropertiesEXT external_memory_host_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
@ -4500,11 +4581,22 @@ static vk_device ggml_vk_get_device(size_t idx) {
last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_props;
}
if (device->external_memory_host) {
last_struct->pNext = (VkBaseOutStructure *)&external_memory_host_props;
last_struct = (VkBaseOutStructure *)&external_memory_host_props;
}
device->physical_device.getProperties2(&props2);
device->properties = props2.properties;
device->vendor_id = device->properties.vendorID;
device->driver_id = driver_props.driverID;
if (device->driver_id == vk::DriverId::eMoltenvk) {
// Disable external_memory_host until https://github.com/KhronosGroup/MoltenVK/pull/2622
// is available in the Vulkan SDK.
device->external_memory_host = false;
}
// Implementing the async backend interfaces seems broken on older Intel HW,
// see https://github.com/ggml-org/llama.cpp/issues/17302.
device->support_async = (device->vendor_id != VK_VENDOR_ID_INTEL ||
@ -4557,6 +4649,8 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16;
device->subgroup_basic = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
(vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eBasic);
device->subgroup_arithmetic = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
(vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eArithmetic);
#ifdef __APPLE__
@ -4586,6 +4680,8 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->integer_dot_product = device->integer_dot_product && shader_integer_dot_product_props.integerDotProduct4x8BitPackedSignedAccelerated;
device->min_imported_host_pointer_alignment = external_memory_host_props.minImportedHostPointerAlignment;
device->max_workgroup_size_log2 = uint32_t(log2f(float(device->properties.limits.maxComputeWorkGroupInvocations)));
std::vector<vk::QueueFamilyProperties> queue_family_props = device->physical_device.getQueueFamilyProperties();
@ -4717,6 +4813,10 @@ static vk_device ggml_vk_get_device(size_t idx) {
device_extensions.push_back("VK_KHR_pipeline_executable_properties");
}
if (device->external_memory_host) {
device_extensions.push_back("VK_EXT_external_memory_host");
}
vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2);
device->pipeline_executable_properties_support = pipeline_executable_properties_support;
@ -4983,11 +5083,23 @@ static vk_device ggml_vk_get_device(size_t idx) {
switch (device->vendor_id) {
#ifndef GGML_VULKAN_RUN_TESTS
case VK_VENDOR_ID_AMD:
device->mul_mat_l[i] = device->coopmat_support;
device->mul_mat_m[i] = true;
device->mul_mat_s[i] = true;
device->mul_mat_id_l[i] = false;
device->mul_mat_id_m[i] = true;
device->mul_mat_id_s[i] = true;
break;
case VK_VENDOR_ID_INTEL:
device->mul_mat_l[i] = false;
if (!device->coopmat_support || device->architecture != INTEL_XE2) {
device->mul_mat_l[i] = false;
device->mul_mat_id_l[i] = false;
} else {
device->mul_mat_l[i] = true; // if coopmat & XE2+, allow large matmul warptile config for Intel
device->mul_mat_id_l[i] = true;
}
device->mul_mat_m[i] = true;
device->mul_mat_s[i] = true;
device->mul_mat_id_l[i] = false;
device->mul_mat_id_m[i] = true;
device->mul_mat_id_s[i] = true;
break;
@ -5998,6 +6110,7 @@ static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context&
GGML_ASSERT(ctx->descriptor_set_idx < ctx->descriptor_sets.size());
GGML_ASSERT(descriptor_buffer_infos.size() <= MAX_PARAMETER_COUNT);
GGML_ASSERT(pipeline->parameter_count == descriptor_buffer_infos.size());
GGML_ASSERT(pipeline->push_constant_size == push_constant_size(push_constants));
vk::DescriptorSet& descriptor_set = ctx->descriptor_sets[ctx->descriptor_set_idx++];
vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() };
@ -6780,7 +6893,12 @@ static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& sub
const uint64_t max_elements = std::min<uint64_t>(uint64_t{ctx->device->properties.limits.maxComputeWorkGroupCount[0]} * pipeline->wg_denoms[0], std::numeric_limits<uint32_t>::max());
const uint32_t elements = std::min(ne, static_cast<uint32_t>(max_elements));
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, std::array<uint32_t, 2>{ ne, num_blocks }, { elements, 1, 1 });
const vk_quantize_q8_1_push_constants pc = {
ne,
num_blocks,
};
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, pc, { elements, 1, 1 });
ggml_vk_sync_buffers(ctx, subctx);
}
@ -9771,8 +9889,9 @@ static void ggml_vk_ssm_scan(ggml_backend_vk_context * ctx, vk_context& subctx,
std::array<uint32_t, 3> elements;
const int splitH = 16;
const uint32_t num_workgroups_x = CEIL_DIV(n_head * head_dim, splitH);
const uint32_t d_state = src0->ne[0];
uint32_t num_subgroups = d_state / ctx->device->subgroup_size;
const uint32_t num_workgroups_x = CEIL_DIV(n_head * head_dim, num_subgroups);
const uint32_t num_workgroups_y = n_seq;
elements = { num_workgroups_x, num_workgroups_y, 1 };
@ -14150,6 +14269,7 @@ struct ggml_backend_vk_device_context {
std::string description;
bool is_integrated_gpu;
std::string pci_bus_id;
int op_offload_min_batch_size;
};
static const char * ggml_backend_vk_device_get_name(ggml_backend_dev_t dev) {
@ -14206,6 +14326,19 @@ static ggml_backend_t ggml_backend_vk_device_init(ggml_backend_dev_t dev, const
}
static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
// reject any tensors larger than the max buffer size
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op->src[i] && ggml_nbytes(op->src[i]) > device->max_buffer_size) {
return false;
}
}
if (ggml_nbytes(op) > device->max_buffer_size) {
return false;
}
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
@ -14254,8 +14387,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_MUL_MAT_ID:
{
ggml_type src0_type = op->src[0]->type;
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
if (op->op == GGML_OP_MUL_MAT_ID) {
if (!device->mul_mat_id_s[src0_type] && !device->mul_mat_id_m[src0_type] && !device->mul_mat_id_l[src0_type]) {
// If there's not enough shared memory for row_ids and the result tile, fallback to CPU
@ -14316,8 +14447,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
}
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
bool coopmat2 = device->coopmat2;
uint32_t HSK = op->src[1]->ne[0];
uint32_t HSV = op->src[2]->ne[0];
@ -14539,8 +14668,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (!ggml_is_contiguous(op) || !ggml_is_contiguous(op->src[0])) {
return false;
}
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
// pipeline_argsort_large_f32 requires vulkan memory model.
if (device->vulkan_memory_model) {
return true;
@ -14553,8 +14680,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (!ggml_is_contiguous(op) || !ggml_is_contiguous(op->src[0])) {
return false;
}
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
// We could potentially support larger, using argsort to sort the
// whole thing. Not clear if this is needed.
uint32_t min_pipeline = (uint32_t)log2f(float(op->ne[0])) + 1;
@ -14601,8 +14726,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_CUMSUM:
{
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
if (device->subgroup_arithmetic && device->subgroup_require_full_support) {
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous_rows(op->src[0]);
}
@ -14610,9 +14733,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
}
case GGML_OP_SOLVE_TRI:
{
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
if (op->type != GGML_TYPE_F32 || op->src[0]->type != GGML_TYPE_F32) {
return false;
}
@ -14677,14 +14797,13 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
return false;
}
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
size_t shmem_size = d_state * sizeof(float);
const uint32_t SPLIT_H = 16;
if (shmem_size > device->properties.limits.maxComputeSharedMemorySize) {
return false;
}
size_t stateC_size = SPLIT_H * d_state * sizeof(float);
if (stateC_size > device->properties.limits.maxComputeSharedMemorySize) {
if (!device->subgroup_basic) {
return false;
}
@ -14724,12 +14843,10 @@ static bool ggml_backend_vk_device_supports_buft(ggml_backend_dev_t dev, ggml_ba
}
static bool ggml_backend_vk_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
ggml_backend_vk_device_context * dev_ctx = (ggml_backend_vk_device_context *)dev->context;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
UNUSED(dev);
return (op->ne[1] >= dev_ctx->op_offload_min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= dev_ctx->op_offload_min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
}
static ggml_backend_event_t ggml_backend_vk_device_event_new(ggml_backend_dev_t dev) {
@ -14773,6 +14890,51 @@ static void ggml_backend_vk_device_event_synchronize(ggml_backend_dev_t dev, ggm
VK_CHECK(device->device.waitForFences({ vkev->fence }, true, UINT64_MAX), "event_synchronize");
}
static vk_buffer ggml_vk_buffer_from_host_ptr(vk_device & device, void * ptr, size_t size) {
if (!device->external_memory_host) {
return {};
}
uintptr_t uptr = reinterpret_cast<uintptr_t>(ptr);
if (uptr & (device->min_imported_host_pointer_alignment - 1)) {
return {};
}
if (size & (device->min_imported_host_pointer_alignment - 1)) {
return {};
}
const vk::MemoryPropertyFlags property_flags = vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached;
vk_buffer buf {};
try {
buf = ggml_vk_create_buffer(device, size, { property_flags }, ptr);
} catch (vk::SystemError& e) {
GGML_LOG_WARN("ggml_vulkan: Failed ggml_vk_create_buffer (%s)\n", e.what());
}
return buf;
}
static ggml_backend_buffer_t ggml_backend_vk_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
VK_LOG_DEBUG("ggml_backend_vk_device_buffer_from_host_ptr(backend=" << dev << ", ptr=" << ptr << ", size=" << size << ")");
GGML_UNUSED(max_tensor_size);
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
vk_buffer buf = ggml_vk_buffer_from_host_ptr(device, ptr, size);
if (!buf) {
return {};
}
ggml_backend_vk_buffer_context * bufctx = new ggml_backend_vk_buffer_context(device, std::move(buf), device->name);
ggml_backend_buffer_t ret = ggml_backend_buffer_init(ggml_backend_vk_device_get_buffer_type(dev), ggml_backend_vk_buffer_interface, bufctx, size);
return ret;
}
static const struct ggml_backend_device_i ggml_backend_vk_device_i = {
/* .get_name = */ ggml_backend_vk_device_get_name,
/* .get_description = */ ggml_backend_vk_device_get_description,
@ -14782,7 +14944,7 @@ static const struct ggml_backend_device_i ggml_backend_vk_device_i = {
/* .init_backend = */ ggml_backend_vk_device_init,
/* .get_buffer_type = */ ggml_backend_vk_device_get_buffer_type,
/* .get_host_buffer_type = */ ggml_backend_vk_device_get_host_buffer_type,
/* .buffer_from_host_ptr = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_vk_device_buffer_from_host_ptr,
/* .supports_op = */ ggml_backend_vk_device_supports_op,
/* .supports_buft = */ ggml_backend_vk_device_supports_buft,
/* .offload_op = */ ggml_backend_vk_device_offload_op,
@ -14810,6 +14972,7 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) {
ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context;
char desc[256];
@ -14819,6 +14982,7 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
ctx->description = desc;
ctx->is_integrated_gpu = ggml_backend_vk_get_device_type(i) == vk::PhysicalDeviceType::eIntegratedGpu;
ctx->pci_bus_id = ggml_backend_vk_get_device_pci_id(i);
ctx->op_offload_min_batch_size = min_batch_size;
devices.push_back(new ggml_backend_device {
/* .iface = */ ggml_backend_vk_device_i,
/* .reg = */ reg,

View File

@ -462,7 +462,8 @@ vec2 get_dm(uint ib, uint a_offset) {
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(float(data_a[a_offset + ib].d), float(data_a[a_offset + ib].m));
const vec2 dm = vec2(data_a_packed32[a_offset + ib].dm);
return dm;
}
#endif

View File

@ -47,7 +47,7 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
#endif
#elif defined(DATA_A_Q4_0)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + 2 * row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 4;
const uint ib = idx / 4;
const uint iqs = idx & 0x03;
@ -63,16 +63,15 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
buf_a[buf_idx + 9] = FLOAT_TYPE_VEC2(v1.zw);
#elif defined(DATA_A_Q4_1)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + 2 * row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 4;
const uint ib = idx / 4;
const uint iqs = idx & 0x03;
const float d = float(data_a_packed16[ib].d);
const float m = float(data_a_packed16[ib].m);
const uint vui = uint(data_a_packed16[ib].qs[2*iqs]) | (uint(data_a_packed16[ib].qs[2*iqs + 1]) << 16);
const vec4 v0 = vec4(unpack8(vui & 0x0F0F0F0F)) * d + m;
const vec4 v1 = vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) * d + m;
const vec2 dm = vec2(data_a_packed32[ib].dm);
const uint vui = data_a_packed32[ib].qs[iqs];
const vec4 v0 = vec4(unpack8(vui & 0x0F0F0F0F)) * dm.x + dm.y;
const vec4 v1 = vec4(unpack8((vui >> 4) & 0x0F0F0F0F)) * dm.x + dm.y;
buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v0.xy);
buf_a[buf_idx + 1 ] = FLOAT_TYPE_VEC2(v0.zw);
@ -80,7 +79,7 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
buf_a[buf_idx + 9 ] = FLOAT_TYPE_VEC2(v1.zw);
#elif defined(DATA_A_Q5_0)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 4;
const uint ib = idx / 8;
const uint iqs = idx & 0x07;
@ -97,22 +96,26 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
buf_a[buf_idx + 8] = FLOAT_TYPE_VEC2(v.yw);
#elif defined(DATA_A_Q5_1)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 4;
const uint ib = idx / 8;
const uint iqs = idx & 0x07;
const uint ib = idx / 4;
const uint iqs = idx & 0x03;
const float d = float(data_a_packed16[ib].d);
const float m = float(data_a_packed16[ib].m);
const uint uint_qh = data_a_packed16[ib].qh;
const ivec2 qh0 = ivec2(((uint_qh >> 2*iqs) << 4) & 0x10, (uint_qh >> (2*iqs + 12)) & 0x10);
const ivec2 qh1 = ivec2(((uint_qh >> (2*iqs + 1)) << 4) & 0x10, (uint_qh >> (2*iqs + 13)) & 0x10);
const vec2 dm = vec2(data_a_packed32[ib].dm);
const uint uint_qh = data_a_packed32[ib].qh;
const uvec2 qh0 = uvec2(((uint_qh >> 4*iqs) << 4) & 0x10, (uint_qh >> (4*iqs + 12)) & 0x10);
const uvec2 qh1 = uvec2(((uint_qh >> (4*iqs + 1)) << 4) & 0x10, (uint_qh >> (4*iqs + 13)) & 0x10);
const uvec2 qh2 = uvec2(((uint_qh >> (4*iqs + 2)) << 4) & 0x10, (uint_qh >> (4*iqs + 14)) & 0x10);
const uvec2 qh3 = uvec2(((uint_qh >> (4*iqs + 3)) << 4) & 0x10, (uint_qh >> (4*iqs + 15)) & 0x10);
const uint vui = uint(data_a_packed16[ib].qs[iqs]);
const vec4 v = vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) * d + m;
const uint vui = data_a_packed32[ib].qs[iqs];
const vec4 v0 = vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, ((vui >> 12) & 0xF) | qh1.y) * dm.x + dm.y;
const vec4 v1 = vec4(((vui >> 16) & 0xF) | qh2.x, ((vui >> 20) & 0xF) | qh2.y, ((vui >> 24) & 0xF) | qh3.x, ((vui >> 28) & 0xF) | qh3.y) * dm.x + dm.y;
buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v.xz);
buf_a[buf_idx + 8] = FLOAT_TYPE_VEC2(v.yw);
buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v0.xz);
buf_a[buf_idx + 1] = FLOAT_TYPE_VEC2(v1.xz);
buf_a[buf_idx + 8] = FLOAT_TYPE_VEC2(v0.yw);
buf_a[buf_idx + 9] = FLOAT_TYPE_VEC2(v1.yw);
#elif defined(DATA_A_Q8_0)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2;
@ -131,20 +134,21 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2;
const uint ib = idx / 128; // 2 values per idx
const uint iqs = idx % 128; // 0..127
const uint ib = idx / 64; // 4 values per idx
const uint iqs = (idx % 64) * 2; // 0,2,4..126
const uint qsi = (iqs / 64) * 16 + (iqs % 16); // 0..15
const uint scalesi = iqs / 8; // 0..15
const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
const uvec2 qs = uvec2(unpack8(data_a_packed16[ib].qs[qsi]));
const vec4 qs = vec4(unpack8((data_a_packed32[ib].qs[qsi / 2] >> qsshift) & 0x03030303));
const uint scales = data_a[ib].scales[scalesi];
const vec2 dm = vec2(data_a[ib].dm);
const vec2 v = dm.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - dm.y * float(scales >> 4);
const vec4 v = dm.x * float(scales & 0xF) * qs - dm.y * float(scales >> 4);
buf_a[buf_idx] = FLOAT_TYPE_VEC2(v.xy);
buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v.xy);
buf_a[buf_idx + 1] = FLOAT_TYPE_VEC2(v.zw);
#elif defined(DATA_A_Q3_K)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2;
@ -173,8 +177,8 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2;
const uint ib = idx / 128; // 2 values per idx
const uint iqs = idx % 128; // 0..127
const uint ib = idx / 64; // 4 values per idx
const uint iqs = (idx % 64) * 2; // 0,2,4..126
const uint n = iqs / 32; // 0,1,2,3
const uint b = (iqs % 32) / 16; // 0,1
@ -200,16 +204,16 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
const float d = loadd.x * sc;
const float m = -loadd.y * mbyte;
const vec2 q = vec2(unpack8((uint(data_a_packed16[ib].qs[qsi / 2]) >> (b * 4)) & 0x0F0F).xy);
const vec4 q = vec4(unpack8((data_a_packed32[ib].qs[qsi / 4] >> (b * 4)) & 0x0F0F0F0F));
buf_a[buf_idx] = FLOAT_TYPE_VEC2(fma(d, q.x, m),
fma(d, q.y, m));
buf_a[buf_idx ] = FLOAT_TYPE_VEC2(fma(d, q.x, m), fma(d, q.y, m));
buf_a[buf_idx + 1] = FLOAT_TYPE_VEC2(fma(d, q.z, m), fma(d, q.w, m));
#elif defined(DATA_A_Q5_K)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2;
const uint ib = idx / 128; // 2 values per idx
const uint iqs = idx % 128; // 0..127
const uint ib = idx / 64; // 4 values per idx
const uint iqs = (idx % 64) * 2; // 0,2,4..126
const uint n = iqs / 32; // 0,1,2,3
const uint b = (iqs % 32) / 16; // 0,1
@ -236,12 +240,12 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
const float d = loadd.x * sc;
const float m = -loadd.y * mbyte;
const uint qs = (uint(data_a_packed16[ib].qs[qsi / 2]) >> (b * 4)) & 0x0F0F;
const uint qh = ((uint(data_a_packed16[ib].qh[qhi / 2]) >> (iqs / 16)) & 0x0101) << 4;
const vec2 q = vec2(unpack8(qs | qh).xy);
const uint qs = (data_a_packed32[ib].qs[qsi / 4] >> (b * 4)) & 0x0F0F0F0F;
const uint qh = ((data_a_packed32[ib].qh[qhi / 4] >> (iqs / 16)) & 0x01010101) << 4;
const vec4 q = vec4(unpack8(qs | qh));
buf_a[buf_idx] = FLOAT_TYPE_VEC2(fma(d, q.x, m),
fma(d, q.y, m));
buf_a[buf_idx ] = FLOAT_TYPE_VEC2(fma(d, q.x, m), fma(d, q.y, m));
buf_a[buf_idx + 1] = FLOAT_TYPE_VEC2(fma(d, q.z, m), fma(d, q.w, m));
#elif defined(DATA_A_Q6_K)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2;
@ -455,7 +459,7 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
buf_a[buf_idx ] = FLOAT_TYPE_VEC2(v.xy);
#elif defined(DATA_A_IQ4_NL)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 4;
const uint ib = idx / 8;
const uint iqs = idx & 0x07;
@ -469,7 +473,7 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
kvalues_iq4nl[vui >> 12]);
#elif defined(DATA_A_MXFP4)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 4;
const uint ib = idx / 8;
const uint iqs = (idx & 0x07) * 2;

View File

@ -1,6 +1,7 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#extension GL_KHR_shader_subgroup_basic : enable
#if USE_SUBGROUP_ADD
#extension GL_KHR_shader_subgroup_arithmetic : enable
#endif
@ -9,7 +10,8 @@
layout(constant_id = 0) const uint D_STATE = 128;
layout(constant_id = 1) const uint SUBGROUP_SIZE = 32;
layout(constant_id = 2) const uint SPLIT_H = 16;
const uint32_t c_factor = D_STATE / SUBGROUP_SIZE;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
@ -41,22 +43,28 @@ float softplus(float x) {
}
}
shared float stateC[SPLIT_H * D_STATE];
#if !USE_SUBGROUP_ADD
shared float temp[D_STATE];
#endif
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint head_idx = (gl_WorkGroupID.x * SPLIT_H) / d_head;
const uint head_off = ((gl_WorkGroupID.x * SPLIT_H) % d_head) * 4;
const uint seq_idx = gl_WorkGroupID.y;
const uint subgroup = gl_SubgroupID;
const uint lane = gl_SubgroupInvocationID;
const uint tid = gl_SubgroupID * SUBGROUP_SIZE + lane;
const uint subgroup_idx = gl_WorkGroupID.x * c_factor + subgroup;
const uint head_idx = subgroup_idx / d_head;
const uint head_off = (subgroup_idx % d_head) * 4;
const uint seq_idx = gl_WorkGroupID.y;
const uint group_off = (head_idx / (n_head / n_group)) * D_STATE * 4;
const uint s0_base_idx = (uint(ids[seq_idx]) * nb03 + head_idx * nb02 + head_off * D_STATE) / 4;
const uint x_base_idx = (seq_idx * nb13 + gl_WorkGroupID.x * SPLIT_H * 4) / 4;
const uint x_base_idx = (seq_idx * nb13 + subgroup_idx * 4) / 4;
const uint dt_base_idx = (seq_idx * nb22 + head_idx * 4) / 4;
const uint A_base_idx = (head_idx * nb31) / 4;
const uint B_base_idx = (seq_idx * nb43 + group_off) / 4;
const uint C_base_idx = (seq_idx * nb53 + group_off) / 4;
const uint y_base_idx = seq_idx * n_tok * n_head * d_head + gl_WorkGroupID.x * SPLIT_H;
const uint y_base_idx = seq_idx * n_tok * n_head * d_head + subgroup_idx;
const uint s_base_idx = (s_off + seq_idx * nb03 + head_idx * nb02 + head_off * D_STATE) / 4;
const uint stride_x = nb12 / 4;
@ -65,76 +73,52 @@ void main() {
const uint stride_C = nb52 / 4;
const uint stride_y = n_head * d_head;
float state[SPLIT_H];
[[unroll]] for (uint j = 0; j < SPLIT_H; j++) {
state[j] = s0[s0_base_idx + j * D_STATE + tid];
float state[c_factor];
[[unroll]] for (uint j = 0; j < c_factor; j++) {
state[j] = s0[s0_base_idx + SUBGROUP_SIZE * j + lane];
}
float a = A[A_base_idx];
for (uint i = 0; i < n_tok; i++) {
const float dt_soft_plus = softplus(dt[dt_base_idx + i * stride_dt]);
float dt_soft_plus = softplus(dt[dt_base_idx + i * stride_dt]);
const float dA = exp(dt_soft_plus * A[A_base_idx]);
const float B_val = B[B_base_idx + i * stride_B + tid];
const float C_val = C[C_base_idx + i * stride_C + tid];
[[unroll]] for (uint j = 0; j < SPLIT_H; j++) {
const float x_dt = x[x_base_idx + i * stride_x + j] * dt_soft_plus;
float state_sum = 0.0f;
const float dA = exp(dt_soft_plus * a);
const float x_dt = x[x_base_idx + i * stride_x] * dt_soft_plus;
[[unroll]] for (uint j = 0; j < c_factor; j++) {
float B_val = B[B_base_idx + i * stride_B + SUBGROUP_SIZE * j + lane];
float C_val = C[C_base_idx + i * stride_C + SUBGROUP_SIZE * j + lane];
state[j] = (state[j] * dA) + (B_val * x_dt);
stateC[j * D_STATE + tid] = state[j] * C_val;
state_sum += state[j] * C_val;
}
#if USE_SUBGROUP_ADD
state_sum = subgroupAdd(state_sum);
#else
temp[tid] = state_sum;
barrier();
[[unroll]]
for (uint w = D_STATE / 2; w >= SUBGROUP_SIZE; w >>= 1) {
[[unroll]] for (uint j = 0; j < (w * SPLIT_H + D_STATE - 1) / D_STATE; j++) {
const uint k = (tid % w) + (D_STATE * (tid / w)) + j * D_STATE * (D_STATE / w);
if (k < SPLIT_H * D_STATE && (k + w) < SPLIT_H * D_STATE) {
stateC[k] += stateC[k + w];
}
[[unroll]] for (uint s = SUBGROUP_SIZE / 2; s > 0; s >>= 1) {
if (lane < s) {
temp[tid] += temp[tid + s];
}
barrier();
}
[[unroll]] for (uint j = 0; j < max(1, SPLIT_H / (D_STATE / SUBGROUP_SIZE)); j++) {
const uint idx = (tid % SUBGROUP_SIZE) +
D_STATE * (tid / SUBGROUP_SIZE) +
j * D_STATE * (D_STATE / SUBGROUP_SIZE);
const uint max_idx = SUBGROUP_SIZE - 1 +
D_STATE * ((D_STATE - 1) / SUBGROUP_SIZE) +
j * D_STATE * (D_STATE / SUBGROUP_SIZE);
if (idx < SPLIT_H * D_STATE ||
max_idx < SPLIT_H * D_STATE) {
float sc;
#if USE_SUBGROUP_ADD
sc = stateC[idx];
sc = subgroupAdd(sc);
#else
[[unroll]] for (uint offset = SUBGROUP_SIZE / 2; offset > 0; offset >>= 1) {
if (idx + offset < SPLIT_H * D_STATE) {
stateC[idx] += stateC[idx + offset];
}
barrier();
}
if (tid % SUBGROUP_SIZE == 0) {
sc = stateC[idx];
}
// get the value from lane 0
state_sum = temp[subgroup * SUBGROUP_SIZE];
barrier();
#endif
if (tid % SUBGROUP_SIZE == 0) {
const uint k = tid / SUBGROUP_SIZE + j * (D_STATE / SUBGROUP_SIZE);
d[y_base_idx + i * stride_y + k] = sc;
}
}
if (lane == 0) {
d[y_base_idx + i * stride_y] = state_sum;
}
barrier();
}
[[unroll]] for (uint j = 0; j < SPLIT_H; j++) {
d[s_base_idx + j * D_STATE + tid] = state[j];
// write back the state
[[unroll]]
for (int j = 0; j < c_factor; j++) {
d[s_base_idx + SUBGROUP_SIZE * j + lane] = state[j];
}
}

View File

@ -101,6 +101,10 @@ void main() {
const uint lane = gl_SubgroupInvocationID;
float probs[experts_per_thread];
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
probs[i] = -INFINITY;
}
[[unroll]]
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
@ -112,8 +116,9 @@ void main() {
softmax_warp_inplace(probs, n_experts, lane, nexperts_use_push);
} else if (gating_func == GATING_FUNC_SIGMOID) {
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
probs[i] = 1.f / (1.f + exp(-probs[i]));
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
const uint expert = i + lane;
probs[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? 1.f / (1.f + exp(-probs[i / WARP_SIZE])) : -INFINITY;
}
}
@ -150,11 +155,11 @@ void main() {
uint max_expert = lane;
[[unroll]]
for (int i = 1; i < experts_per_thread; i++) {
const uint expert = lane + i * WARP_SIZE;
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && selection_probs[i] > max_val_s) {
max_val = probs[i];
max_val_s = selection_probs[i];
for (uint i = WARP_SIZE; i < n_experts; i += WARP_SIZE) {
const uint expert = i + lane;
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && selection_probs[i / WARP_SIZE] > max_val_s) {
max_val = probs[i / WARP_SIZE];
max_val_s = selection_probs[i / WARP_SIZE];
max_expert = expert;
}
}

View File

@ -552,9 +552,9 @@ void matmul_shaders(bool fp16, MatMulIdType matmul_id_type, bool coopmat, bool c
for (const auto& tname : type_names) {
std::string load_vec_quant = "2";
if ((tname == "q4_0") || (tname == "q4_1") || (tname == "iq1_s") || (tname == "iq1_m") || (tname == "iq2_xxs") || (tname == "iq2_xs") || (tname == "iq2_s"))
if ((tname == "q4_0") || (tname == "q4_1") || (tname == "q5_1") || (tname == "iq1_s") || (tname == "iq1_m") || (tname == "iq2_xxs") || (tname == "iq2_xs") || (tname == "iq2_s"))
load_vec_quant = "8";
else if ((tname == "q5_0") || (tname == "q5_1") || (tname == "q8_0") || (tname == "iq3_xxs") || (tname == "iq3_s") || (tname == "iq4_nl") || (tname == "mxfp4"))
else if ((tname == "q5_0") || (tname == "q8_0") || (tname == "q2_k") || (tname == "q4_k") || (tname == "q5_k") || (tname == "iq3_xxs") || (tname == "iq3_s") || (tname == "iq4_nl") || (tname == "mxfp4"))
load_vec_quant = "4";
if (tname == "bf16") {

View File

@ -0,0 +1,169 @@
#ifndef GGML_WEBGPU_SHADER_LIB_HPP
#define GGML_WEBGPU_SHADER_LIB_HPP
#include "ggml.h"
#include "pre_wgsl.hpp"
#include <string>
#include <vector>
#define GGML_WEBGPU_F16_SIZE_BYTES 2
#define GGML_WEBGPU_F32_SIZE_BYTES 4
#define GGML_WEBGPU_FLASH_ATTN_PREFERRED_KV_SG_TILES 8u
#define GGML_WEBGPU_FLASH_ATTN_PREFERRED_WG_SIZE 128u
// Matches GGML_PAD(..., 256) in src/llama-context.cpp for KV cache sizing.
#define GGML_WEBGPU_KV_SEQ_PAD 256u
struct ggml_webgpu_flash_attn_shader_lib_context {
ggml_type kv_type;
uint32_t head_dim_qk;
uint32_t head_dim_v;
bool kv_direct;
bool has_mask;
bool has_sinks;
bool uses_logit_softcap;
uint32_t sg_mat_m;
uint32_t sg_mat_n;
uint32_t sg_mat_k;
size_t wg_mem_limit_bytes;
uint32_t max_subgroup_size;
};
struct ggml_webgpu_flash_attn_shader_decisions {
uint32_t q_tile = 0;
uint32_t kv_tile = 0;
uint32_t wg_size = 0;
};
struct ggml_webgpu_processed_shader {
std::string wgsl;
std::string variant;
ggml_webgpu_flash_attn_shader_decisions decisions;
};
// This is exposed because it's necessary in supports_op
inline size_t ggml_webgpu_flash_attn_wg_mem_bytes(uint32_t q_tile,
uint32_t kv_tile,
uint32_t head_dim_qk,
uint32_t head_dim_v,
bool has_mask,
bool kv_direct) {
const uint32_t max_head_dim = std::max(head_dim_qk, head_dim_v);
size_t f16_elems = 0;
size_t f32_elems = 0;
f16_elems += q_tile * head_dim_qk; // q_shmem
if (!kv_direct) {
f16_elems += kv_tile * max_head_dim; // kv_shmem
}
f16_elems += q_tile * head_dim_v; // o_shmem
if (has_mask) {
f16_elems += q_tile * kv_tile; // mask_shmem
}
f16_elems += q_tile * kv_tile; // inter_shmem
f32_elems += q_tile; // row_max_shmem
f32_elems += q_tile; // exp_sum_shmem
return f16_elems * GGML_WEBGPU_F16_SIZE_BYTES + f32_elems * GGML_WEBGPU_F32_SIZE_BYTES;
}
static uint32_t ggml_webgpu_flash_attn_max_kv_tile(const ggml_webgpu_flash_attn_shader_lib_context & context) {
const size_t limit_bytes = context.wg_mem_limit_bytes;
const size_t q_tile = context.sg_mat_m;
const size_t base_q_bytes = (context.head_dim_qk + context.head_dim_v) * q_tile * GGML_WEBGPU_F16_SIZE_BYTES +
2 * q_tile * GGML_WEBGPU_F32_SIZE_BYTES;
size_t bytes_per_kv = 0;
if (!context.kv_direct) {
bytes_per_kv += std::max(context.head_dim_qk, context.head_dim_v);
}
if (context.has_mask) {
bytes_per_kv += q_tile;
}
bytes_per_kv += q_tile;
bytes_per_kv *= GGML_WEBGPU_F16_SIZE_BYTES;
const uint32_t max_kv_tile = (limit_bytes - base_q_bytes) / bytes_per_kv;
return (max_kv_tile / context.sg_mat_n) * context.sg_mat_n;
}
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_flash_attn_shader(
pre_wgsl::Preprocessor & preprocessor,
const char * shader_src,
const ggml_webgpu_flash_attn_shader_lib_context & context) {
std::vector<std::string> defines;
std::string variant = "flash_attn";
switch (context.kv_type) {
case GGML_TYPE_F32:
defines.push_back("KV_F32");
break;
case GGML_TYPE_F16:
defines.push_back("KV_F16");
break;
case GGML_TYPE_Q4_0:
defines.push_back("KV_Q4_0");
break;
case GGML_TYPE_Q8_0:
defines.push_back("KV_Q8_0");
break;
default:
GGML_ABORT("Unsupported KV type for flash attention shader");
}
variant += std::string("_") + ggml_type_name(context.kv_type);
if (context.has_mask) {
defines.push_back("MASK");
variant += "_mask";
}
if (context.has_sinks) {
defines.push_back("SINKS");
variant += "_sinks";
}
if (context.uses_logit_softcap) {
defines.push_back("LOGIT_SOFTCAP");
variant += "_lgsc";
}
if (context.kv_direct) {
defines.push_back("KV_DIRECT");
variant += "_kvdirect";
}
defines.push_back(std::string("HEAD_DIM_QK=") + std::to_string(context.head_dim_qk));
variant += std::string("_hsqk") + std::to_string(context.head_dim_qk);
defines.push_back(std::string("HEAD_DIM_V=") + std::to_string(context.head_dim_v));
variant += std::string("_hsv") + std::to_string(context.head_dim_v);
// For now these are not part of the variant name
defines.push_back(std::string("SG_MAT_M=") + std::to_string(context.sg_mat_m));
defines.push_back(std::string("SG_MAT_N=") + std::to_string(context.sg_mat_n));
defines.push_back(std::string("SG_MAT_K=") + std::to_string(context.sg_mat_k));
// Add chosen Q/KV tile sizes
uint32_t q_tile = context.sg_mat_m;
uint32_t kv_tile = std::min(ggml_webgpu_flash_attn_max_kv_tile(context),
context.sg_mat_n * GGML_WEBGPU_FLASH_ATTN_PREFERRED_KV_SG_TILES);
if (context.kv_direct) {
GGML_ASSERT(kv_tile <= GGML_WEBGPU_KV_SEQ_PAD);
// Avoids having to use bounds-checks and decreasing performance for direct KV loads
while (GGML_WEBGPU_KV_SEQ_PAD % kv_tile != 0) {
kv_tile -= context.sg_mat_n;
}
}
defines.push_back(std::string("Q_TILE=") + std::to_string(q_tile));
defines.push_back(std::string("KV_TILE=") + std::to_string(kv_tile));
// workgroup size
uint32_t wg_size = std::max(context.max_subgroup_size, GGML_WEBGPU_FLASH_ATTN_PREFERRED_WG_SIZE);
defines.push_back(std::string("WG_SIZE=") + std::to_string(wg_size));
ggml_webgpu_processed_shader result;
result.wgsl = preprocessor.preprocess(shader_src, defines);
result.variant = variant;
result.decisions.q_tile = q_tile;
result.decisions.kv_tile = kv_tile;
result.decisions.wg_size = wg_size;
return result;
}
#endif // GGML_WEBGPU_SHADER_LIB_HPP

View File

@ -7,7 +7,9 @@
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
#include "ggml-webgpu-shader-lib.hpp"
#include "ggml-wgsl-shaders.hpp"
#include "pre_wgsl.hpp"
#ifdef __EMSCRIPTEN__
# include <emscripten/emscripten.h>
@ -17,6 +19,7 @@
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <cstring>
#include <iostream>
#include <map>
@ -30,7 +33,7 @@
#ifdef GGML_WEBGPU_DEBUG
# define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
# define WEBGPU_DEBUG_BUF_ELEMS 32
# define WEBGPU_DEBUG_BUF_ELEMS 512
#else
# define WEBGPU_LOG_DEBUG(msg) ((void) 0)
#endif // GGML_WEBGPU_DEBUG
@ -251,6 +254,7 @@ struct webgpu_gpu_profile_buf_pool {
struct webgpu_pipeline {
wgpu::ComputePipeline pipeline;
std::string name;
void * context = nullptr;
};
struct webgpu_command {
@ -263,6 +267,46 @@ struct webgpu_command {
#endif
};
struct flash_attn_pipeline_key {
int q_type;
int kv_type;
int dst_type;
uint32_t head_dim_qk;
uint32_t head_dim_v;
bool kv_direct;
bool has_mask;
bool has_sinks;
bool uses_logit_softcap;
bool operator==(const flash_attn_pipeline_key & other) const {
return q_type == other.q_type && kv_type == other.kv_type && dst_type == other.dst_type &&
head_dim_qk == other.head_dim_qk && head_dim_v == other.head_dim_v && kv_direct == other.kv_direct &&
has_mask == other.has_mask && has_sinks == other.has_sinks &&
uses_logit_softcap == other.uses_logit_softcap;
}
};
// Same hash combine function as in boost
template <typename T> inline void ggml_webgpu_hash_combine(size_t & seed, const T & value) {
seed ^= std::hash<T>{}(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
struct flash_attn_pipeline_key_hash {
size_t operator()(const flash_attn_pipeline_key & key) const {
size_t seed = 0;
ggml_webgpu_hash_combine(seed, key.q_type);
ggml_webgpu_hash_combine(seed, key.kv_type);
ggml_webgpu_hash_combine(seed, key.dst_type);
ggml_webgpu_hash_combine(seed, key.head_dim_qk);
ggml_webgpu_hash_combine(seed, key.head_dim_v);
ggml_webgpu_hash_combine(seed, key.kv_direct);
ggml_webgpu_hash_combine(seed, key.has_mask);
ggml_webgpu_hash_combine(seed, key.has_sinks);
ggml_webgpu_hash_combine(seed, key.uses_logit_softcap);
return seed;
}
};
// All the base objects needed to run operations on a WebGPU device
struct webgpu_context_struct {
wgpu::Instance instance;
@ -271,12 +315,12 @@ struct webgpu_context_struct {
wgpu::Queue queue;
wgpu::Limits limits;
uint32_t subgroup_size;
uint32_t max_subgroup_size;
#ifndef __EMSCRIPTEN__
bool supports_subgroup_matrix = false;
wgpu::SubgroupMatrixConfig subgroup_matrix_config;
#endif
bool supports_subgroup_matrix = false;
uint32_t sg_mat_m;
uint32_t sg_mat_n;
uint32_t sg_mat_k;
std::recursive_mutex mutex;
std::atomic_uint inflight_threads = 0;
@ -284,20 +328,24 @@ struct webgpu_context_struct {
webgpu_buf_pool param_buf_pool;
webgpu_buf_pool set_rows_error_buf_pool;
pre_wgsl::Preprocessor p;
std::map<int, webgpu_pipeline> memset_pipelines; // variant or type index
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> mul_mat_pipelines; // src0_type, src1_type, vectorized
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>>
mul_mat_vec_pipelines; // src0_type, src1_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> set_rows_pipelines; // dst_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
std::unordered_map<flash_attn_pipeline_key, webgpu_pipeline, flash_attn_pipeline_key_hash> flash_attn_pipelines;
std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> set_rows_pipelines; // dst_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
std::map<int, webgpu_pipeline> rms_norm_pipelines; // inplace
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> rope_pipelines; // type, ff, inplace
@ -361,8 +409,6 @@ struct ggml_backend_webgpu_buffer_context {
label(std::move(lbl)) {}
};
/* End struct definitions */
/* WebGPU object initializations */
// Process a WGSL shader string, replacing tokens of the form {{KEY}} with
@ -484,14 +530,9 @@ static void ggml_backend_webgpu_debug(webgpu_context & ctx) {
encoder.CopyBufferToBuffer(ctx->debug_dev_buf, 0, ctx->debug_host_buf, 0, ctx->debug_host_buf.GetSize());
wgpu::CommandBuffer commands = encoder.Finish();
ctx->queue.Submit(1, &commands);
ggml_backend_webgpu_map_buffer(ctx, ctx->debug_host_buf, wgpu::MapMode::Read, 0, ctx->debug_host_buf.GetSize());
const uint32_t * debug_data = (const uint32_t *) ctx->debug_host_buf.GetConstMappedRange();
std::cout << "debug data:";
for (size_t i = 0; i < WEBGPU_DEBUG_BUF_ELEMS; i++) {
std::cout << " " << i << ": " << debug_data[i];
}
std::cout << "\n";
const float * debug_data = (const float *) ctx->debug_host_buf.GetConstMappedRange();
std::cout << "debug[0]: " << debug_data[0] << "\n";
ctx->debug_host_buf.Unmap();
}
#endif
@ -673,6 +714,7 @@ static const char * ggml_backend_webgpu_name(ggml_backend_t backend) {
return ctx->name.c_str();
}
// TODO: implement proper cleanup
static void ggml_backend_webgpu_free(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context;
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")");
@ -730,12 +772,12 @@ static wgpu::Buffer ggml_webgpu_tensor_buf(const ggml_tensor * tensor) {
return ctx->buffer;
}
static size_t ggml_webgpu_tensor_misalignment(webgpu_context & ctx, ggml_tensor * t) {
static size_t ggml_webgpu_tensor_misalignment(webgpu_context & ctx, const ggml_tensor * t) {
size_t offset = ggml_webgpu_tensor_offset(t);
return offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
}
static size_t ggml_webgpu_tensor_align_offset(webgpu_context & ctx, ggml_tensor * t) {
static size_t ggml_webgpu_tensor_align_offset(webgpu_context & ctx, const ggml_tensor * t) {
size_t offset = ggml_webgpu_tensor_offset(t);
return offset & ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
}
@ -964,12 +1006,10 @@ static webgpu_command ggml_webgpu_mul_mat(webgpu_context & ctx,
#ifndef __EMSCRIPTEN__
if (ctx->supports_subgroup_matrix) {
// The total number of subgroups/workgroups needed per matrix.
uint32_t wg_m_sg_tile =
WEBGPU_MUL_MAT_SUBGROUP_M * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M * ctx->subgroup_matrix_config.M;
wg_m = CEIL_DIV(dst->ne[0], wg_m_sg_tile);
uint32_t wg_n_sg_tile =
WEBGPU_MUL_MAT_SUBGROUP_N * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N * ctx->subgroup_matrix_config.N;
wg_n = CEIL_DIV(dst->ne[1], wg_n_sg_tile);
uint32_t wg_m_sg_tile = WEBGPU_MUL_MAT_SUBGROUP_M * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M * ctx->sg_mat_m;
wg_m = CEIL_DIV(dst->ne[0], wg_m_sg_tile);
uint32_t wg_n_sg_tile = WEBGPU_MUL_MAT_SUBGROUP_N * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N * ctx->sg_mat_n;
wg_n = CEIL_DIV(dst->ne[1], wg_n_sg_tile);
} else {
#endif
uint32_t tile_m_s = WEBGPU_MUL_MAT_TILE_M * WEBGPU_MUL_MAT_WG_SIZE_M;
@ -986,6 +1026,146 @@ static webgpu_command ggml_webgpu_mul_mat(webgpu_context & ctx,
return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x, wg_y);
}
static webgpu_command ggml_webgpu_flash_attn(webgpu_context & ctx,
ggml_tensor * Q,
ggml_tensor * K,
ggml_tensor * V,
ggml_tensor * mask,
ggml_tensor * sinks,
ggml_tensor * dst) {
float scale = *(float *) dst->op_params;
float max_bias;
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
float logit_softcap;
memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}
float n_head_log2 = float(1u << (uint32_t) floor(log2(Q->ne[2])));
float m0 = powf(2.0f, -(max_bias) / n_head_log2);
float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const int has_mask = (mask != nullptr);
const int has_sinks = (sinks != nullptr);
std::vector<uint32_t> params = {
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, Q) / ggml_type_size(Q->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, K) / ggml_type_size(K->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, V) / ggml_type_size(V->type)),
has_mask ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, mask) / ggml_type_size(mask->type)) : 0,
has_sinks ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, sinks) / ggml_type_size(sinks->type)) : 0,
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
(uint32_t) Q->ne[2], // number of heads
(uint32_t) Q->ne[1], // sequence length (Q)
(uint32_t) K->ne[1], // sequence length (K/V)
(uint32_t) (Q->nb[1] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 1
(uint32_t) (Q->nb[2] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 2
(uint32_t) (Q->nb[3] / ggml_type_size(Q->type)), // stride (elements/blocks) of Q in dimension 3
(uint32_t) (K->nb[1] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 1
(uint32_t) (K->nb[2] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 2
(uint32_t) (K->nb[3] / ggml_type_size(K->type)), // stride (elements/blocks) of K in dimension 3
(uint32_t) (V->nb[1] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 1
(uint32_t) (V->nb[2] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 2
(uint32_t) (V->nb[3] / ggml_type_size(V->type)), // stride (elements/blocks) of V in dimension 3
has_mask ? (uint32_t) (mask->nb[3] / ggml_type_size(mask->type)) : 0, // stride of mask dim 3
(uint32_t) (Q->ne[2] / K->ne[2]), // repeat factor for K/V in dim 2 (MHA/MQA/GQA)
*(uint32_t *) &scale, // scale (possibly adjusted for logit softcap)
*(uint32_t *) &max_bias,
*(uint32_t *) &logit_softcap,
*(uint32_t *) &n_head_log2,
*(uint32_t *) &m0,
*(uint32_t *) &m1
};
std::vector<wgpu::BindGroupEntry> entries = {
{ .binding = 0,
.buffer = ggml_webgpu_tensor_buf(Q),
.offset = ggml_webgpu_tensor_align_offset(ctx, Q),
.size = ggml_webgpu_tensor_binding_size(ctx, Q) },
{ .binding = 1,
.buffer = ggml_webgpu_tensor_buf(K),
.offset = ggml_webgpu_tensor_align_offset(ctx, K),
.size = ggml_webgpu_tensor_binding_size(ctx, K) },
{ .binding = 2,
.buffer = ggml_webgpu_tensor_buf(V),
.offset = ggml_webgpu_tensor_align_offset(ctx, V),
.size = ggml_webgpu_tensor_binding_size(ctx, V) }
};
uint32_t binding_index = 3;
if (has_mask) {
entries.push_back({ .binding = binding_index++,
.buffer = ggml_webgpu_tensor_buf(mask),
.offset = ggml_webgpu_tensor_align_offset(ctx, mask),
.size = ggml_webgpu_tensor_binding_size(ctx, mask) });
}
if (has_sinks) {
entries.push_back({ .binding = binding_index++,
.buffer = ggml_webgpu_tensor_buf(sinks),
.offset = ggml_webgpu_tensor_align_offset(ctx, sinks),
.size = ggml_webgpu_tensor_binding_size(ctx, sinks) });
}
entries.push_back({ .binding = binding_index++,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
.size = ggml_webgpu_tensor_binding_size(ctx, dst) });
bool kv_direct =
(K->type == GGML_TYPE_F16) && (Q->ne[0] % ctx->sg_mat_k == 0) && (K->ne[1] % GGML_WEBGPU_KV_SEQ_PAD == 0);
flash_attn_pipeline_key key = {
.q_type = Q->type,
.kv_type = K->type,
.dst_type = dst->type,
.head_dim_qk = (uint32_t) Q->ne[0],
.head_dim_v = (uint32_t) V->ne[0],
.kv_direct = kv_direct,
.has_mask = static_cast<bool>(has_mask),
.has_sinks = static_cast<bool>(has_sinks),
.uses_logit_softcap = logit_softcap != 0.0f,
};
webgpu_pipeline pipeline;
ggml_webgpu_flash_attn_shader_decisions decisions = {};
auto it = ctx->flash_attn_pipelines.find(key);
if (it != ctx->flash_attn_pipelines.end()) {
pipeline = it->second;
decisions = *static_cast<ggml_webgpu_flash_attn_shader_decisions *>(pipeline.context);
} else {
std::lock_guard<std::recursive_mutex> lock(ctx->mutex);
it = ctx->flash_attn_pipelines.find(key);
if (it != ctx->flash_attn_pipelines.end()) {
pipeline = it->second;
decisions = *static_cast<ggml_webgpu_flash_attn_shader_decisions *>(pipeline.context);
} else {
ggml_webgpu_flash_attn_shader_lib_context shader_lib_ctx = { .kv_type = K->type,
.head_dim_qk = (uint32_t) Q->ne[0],
.head_dim_v = (uint32_t) V->ne[0],
.kv_direct = kv_direct,
.has_mask = static_cast<bool>(has_mask),
.has_sinks = static_cast<bool>(has_sinks),
.uses_logit_softcap = logit_softcap != 0.0f,
.sg_mat_m = ctx->sg_mat_m,
.sg_mat_n = ctx->sg_mat_n,
.sg_mat_k = ctx->sg_mat_k,
.wg_mem_limit_bytes =
ctx->limits.maxComputeWorkgroupStorageSize,
.max_subgroup_size = ctx->max_subgroup_size };
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_flash_attn_shader(ctx->p, wgsl_flash_attn, shader_lib_ctx);
pipeline = ggml_webgpu_create_pipeline(ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = new ggml_webgpu_flash_attn_shader_decisions(processed.decisions);
ctx->flash_attn_pipelines.emplace(key, pipeline);
decisions = processed.decisions;
}
}
uint32_t wg_per_head = CEIL_DIV(Q->ne[1], decisions.q_tile);
uint32_t wg_x = wg_per_head * Q->ne[2] * Q->ne[3]; // wg per head * number of heads * number of batches
return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x);
}
static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
uint32_t ne = (uint32_t) ggml_nelements(dst);
ggml_unary_op unary_op = ggml_get_unary_op(dst);
@ -1397,6 +1577,8 @@ static std::optional<webgpu_command> ggml_webgpu_encode_node(webgpu_context ctx,
return ggml_webgpu_get_rows(ctx, src0, src1, node);
case GGML_OP_MUL_MAT:
return ggml_webgpu_mul_mat(ctx, src0, src1, node);
case GGML_OP_FLASH_ATTN_EXT:
return ggml_webgpu_flash_attn(ctx, src0, src1, src2, node->src[3], node->src[4], node);
case GGML_OP_ADD:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
@ -1466,6 +1648,7 @@ static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, str
webgpu_submission_futures new_futures = ggml_backend_webgpu_submit(ctx, commands);
futures.push_back(new_futures);
}
ggml_backend_webgpu_wait(ctx, futures);
ctx->inflight_threads--;
WEBGPU_CPU_PROFILE_TOTAL_END(graph_compute, ctx);
@ -1698,9 +1881,18 @@ static const char * ggml_backend_webgpu_device_get_description(ggml_backend_dev_
static void ggml_backend_webgpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
// TODO: what do we actually want to return here? maxBufferSize might not be the full available memory.
*free = ctx->webgpu_ctx->limits.maxBufferSize;
*total = ctx->webgpu_ctx->limits.maxBufferSize;
// TODO: for now, return maxBufferSize as both free and total memory
// Track https://github.com/gpuweb/gpuweb/issues/5505 for updates.
uint64_t max_buffer_size = ctx->webgpu_ctx->limits.maxBufferSize;
// If we're on a 32-bit system, clamp to UINTPTR_MAX
#if UINTPTR_MAX < UINT64_MAX
uint64_t max_ptr_size = static_cast<uint64_t>(UINTPTR_MAX);
if (max_buffer_size > max_ptr_size) {
max_buffer_size = max_ptr_size;
}
#endif
*free = static_cast<size_t>(max_buffer_size);
*total = static_cast<size_t>(max_buffer_size);
}
static enum ggml_backend_dev_type ggml_backend_webgpu_device_get_type(ggml_backend_dev_t dev) {
@ -1808,15 +2000,15 @@ static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context & webgpu_ctx) {
#ifndef __EMSCRIPTEN__
if (webgpu_ctx->supports_subgroup_matrix) {
std::map<std::string, std::string> sg_matrix_repls;
sg_matrix_repls["WEBGPU_MAX_SUBGROUP_SIZE"] = std::to_string(webgpu_ctx->subgroup_size);
sg_matrix_repls["WEBGPU_MAX_SUBGROUP_SIZE"] = std::to_string(webgpu_ctx->max_subgroup_size);
sg_matrix_repls["WEBGPU_TILE_K"] = std::to_string(WEBGPU_MUL_MAT_TILE_K);
sg_matrix_repls["WEBGPU_SUBGROUP_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_M);
sg_matrix_repls["WEBGPU_SUBGROUP_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_N);
sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M);
sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N);
sg_matrix_repls["WEBGPU_SG_MAT_M_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.M);
sg_matrix_repls["WEBGPU_SG_MAT_N_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.N);
sg_matrix_repls["WEBGPU_SG_MAT_K_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.K);
sg_matrix_repls["WEBGPU_SG_MAT_M_SIZE"] = std::to_string(webgpu_ctx->sg_mat_m);
sg_matrix_repls["WEBGPU_SG_MAT_N_SIZE"] = std::to_string(webgpu_ctx->sg_mat_n);
sg_matrix_repls["WEBGPU_SG_MAT_K_SIZE"] = std::to_string(webgpu_ctx->sg_mat_k);
proc_mul_mat_f32_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f32_f32, sg_matrix_repls);
proc_mul_mat_f32_f32_vec =
@ -2273,6 +2465,16 @@ static void ggml_webgpu_init_unary_pipeline(webgpu_context & webgpu_ctx) {
ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_xielu_inplace_f32, "xielu_inplace_f32", constants);
webgpu_ctx->unary_pipelines[GGML_UNARY_OP_XIELU][GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_xielu_inplace_f16, "xielu_inplace_f16", constants);
// CEIL
webgpu_ctx->unary_pipelines[GGML_UNARY_OP_CEIL][GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_ceil_f32, "ceil_f32", constants);
webgpu_ctx->unary_pipelines[GGML_UNARY_OP_CEIL][GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_ceil_f16, "ceil_f16", constants);
webgpu_ctx->unary_pipelines[GGML_UNARY_OP_CEIL][GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_ceil_inplace_f32, "ceil_inplace_f32", constants);
webgpu_ctx->unary_pipelines[GGML_UNARY_OP_CEIL][GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_ceil_inplace_f16, "ceil_inplace_f16", constants);
}
static void ggml_webgpu_init_scale_pipeline(webgpu_context & webgpu_ctx) {
@ -2318,6 +2520,7 @@ static void ggml_webgpu_init_soft_max_pipeline(webgpu_context & webgpu_ctx) {
webgpu_ctx->device, wgsl_soft_max_f32_mask_f16_sink_inplace, "soft_max_f32_mask_f16_sink_inplace", constants);
}
// TODO: move most initialization logic here
static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
@ -2479,6 +2682,29 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const
}
break;
}
case GGML_OP_FLASH_ATTN_EXT:
{
if (!webgpu_ctx->supports_subgroup_matrix) {
break;
}
// Head dimensions must fit in workgroup memory with minimum tile sizes
size_t limit_bytes = webgpu_ctx->limits.maxComputeWorkgroupStorageSize;
const bool has_mask = op->src[3] != nullptr;
const bool kv_direct = src1->type == GGML_TYPE_F16 && (src0->ne[0] % webgpu_ctx->sg_mat_k) == 0 &&
(src1->ne[1] % GGML_WEBGPU_KV_SEQ_PAD) == 0;
const size_t min_bytes = ggml_webgpu_flash_attn_wg_mem_bytes(
webgpu_ctx->sg_mat_m, webgpu_ctx->sg_mat_n, (uint32_t) src0->ne[0], (uint32_t) src2->ne[0],
has_mask, kv_direct);
if (min_bytes > limit_bytes) {
break;
}
supports_op = src0->type == GGML_TYPE_F32 &&
(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 ||
src1->type == GGML_TYPE_Q4_0 || src1->type == GGML_TYPE_Q8_0) &&
src2->type == src1->type && op->type == GGML_TYPE_F32;
break;
}
case GGML_OP_RMS_NORM:
supports_op = op->type == GGML_TYPE_F32 && src0->type == GGML_TYPE_F32;
break;
@ -2528,6 +2754,7 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_XIELU:
case GGML_UNARY_OP_CEIL:
supports_op = supports_op =
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) && (src0->type == op->type);
break;
@ -2595,6 +2822,7 @@ static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) {
}
// TODO: Does this need to be thread safe? Is it only called once?
// TODO: move most logic to device_init function so backend can be freed/initialized properly
// Only one device is supported for now
static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
@ -2654,7 +2882,9 @@ static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t
if (config.M == config.N && config.N == config.K && (config.K == 8 || config.K == 16) &&
config.componentType == wgpu::SubgroupMatrixComponentType::F16 &&
config.resultComponentType == wgpu::SubgroupMatrixComponentType::F16) {
ctx->subgroup_matrix_config = config;
ctx->sg_mat_m = config.M;
ctx->sg_mat_n = config.N;
ctx->sg_mat_k = config.K;
valid_subgroup_matrix_config = true;
break;
}
@ -2665,7 +2895,7 @@ static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t
#endif
// For subgroup matrix code to be the most efficient, we would like the subgroup size to be consistent and accurate.
// Unfortunately, that is not possible, so we use the maximum subgroup size reported by the adapter.
ctx->subgroup_size = info.subgroupMaxSize;
ctx->max_subgroup_size = info.subgroupMaxSize;
// Initialize device
std::vector<wgpu::FeatureName> required_features = { wgpu::FeatureName::ShaderF16 };
@ -2690,8 +2920,11 @@ static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t
wgpu::CallbackMode::AllowSpontaneous,
[](const wgpu::Device & device, wgpu::DeviceLostReason reason, wgpu::StringView message) {
GGML_UNUSED(device);
GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason),
std::string(message).c_str());
GGML_UNUSED(reason);
GGML_UNUSED(message);
//TODO: uncomment once proper free logic is in place
//GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason),
//std::string(message).c_str());
});
dev_desc.SetUncapturedErrorCallback(
[](const wgpu::Device & device, wgpu::ErrorType reason, wgpu::StringView message) {

View File

@ -0,0 +1,778 @@
#ifndef PRE_WGSL_HPP
#define PRE_WGSL_HPP
#include <cctype>
#include <fstream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <string_view>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace pre_wgsl {
//==============================================================
// Options
//==============================================================
struct Options {
std::string include_path = ".";
std::vector<std::string> macros;
};
//==============================================================
// Utility: trim
//==============================================================
static std::string trim(const std::string & s) {
size_t a = 0;
while (a < s.size() && std::isspace((unsigned char) s[a])) {
a++;
}
size_t b = s.size();
while (b > a && std::isspace((unsigned char) s[b - 1])) {
b--;
}
return s.substr(a, b - a);
}
static std::string trim_value(std::istream & is) {
std::string str;
std::getline(is, str);
return trim(str);
}
static bool isIdentChar(char c) {
return std::isalnum(static_cast<unsigned char>(c)) || c == '_';
}
static std::string expandMacrosRecursiveInternal(const std::string & line,
const std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & visiting);
static std::string expandMacroValue(const std::string & name,
const std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & visiting) {
if (visiting.count(name)) {
throw std::runtime_error("Recursive macro: " + name);
}
visiting.insert(name);
auto it = macros.find(name);
if (it == macros.end()) {
visiting.erase(name);
return name;
}
const std::string & value = it->second;
if (value.empty()) {
visiting.erase(name);
return "";
}
std::string expanded = expandMacrosRecursiveInternal(value, macros, visiting);
visiting.erase(name);
return expanded;
}
static std::string expandMacrosRecursiveInternal(const std::string & line,
const std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & visiting) {
std::string result;
result.reserve(line.size());
size_t i = 0;
while (i < line.size()) {
if (isIdentChar(line[i])) {
size_t start = i;
while (i < line.size() && isIdentChar(line[i])) {
i++;
}
std::string token = line.substr(start, i - start);
auto it = macros.find(token);
if (it != macros.end()) {
result += expandMacroValue(token, macros, visiting);
} else {
result += token;
}
} else {
result += line[i];
i++;
}
}
return result;
}
static std::string expandMacrosRecursive(const std::string & line,
const std::unordered_map<std::string, std::string> & macros) {
std::unordered_set<std::string> visiting;
return expandMacrosRecursiveInternal(line, macros, visiting);
}
//==============================================================
// Tokenizer for expressions in #if/#elif
//==============================================================
class ExprLexer {
public:
enum Kind { END, IDENT, NUMBER, OP, LPAREN, RPAREN };
struct Tok {
Kind kind;
std::string text;
};
explicit ExprLexer(std::string_view sv) : src(sv), pos(0) {}
Tok next() {
skipWS();
if (pos >= src.size()) {
return { END, "" };
}
char c = src[pos];
// number
if (std::isdigit((unsigned char) c)) {
size_t start = pos;
while (pos < src.size() && std::isdigit((unsigned char) src[pos])) {
pos++;
}
return { NUMBER, std::string(src.substr(start, pos - start)) };
}
// identifier
if (std::isalpha((unsigned char) c) || c == '_') {
size_t start = pos;
while (pos < src.size() && (std::isalnum((unsigned char) src[pos]) || src[pos] == '_')) {
pos++;
}
return { IDENT, std::string(src.substr(start, pos - start)) };
}
if (c == '(') {
pos++;
return { LPAREN, "(" };
}
if (c == ')') {
pos++;
return { RPAREN, ")" };
}
// multi-char operators
static const char * two_ops[] = { "==", "!=", "<=", ">=", "&&", "||", "<<", ">>" };
for (auto op : two_ops) {
if (src.substr(pos, 2) == op) {
pos += 2;
return { OP, std::string(op) };
}
}
// single-char operators
if (std::string("+-*/%<>!").find(c) != std::string::npos) {
pos++;
return { OP, std::string(1, c) };
}
// unexpected
pos++;
return { END, "" };
}
private:
std::string_view src;
size_t pos;
void skipWS() {
while (pos < src.size() && std::isspace((unsigned char) src[pos])) {
pos++;
}
}
};
//==============================================================
// Expression Parser (recursive descent)
//==============================================================
class ExprParser {
public:
ExprParser(std::string_view expr,
const std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & visiting) :
lex(expr),
macros(macros),
visiting(visiting) {
advance();
}
int parse() { return parseLogicalOr(); }
private:
ExprLexer lex;
ExprLexer::Tok tok;
const std::unordered_map<std::string, std::string> & macros;
std::unordered_set<std::string> & visiting;
void advance() { tok = lex.next(); }
bool acceptOp(const std::string & s) {
if (tok.kind == ExprLexer::OP && tok.text == s) {
advance();
return true;
}
return false;
}
bool acceptKind(ExprLexer::Kind k) {
if (tok.kind == k) {
advance();
return true;
}
return false;
}
int parseLogicalOr() {
int v = parseLogicalAnd();
while (acceptOp("||")) {
int rhs = parseLogicalAnd();
v = (v || rhs);
}
return v;
}
int parseLogicalAnd() {
int v = parseEquality();
while (acceptOp("&&")) {
int rhs = parseEquality();
v = (v && rhs);
}
return v;
}
int parseEquality() {
int v = parseRelational();
for (;;) {
if (acceptOp("==")) {
int rhs = parseRelational();
v = (v == rhs);
} else if (acceptOp("!=")) {
int rhs = parseRelational();
v = (v != rhs);
} else {
break;
}
}
return v;
}
int parseRelational() {
int v = parseShift();
for (;;) {
if (acceptOp("<")) {
int rhs = parseShift();
v = (v < rhs);
} else if (acceptOp(">")) {
int rhs = parseShift();
v = (v > rhs);
} else if (acceptOp("<=")) {
int rhs = parseShift();
v = (v <= rhs);
} else if (acceptOp(">=")) {
int rhs = parseShift();
v = (v >= rhs);
} else {
break;
}
}
return v;
}
int parseShift() {
int v = parseAdd();
for (;;) {
if (acceptOp("<<")) {
int rhs = parseAdd();
v = (v << rhs);
} else if (acceptOp(">>")) {
int rhs = parseAdd();
v = (v >> rhs);
} else {
break;
}
}
return v;
}
int parseAdd() {
int v = parseMult();
for (;;) {
if (acceptOp("+")) {
int rhs = parseMult();
v = (v + rhs);
} else if (acceptOp("-")) {
int rhs = parseMult();
v = (v - rhs);
} else {
break;
}
}
return v;
}
int parseMult() {
int v = parseUnary();
for (;;) {
if (acceptOp("*")) {
int rhs = parseUnary();
v = (v * rhs);
} else if (acceptOp("/")) {
int rhs = parseUnary();
v = (rhs == 0 ? 0 : v / rhs);
} else if (acceptOp("%")) {
int rhs = parseUnary();
v = (rhs == 0 ? 0 : v % rhs);
} else {
break;
}
}
return v;
}
int parseUnary() {
if (acceptOp("!")) {
return !parseUnary();
}
if (acceptOp("-")) {
return -parseUnary();
}
if (acceptOp("+")) {
return +parseUnary();
}
return parsePrimary();
}
int parsePrimary() {
// '(' expr ')'
if (acceptKind(ExprLexer::LPAREN)) {
int v = parse();
if (!acceptKind(ExprLexer::RPAREN)) {
throw std::runtime_error("missing ')'");
}
return v;
}
// number
if (tok.kind == ExprLexer::NUMBER) {
int v = std::stoi(tok.text);
advance();
return v;
}
// defined(identifier)
if (tok.kind == ExprLexer::IDENT && tok.text == "defined") {
advance();
if (acceptKind(ExprLexer::LPAREN)) {
if (tok.kind != ExprLexer::IDENT) {
throw std::runtime_error("expected identifier in defined()");
}
std::string name = tok.text;
advance();
if (!acceptKind(ExprLexer::RPAREN)) {
throw std::runtime_error("missing ) in defined()");
}
return macros.count(name) ? 1 : 0;
} else {
// defined NAME
if (tok.kind != ExprLexer::IDENT) {
throw std::runtime_error("expected identifier in defined NAME");
}
std::string name = tok.text;
advance();
return macros.count(name) ? 1 : 0;
}
}
// identifier -> treat as integer, if defined use its value else 0
if (tok.kind == ExprLexer::IDENT) {
std::string name = tok.text;
advance();
auto it = macros.find(name);
if (it == macros.end()) {
return 0;
}
if (it->second.empty()) {
return 1;
}
return evalMacroExpression(name, it->second);
}
// unexpected
return 0;
}
int evalMacroExpression(const std::string & name, const std::string & value) {
if (visiting.count(name)) {
throw std::runtime_error("Recursive macro: " + name);
}
visiting.insert(name);
ExprParser ep(value, macros, visiting);
int v = ep.parse();
visiting.erase(name);
return v;
}
};
//==============================================================
// Preprocessor
//==============================================================
class Preprocessor {
public:
explicit Preprocessor(Options opts = {}) : opts_(std::move(opts)) {
// Treat empty include path as current directory
if (opts_.include_path.empty()) {
opts_.include_path = ".";
}
parseMacroDefinitions(opts_.macros);
}
std::string preprocess_file(const std::string & filename, const std::vector<std::string> & additional_macros = {}) {
std::unordered_map<std::string, std::string> macros;
std::unordered_set<std::string> predefined;
std::unordered_set<std::string> include_stack;
buildMacros(additional_macros, macros, predefined);
std::string result = processFile(filename, macros, predefined, include_stack, DirectiveMode::All);
return result;
}
std::string preprocess(const std::string & contents, const std::vector<std::string> & additional_macros = {}) {
std::unordered_map<std::string, std::string> macros;
std::unordered_set<std::string> predefined;
std::unordered_set<std::string> include_stack;
buildMacros(additional_macros, macros, predefined);
std::string result = processString(contents, macros, predefined, include_stack, DirectiveMode::All);
return result;
}
std::string preprocess_includes_file(const std::string & filename) {
std::unordered_map<std::string, std::string> macros;
std::unordered_set<std::string> predefined;
std::unordered_set<std::string> include_stack;
std::string result = processFile(filename, macros, predefined, include_stack, DirectiveMode::IncludesOnly);
return result;
}
std::string preprocess_includes(const std::string & contents) {
std::unordered_map<std::string, std::string> macros;
std::unordered_set<std::string> predefined;
std::unordered_set<std::string> include_stack;
std::string result = processString(contents, macros, predefined, include_stack, DirectiveMode::IncludesOnly);
return result;
}
private:
Options opts_;
std::unordered_map<std::string, std::string> global_macros;
enum class DirectiveMode { All, IncludesOnly };
struct Cond {
bool parent_active;
bool active;
bool taken;
};
//----------------------------------------------------------
// Parse macro definitions into global_macros
//----------------------------------------------------------
void parseMacroDefinitions(const std::vector<std::string> & macro_defs) {
for (const auto & def : macro_defs) {
size_t eq_pos = def.find('=');
if (eq_pos != std::string::npos) {
// Format: NAME=VALUE
std::string name = trim(def.substr(0, eq_pos));
std::string value = trim(def.substr(eq_pos + 1));
global_macros[name] = value;
} else {
// Format: NAME
std::string name = trim(def);
global_macros[name] = "";
}
}
}
//----------------------------------------------------------
// Build combined macro map and predefined set for a preprocessing operation
//----------------------------------------------------------
void buildMacros(const std::vector<std::string> & additional_macros,
std::unordered_map<std::string, std::string> & macros,
std::unordered_set<std::string> & predefined) {
macros = global_macros;
predefined.clear();
for (const auto & [name, value] : global_macros) {
predefined.insert(name);
}
for (const auto & def : additional_macros) {
size_t eq_pos = def.find('=');
std::string name, value;
if (eq_pos != std::string::npos) {
name = trim(def.substr(0, eq_pos));
value = trim(def.substr(eq_pos + 1));
} else {
name = trim(def);
value = "";
}
// Add to macros map (will override global if same name)
macros[name] = value;
predefined.insert(name);
}
}
//----------------------------------------------------------
// Helpers
//----------------------------------------------------------
std::string loadFile(const std::string & fname) {
std::ifstream f(fname);
if (!f.is_open()) {
throw std::runtime_error("Could not open file: " + fname);
}
std::stringstream ss;
ss << f.rdbuf();
return ss.str();
}
bool condActive(const std::vector<Cond> & cond) const {
if (cond.empty()) {
return true;
}
return cond.back().active;
}
//----------------------------------------------------------
// Process a file
//----------------------------------------------------------
std::string processFile(const std::string & name,
std::unordered_map<std::string, std::string> & macros,
const std::unordered_set<std::string> & predefined_macros,
std::unordered_set<std::string> & include_stack,
DirectiveMode mode) {
if (include_stack.count(name)) {
throw std::runtime_error("Recursive include: " + name);
}
include_stack.insert(name);
std::string shader_code = loadFile(name);
std::string out = processString(shader_code, macros, predefined_macros, include_stack, mode);
include_stack.erase(name);
return out;
}
std::string processIncludeFile(const std::string & fname,
std::unordered_map<std::string, std::string> & macros,
const std::unordered_set<std::string> & predefined_macros,
std::unordered_set<std::string> & include_stack,
DirectiveMode mode) {
std::string full_path = opts_.include_path + "/" + fname;
return processFile(full_path, macros, predefined_macros, include_stack, mode);
}
//----------------------------------------------------------
// Process text
//----------------------------------------------------------
std::string processString(const std::string & shader_code,
std::unordered_map<std::string, std::string> & macros,
const std::unordered_set<std::string> & predefined_macros,
std::unordered_set<std::string> & include_stack,
DirectiveMode mode) {
std::vector<Cond> cond; // Conditional stack for this shader
std::stringstream out;
std::istringstream in(shader_code);
std::string line;
while (std::getline(in, line)) {
std::string t = trim(line);
if (!t.empty() && t[0] == '#') {
bool handled = handleDirective(t, out, macros, predefined_macros, cond, include_stack, mode);
if (mode == DirectiveMode::IncludesOnly && !handled) {
out << line << "\n";
}
} else {
if (mode == DirectiveMode::IncludesOnly) {
out << line << "\n";
} else if (condActive(cond)) {
// Expand macros in the line before outputting
std::string expanded = expandMacrosRecursive(line, macros);
out << expanded << "\n";
}
}
}
if (mode == DirectiveMode::All && !cond.empty()) {
throw std::runtime_error("Unclosed #if directive");
}
return out.str();
}
//----------------------------------------------------------
// Directive handler
//----------------------------------------------------------
bool handleDirective(const std::string & t,
std::stringstream & out,
std::unordered_map<std::string, std::string> & macros,
const std::unordered_set<std::string> & predefined_macros,
std::vector<Cond> & cond,
std::unordered_set<std::string> & include_stack,
DirectiveMode mode) {
// split into tokens
std::string body = t.substr(1);
std::istringstream iss(body);
std::string cmd;
iss >> cmd;
if (cmd == "include") {
if (mode == DirectiveMode::All && !condActive(cond)) {
return true;
}
std::string file;
iss >> file;
if (file.size() >= 2 && file.front() == '"' && file.back() == '"') {
file = file.substr(1, file.size() - 2);
}
out << processIncludeFile(file, macros, predefined_macros, include_stack, mode);
return true;
}
if (mode == DirectiveMode::IncludesOnly) {
return false;
}
if (cmd == "define") {
if (!condActive(cond)) {
return true;
}
std::string name;
iss >> name;
// Don't override predefined macros from options
if (predefined_macros.count(name)) {
return true;
}
std::string value = trim_value(iss);
macros[name] = value;
return true;
}
if (cmd == "undef") {
if (!condActive(cond)) {
return true;
}
std::string name;
iss >> name;
// Don't undef predefined macros from options
if (predefined_macros.count(name)) {
return true;
}
macros.erase(name);
return true;
}
if (cmd == "ifdef") {
std::string name;
iss >> name;
bool p = condActive(cond);
bool v = macros.count(name);
cond.push_back({ p, p && v, p && v });
return true;
}
if (cmd == "ifndef") {
std::string name;
iss >> name;
bool p = condActive(cond);
bool v = !macros.count(name);
cond.push_back({ p, p && v, p && v });
return true;
}
if (cmd == "if") {
std::string expr = trim_value(iss);
bool p = condActive(cond);
bool v = false;
if (p) {
std::unordered_set<std::string> visiting;
ExprParser ep(expr, macros, visiting);
v = ep.parse() != 0;
}
cond.push_back({ p, p && v, p && v });
return true;
}
if (cmd == "elif") {
std::string expr = trim_value(iss);
if (cond.empty()) {
throw std::runtime_error("#elif without #if");
}
Cond & c = cond.back();
if (!c.parent_active) {
c.active = false;
return true;
}
if (c.taken) {
c.active = false;
return true;
}
std::unordered_set<std::string> visiting;
ExprParser ep(expr, macros, visiting);
bool v = ep.parse() != 0;
c.active = v;
if (v) {
c.taken = true;
}
return true;
}
if (cmd == "else") {
if (cond.empty()) {
throw std::runtime_error("#else without #if");
}
Cond & c = cond.back();
if (!c.parent_active) {
c.active = false;
return true;
}
if (c.taken) {
c.active = false;
} else {
c.active = true;
c.taken = true;
}
return true;
}
if (cmd == "endif") {
if (cond.empty()) {
throw std::runtime_error("#endif without #if");
}
cond.pop_back();
return true;
}
// Unknown directive
throw std::runtime_error("Unknown directive: #" + cmd);
}
};
} // namespace pre_wgsl
#endif // PRE_WGSL_HPP

View File

@ -0,0 +1,591 @@
diagnostic(off, chromium.subgroup_matrix_uniformity);
diagnostic(off, subgroup_uniformity);
enable f16;
enable subgroups;
enable chromium_experimental_subgroup_matrix;
#ifdef KV_F32
#define KV_TYPE f32
#else
#define KV_TYPE f16
#endif
// Default values
#define HEAD_DIM_QK 64
#define HEAD_DIM_V 64
// The number of rows/columns/k in a subgroup matrix. MxK * KxN = MxN
// Note that the "K" here does not correspond to the K in attention's Q/K/V, it's just the common dimension.
#define SG_MAT_M 8
#define SG_MAT_N 8
#define SG_MAT_K 8
// Each workgroup processes one subgroup matrix of Q rows
#define Q_TILE SG_MAT_M
#define KV_TILE 16
#define WG_SIZE 64
// Number of subgroup-matrix-width blocks that span the KV tile. SG_MAT_N must divide KV_TILE.
#define KV_BLOCKS (KV_TILE / SG_MAT_N)
// Quantization constants/helpers
#define BLOCK_SIZE 32
#define BLOCKS_K ((HEAD_DIM_QK + BLOCK_SIZE - 1) / BLOCK_SIZE)
#define BLOCKS_V ((HEAD_DIM_V + BLOCK_SIZE - 1) / BLOCK_SIZE)
// number of quantized elements processed per thread
#if defined(KV_Q4_0)
#define NQ 16
// Q4_0 has 32 elements, 1 f16 for scale, 8 f16 for 4-bit weights
#define F16_PER_BLOCK 9
#define WEIGHTS_PER_F16 4
#elif defined(KV_Q8_0)
#define NQ 8
// Q8_0 has 32 elements, 1 f16 for scale, 16 f16 for 8-bit weights
#define F16_PER_BLOCK 17
#define WEIGHTS_PER_F16 2
#endif
#define F16_PER_THREAD (NQ / WEIGHTS_PER_F16)
// Ok not to put these in a define block, compiler will remove if unused
fn get_byte(value: u32, index: u32) -> u32 {
return (value >> (index * 8)) & 0xFF;
}
fn get_byte_i32(value: u32, index: u32) -> i32 {
return bitcast<i32>(((value >> (index * 8)) & 0xFF) << 24) >> 24;
}
struct Params {
offset_q: u32,
offset_k: u32,
offset_v: u32,
offset_mask: u32,
offset_sinks: u32,
offset_dst: u32,
// shapes of Q/K/V
n_heads: u32,
seq_len_q: u32,
seq_len_kv: u32,
// strides (in elements)
stride_q1: u32,
stride_q2: u32,
stride_q3: u32,
stride_k1: u32,
stride_k2: u32,
stride_k3: u32,
stride_v1: u32,
stride_v2: u32,
stride_v3: u32,
stride_mask3: u32,
// repeat factors for K/V, e.g., MHA vs. MQA vs. GQA
q_per_kv: u32,
// softmax params
scale: f32,
max_bias: f32,
logit_softcap: f32,
n_head_log2: f32,
m0: f32,
m1: f32,
};
@group(0) @binding(0) var<storage, read_write> Q: array<f32>;
@group(0) @binding(1) var<storage, read_write> K: array<KV_TYPE>;
@group(0) @binding(2) var<storage, read_write> V: array<KV_TYPE>;
#if defined(MASK) && defined(SINKS)
@group(0) @binding(3) var<storage, read_write> mask: array<f16>;
@group(0) @binding(4) var<storage, read_write> sinks: array<f32>;
#define DST_BINDING 5
#define PARAMS_BINDING 6
#elif defined(MASK)
@group(0) @binding(3) var<storage, read_write> mask: array<f16>;
#define DST_BINDING 4
#define PARAMS_BINDING 5
#elif defined(SINKS)
@group(0) @binding(3) var<storage, read_write> sinks: array<f32>;
#define DST_BINDING 4
#define PARAMS_BINDING 5
#else
#define DST_BINDING 3
#define PARAMS_BINDING 4
#endif
@group(0) @binding(DST_BINDING) var<storage, read_write> dst: array<f32>;
@group(0) @binding(PARAMS_BINDING) var<uniform> params: Params;
// Just a very small float value.
const FLOAT_MIN: f32 = -1.0e9;
// The number of Q rows processed per workgroup
var<workgroup> q_shmem: array<f16, Q_TILE * HEAD_DIM_QK>;
#ifndef KV_DIRECT
const kv_shmem_size = KV_TILE * max(HEAD_DIM_QK, HEAD_DIM_V);
// we can reuse the same shmem for K and V since we only need one at a time
var<workgroup> kv_shmem: array<f16, kv_shmem_size>;
#endif
var<workgroup> o_shmem: array<f16, Q_TILE * HEAD_DIM_V>; // output shmem
#ifdef MASK
// storage for mask values
var<workgroup> mask_shmem: array<f16, Q_TILE * KV_TILE>;
#endif
// storage for output of Q*K^T scores for online softmax (S matrix from paper)
// also storage for diagonal matrix during online softmax (P matrix from paper)
// note that we reuse the same storage for both since we only need one at a time
var<workgroup> inter_shmem: array<f16, Q_TILE * KV_TILE>;
// Storage for row max and exp sum during online softmax
var<workgroup> row_max_shmem: array<f32, Q_TILE>;
var<workgroup> exp_sum_shmem: array<f32, Q_TILE>;
fn calc_softmax_term(kv_idx: u32, q_tile_row: u32, slope: f32) -> f32 {
var v = select(FLOAT_MIN,
f32(inter_shmem[kv_idx + q_tile_row * KV_TILE]) * params.scale,
kv_idx < KV_TILE);
#ifdef LOGIT_SOFTCAP
v = params.logit_softcap * tanh(v);
#endif
#ifdef MASK
let mask_val = select(0.0, f32(mask_shmem[q_tile_row * KV_TILE + kv_idx]), kv_idx < KV_TILE);
let mask_term = slope * mask_val;
v += mask_term;
#endif
return v;
}
@compute @workgroup_size(WG_SIZE)
fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
@builtin(local_invocation_id) local_id: vec3<u32>,
@builtin(subgroup_id) subgroup_id: u32,
@builtin(subgroup_size) subgroup_size: u32,
@builtin(num_subgroups) num_subgroups: u32,
@builtin(subgroup_invocation_id) sg_inv_id: u32) {
// initialize row max for online softmax
for (var i = local_id.x; i < Q_TILE; i += WG_SIZE) {
row_max_shmem[i] = FLOAT_MIN;
exp_sum_shmem[i] = 0.0;
}
for (var i = local_id.x; i < Q_TILE * HEAD_DIM_V; i += WG_SIZE) {
o_shmem[i] = 0.0;
}
// workgroups per head/batch
let wg_per_head = (params.seq_len_q + Q_TILE - 1u) / Q_TILE;
let wg_per_batch = wg_per_head * params.n_heads;
let dst2_stride = HEAD_DIM_V * params.n_heads;
let dst3_stride = dst2_stride * params.seq_len_q;
// batch index
let batch_idx = wg_id.x / wg_per_batch;
let q_batch_offset = params.offset_q + batch_idx * params.stride_q3;
let k_batch_offset = params.offset_k + batch_idx * params.stride_k3;
let v_batch_offset = params.offset_v + batch_idx * params.stride_v3;
let dst_batch_offset = params.offset_dst + batch_idx * dst3_stride;
let wg_in_batch = wg_id.x % wg_per_batch;
// head index
let head_idx = wg_in_batch / wg_per_head;
let q_head_offset = q_batch_offset + head_idx * params.stride_q2;
let k_head_idx = head_idx / params.q_per_kv;
let v_head_idx = k_head_idx;
let k_head_offset = k_batch_offset + k_head_idx * params.stride_k2;
let v_head_offset = v_batch_offset + v_head_idx * params.stride_v2;
// starting Q row for this workgroup
let wg_in_head = wg_in_batch % wg_per_head;
let q_row_start = wg_in_head * Q_TILE;
#ifdef MASK
// mask offset
let mask_global_offset = params.offset_mask + batch_idx * params.stride_mask3 + q_row_start * params.seq_len_kv;
#endif
// note that the output is permuted, the layout is [head_dim_v, n_heads, seq_len_q, batch_size]
let dst_global_offset = dst_batch_offset + q_row_start * dst2_stride + head_idx * HEAD_DIM_V;
let head = f32(head_idx);
let slope = select(1.0, select(pow(params.m1, 2.0 * (head - params.n_head_log2) + 1.0), pow(params.m0, head + 1.0), head < params.n_head_log2), params.max_bias > 0);
// load q tile into shared memory
for (var elem_idx = local_id.x; elem_idx < Q_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE) {
let q_row = elem_idx / HEAD_DIM_QK;
let q_col = elem_idx % HEAD_DIM_QK;
let head_q_row = q_row_start + q_row;
let global_q_row_offset = q_head_offset + head_q_row * params.stride_q1;
q_shmem[elem_idx] = f16(select(
0.0,
Q[global_q_row_offset + q_col],
head_q_row < params.seq_len_q && q_col < HEAD_DIM_QK));
}
for (var kv_tile = 0u; kv_tile < params.seq_len_kv; kv_tile += KV_TILE) {
// clear inter_shmem to ensure zero-initialized accumulators
for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
inter_shmem[elem_idx] = 0.0;
}
// load k tile into shared memory
#if defined(KV_Q4_0)
for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE * NQ) {
let blck_idx = elem_idx / BLOCK_SIZE;
let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
let k_row = blck_idx / BLOCKS_K;
let global_k_row = kv_tile + k_row;
let block_k = blck_idx % BLOCKS_K;
let row_offset = k_row * HEAD_DIM_QK;
if (global_k_row < params.seq_len_kv) {
let global_block_idx = k_head_offset + global_k_row * params.stride_k1 + block_k;
let base_idx = global_block_idx * F16_PER_BLOCK;
let d = K[base_idx]; // scale
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = K[base_idx + 1u + block_offset + j];
let q_1 = K[base_idx + 1u + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k = 0u; k < 4u; k++) {
let q_byte = get_byte(q_packed, k);
let q_hi = (f16((q_byte >> 4) & 0xF) - 8.0) * d;
let q_lo = (f16(q_byte & 0xF) - 8.0) * d;
let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
kv_shmem[row_offset + idx] = q_lo;
kv_shmem[row_offset + idx + 16u] = q_hi;
}
}
}
}
#elif defined(KV_Q8_0)
for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE * NQ) {
let blck_idx = elem_idx / BLOCK_SIZE;
let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
let k_row = blck_idx / BLOCKS_K;
let global_k_row = kv_tile + k_row;
let block_k = blck_idx % BLOCKS_K;
let row_offset = k_row * HEAD_DIM_QK;
if (global_k_row < params.seq_len_kv) {
let global_block_idx = k_head_offset + global_k_row * params.stride_k1 + block_k;
let base_idx = global_block_idx * F16_PER_BLOCK;
let d = K[base_idx]; // scale
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = K[base_idx + 1u + block_offset + j];
let q_1 = K[base_idx + 1u + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k = 0u; k < 4u; k++) {
let q_byte = get_byte_i32(q_packed, k);
let q_val = f16(q_byte) * d;
let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
kv_shmem[row_offset + idx] = q_val;
}
}
}
}
#elif defined(KV_DIRECT)
// Direct global loads for KV
#else
for (var elem_idx = local_id.x; elem_idx < KV_TILE * HEAD_DIM_QK; elem_idx += WG_SIZE) {
let k_row = elem_idx / HEAD_DIM_QK;
let k_col = elem_idx % HEAD_DIM_QK;
let global_k_row = kv_tile + k_row;
let global_k_row_offset = k_head_offset + global_k_row * params.stride_k1;
kv_shmem[elem_idx] = f16(select(
0.0,
K[global_k_row_offset + k_col],
global_k_row < params.seq_len_kv && k_col < HEAD_DIM_QK));
}
#endif
workgroupBarrier();
// accumulate q block * k block into registers across the entire KV tile
// TODO: this loop seems to be the current largest bottleneck
for (var kv_block = subgroup_id; kv_block < KV_BLOCKS; kv_block += num_subgroups) {
let inter_offset = kv_block * SG_MAT_N;
var acc: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<
subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(&inter_shmem, inter_offset, false, KV_TILE);
#ifdef KV_DIRECT
let k_block_row = kv_tile + kv_block * SG_MAT_N;
let k_global_offset = k_head_offset + k_block_row * params.stride_k1;
#else
let k_block_offset = kv_block * SG_MAT_N * HEAD_DIM_QK;
#endif
for (var head_dim_block = 0u; head_dim_block < HEAD_DIM_QK; head_dim_block += SG_MAT_K) {
// load q submatrix from shared memory
var q_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
&q_shmem,
head_dim_block,
false,
HEAD_DIM_QK
);
// load k submatrix from device or shared memory
#ifdef KV_DIRECT
var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
&K,
k_global_offset + head_dim_block,
true,
params.stride_k1
);
#else
var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
&kv_shmem,
k_block_offset + head_dim_block,
true,
HEAD_DIM_QK
);
#endif
acc = subgroupMatrixMultiplyAccumulate(q_sg_mat, k_sg_mat, acc);
}
// store acc to shared memory for softmax (S matrix from paper)
subgroupMatrixStore(&inter_shmem, inter_offset, acc, false, KV_TILE);
}
#ifdef MASK
// load mask tile into shared memory for this KV block
// TODO: optimize and skip if mask is -INF for the entire tile
for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
let mask_row = elem_idx / KV_TILE;
let mask_col = elem_idx % KV_TILE;
let global_q_row = q_row_start + mask_row;
let global_k_col = kv_tile + mask_col;
let mask_in_bounds = global_q_row < params.seq_len_q && global_k_col < params.seq_len_kv;
let mask_idx = mask_global_offset + mask_row * params.seq_len_kv + global_k_col;
mask_shmem[elem_idx] = select(0.0, mask[mask_idx], mask_in_bounds);
}
#endif
workgroupBarrier();
// online softmax
for (var q_tile_row = subgroup_id; q_tile_row < Q_TILE; q_tile_row += num_subgroups) {
let global_q_row = q_row_start + q_tile_row;
if (global_q_row >= params.seq_len_q) {
break;
}
// initialize running max for this row
var prev_max = row_max_shmem[q_tile_row];
var final_max = prev_max;
// pass 1: compute final max across the full KV tile in chunks
for (var kv_offset = 0u; kv_offset < KV_TILE; kv_offset += subgroup_size) {
let kv_idx = kv_offset + sg_inv_id;
let softmax_term = calc_softmax_term(kv_idx, q_tile_row, slope);
final_max = subgroupMax(max(final_max, softmax_term));
}
var total_exp_term: f32 = 0.0;
// pass 2: compute exp sum and write P using final_max
for (var kv_offset = 0u; kv_offset < KV_TILE; kv_offset += subgroup_size) {
let kv_idx = kv_offset + sg_inv_id;
let softmax_term = calc_softmax_term(kv_idx, q_tile_row, slope);
let cur_p = select(0.0,
exp(softmax_term - final_max),
kv_tile + kv_idx < params.seq_len_kv && kv_idx < KV_TILE);
total_exp_term += subgroupAdd(cur_p);
if (kv_idx < KV_TILE) {
inter_shmem[kv_idx + q_tile_row * KV_TILE] = f16(cur_p);
}
}
let cur_exp = exp(prev_max - final_max);
if (sg_inv_id == 0) {
row_max_shmem[q_tile_row] = final_max;
exp_sum_shmem[q_tile_row] = exp_sum_shmem[q_tile_row] * cur_exp + total_exp_term;
}
for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
let idx = q_tile_row * HEAD_DIM_V + elem_idx;
o_shmem[idx] = f16(f32(o_shmem[idx]) * cur_exp);
}
}
// load v tile into shared memory
#if defined(KV_Q4_0)
for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE * NQ) {
let blck_idx = elem_idx / BLOCK_SIZE;
let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
let v_row = blck_idx / BLOCKS_V;
let global_v_row = kv_tile + v_row;
let block_k = blck_idx % BLOCKS_V;
let row_offset = v_row * HEAD_DIM_V;
if (global_v_row < params.seq_len_kv) {
let global_block_idx = v_head_offset + global_v_row * params.stride_v1 + block_k;
let base_idx = global_block_idx * F16_PER_BLOCK;
let d = V[base_idx]; // scale
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = V[base_idx + 1u + block_offset + j];
let q_1 = V[base_idx + 1u + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k = 0u; k < 4u; k++) {
let q_byte = get_byte(q_packed, k);
let q_hi = (f16((q_byte >> 4) & 0xF) - 8.0) * d;
let q_lo = (f16(q_byte & 0xF) - 8.0) * d;
let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
kv_shmem[row_offset + idx] = q_lo;
kv_shmem[row_offset + idx + 16u] = q_hi;
}
}
}
}
#elif defined(KV_Q8_0)
for (var elem_idx = local_id.x * NQ; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE * NQ) {
let blck_idx = elem_idx / BLOCK_SIZE;
let block_offset = (elem_idx % BLOCK_SIZE) / WEIGHTS_PER_F16;
let v_row = blck_idx / BLOCKS_V;
let global_v_row = kv_tile + v_row;
let block_k = blck_idx % BLOCKS_V;
let row_offset = v_row * HEAD_DIM_V;
if (global_v_row < params.seq_len_kv) {
let global_block_idx = v_head_offset + global_v_row * params.stride_v1 + block_k;
let base_idx = global_block_idx * F16_PER_BLOCK;
let d = V[base_idx]; // scale
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = V[base_idx + 1u + block_offset + j];
let q_1 = V[base_idx + 1u + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k = 0u; k < 4u; k++) {
let q_byte = get_byte_i32(q_packed, k);
let q_val = f16(q_byte) * d;
let idx = block_k * BLOCK_SIZE + block_offset * 2u + j * 2u + k;
kv_shmem[row_offset + idx] = q_val;
}
}
}
}
#elif defined(KV_DIRECT)
// Direct global loads for KV
#else
for (var elem_idx = local_id.x; elem_idx < KV_TILE * HEAD_DIM_V; elem_idx += WG_SIZE) {
let v_row = elem_idx / HEAD_DIM_V;
let v_col = elem_idx % HEAD_DIM_V;
let global_v_row = kv_tile + v_row;
let global_v_row_offset = v_head_offset + global_v_row * params.stride_v1;
kv_shmem[elem_idx] = f16(select(
0.0,
V[global_v_row_offset + v_col],
global_v_row < params.seq_len_kv && v_col < HEAD_DIM_V));
}
#endif
workgroupBarrier();
// we have P (Q_TILE x KV_TILE) in inter_shmem and V (KV_TILE x head_dim_v) in kv_shmem
// we want to compute O += P * V across the full KV tile
for (var head_dim_block = subgroup_id * SG_MAT_N;
head_dim_block < HEAD_DIM_V;
head_dim_block += num_subgroups * SG_MAT_N) {
// load O submatrix from shared memory
var o_sg_mat: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(
&o_shmem,
head_dim_block,
false,
HEAD_DIM_V
);
for (var kv_block = 0u; kv_block < KV_BLOCKS; kv_block++) {
let p_offset = kv_block * SG_MAT_N;
var p_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
&inter_shmem,
p_offset,
false,
KV_TILE
);
// load V submatrix from global or shared memory
#ifdef KV_DIRECT
let v_block_row = kv_tile + kv_block * SG_MAT_N;
let v_global_offset = v_head_offset + v_block_row * params.stride_v1 + head_dim_block;
var v_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
&V,
v_global_offset,
false,
params.stride_v1
);
#else
let v_block_offset = kv_block * SG_MAT_N * HEAD_DIM_V;
var v_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
&kv_shmem,
v_block_offset + head_dim_block,
false,
HEAD_DIM_V
);
#endif
// O += P * V
o_sg_mat = subgroupMatrixMultiplyAccumulate(p_sg_mat, v_sg_mat, o_sg_mat);
}
// store O back to shared memory
subgroupMatrixStore(&o_shmem, head_dim_block, o_sg_mat, false, HEAD_DIM_V);
}
workgroupBarrier();
}
#ifdef SINKS
// add sinks (applied once after processing all KV tiles)
for (var q_tile_row = subgroup_id;
q_tile_row < Q_TILE;
q_tile_row += num_subgroups) {
// no need to process rows beyond seq_len_q
let global_q_row = q_row_start + q_tile_row;
if (global_q_row >= params.seq_len_q) {
break;
}
var prev_max = row_max_shmem[q_tile_row];
// for non-sink threads, exp(FLOAT_MIN) effectively zeroes out their contribution to the sum
let sink_val = select(FLOAT_MIN, sinks[params.offset_sinks + head_idx], sg_inv_id == 0);
let new_max = subgroupMax(max(prev_max, sink_val));
let max_exp = exp(prev_max - new_max);
let sink_exp = exp(sink_val - new_max);
let sink_exp_sum = subgroupAdd(sink_exp);
if (sg_inv_id == 0) {
exp_sum_shmem[q_tile_row] = exp_sum_shmem[q_tile_row] * max_exp + sink_exp_sum;
}
for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
let idx = q_tile_row * HEAD_DIM_V + elem_idx;
let val = f32(o_shmem[idx]) * max_exp;
o_shmem[idx] = f16(val);
}
}
workgroupBarrier();
#endif
// write output back to global memory
for (var q_tile_row = subgroup_id;
q_tile_row < Q_TILE;
q_tile_row += num_subgroups) {
let global_q_row = q_row_start + q_tile_row;
if (global_q_row >= params.seq_len_q) {
break;
}
let exp_sum = exp_sum_shmem[q_tile_row];
let scale = select(0.0, 1.0 / exp_sum, exp_sum != 0);
for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
let o_val = o_shmem[q_tile_row * HEAD_DIM_V + elem_idx];
let scaled = f32(o_val) * scale;
dst[dst_global_offset + q_tile_row * dst2_stride + elem_idx] = scaled;
}
}
}

View File

@ -16,7 +16,8 @@
"HARDSWISH_FUNC": "{{MUTATE}}[dst_i] = src[src_i] * min(1.0, max(0.0, (src[src_i] + 3.0) / 6.0));",
"GELU_FUNC": "{{MUTATE}}[dst_i] = 0.5 * src[src_i] * (1.0 + tanh(clamp(sqrt(2.0 / 3.14159265) * (src[src_i] + 0.044715 * pow(src[src_i], 3.0)), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
"GELU_QUICK_FUNC": "{{MUTATE}}[dst_i] = src[src_i] * 0.5 * (1.0 + tanh(clamp(0.79788456 * (src[src_i] + 0.044715 * src[src_i] * src[src_i] * src[src_i]), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
"GELU_ERF_FUNC": "{{MUTATE}}[dst_i] = 0.5 * src[src_i] * (1.0 + tanh(clamp(0.79788456 * (src[src_i] + 0.044715 * src[src_i] * src[src_i] * src[src_i]), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458"
"GELU_ERF_FUNC": "{{MUTATE}}[dst_i] = 0.5 * src[src_i] * (1.0 + tanh(clamp(0.79788456 * (src[src_i] + 0.044715 * src[src_i] * src[src_i] * src[src_i]), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
"CEIL_FUNC": "{{MUTATE}}[dst_i] = ceil(src[src_i]);"
}
#end(REPL_TEMPLATES)
@ -357,6 +358,27 @@
"SHADER_NAME": "gelu_erf_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "ceil_f32",
"REPLS": { "TYPE": "f32", "FUNC": "CEIL_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "ceil_f16",
"REPLS": { "TYPE": "f16", "FUNC": "CEIL_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "ceil_inplace_f32",
"REPLS": { "TYPE": "f32", "FUNC": "CEIL_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "ceil_inplace_f16",
"REPLS": { "TYPE": "f16", "FUNC": "CEIL_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
"DECLS": ["INPLACE"]
}
]

View File

@ -53,13 +53,15 @@
#define UNUSED GGML_UNUSED
// Needed for ggml_fp32_to_bf16_row()
#if defined(__AVX512BF16__)
#if defined(_MSC_VER)
#define m512bh(p) p
#define m512i(p) p
#else
#define m512bh(p) (__m512bh)(p)
#include <immintrin.h>
#define m512i(p) (__m512i)(p)
#endif
#endif // defined(_MSC_VER)
#endif // defined(__AVX512BF16__)
#if defined(__linux__) || \
defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \

View File

@ -104,6 +104,7 @@ class Keys:
VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length"
EMBEDDING_LENGTH_OUT = "{arch}.embedding_length_out"
FEATURES_LENGTH = "{arch}.features_length"
BLOCK_COUNT = "{arch}.block_count"
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
@ -275,12 +276,13 @@ class Keys:
DATASETS = "imatrix.datasets"
class Clip:
PROJECTOR_TYPE = "clip.projector_type"
HAS_VISION_ENCODER = "clip.has_vision_encoder"
HAS_AUDIO_ENCODER = "clip.has_audio_encoder"
HAS_LLAVA_PROJECTOR = "clip.has_llava_projector"
PROJECTOR_TYPE = "clip.projector_type"
HAS_VISION_ENCODER = "clip.has_vision_encoder"
HAS_AUDIO_ENCODER = "clip.has_audio_encoder"
HAS_LLAVA_PROJECTOR = "clip.has_llava_projector"
class ClipVision:
PROJECTOR_TYPE = "clip.vision.projector_type" # for mixed modality models
IMAGE_SIZE = "clip.vision.image_size"
PREPROC_IMAGE_SIZE = "clip.vision.preproc_image_size"
PATCH_SIZE = "clip.vision.patch_size"
@ -306,6 +308,7 @@ class Keys:
SCALE_FACTOR = "clip.vision.projector.scale_factor"
class ClipAudio:
PROJECTOR_TYPE = "clip.audio.projector_type" # for mixed modality models
NUM_MEL_BINS = "clip.audio.num_mel_bins"
EMBEDDING_LENGTH = "clip.audio.embedding_length"
FEED_FORWARD_LENGTH = "clip.audio.feed_forward_length"
@ -464,6 +467,7 @@ class VISION_PROJECTOR_TYPE(IntEnum):
RESAMPLER = auto()
GLM_EDGE = auto()
MERGER = auto()
GEMMA3N = auto()
GEMMA3 = auto()
QWEN3VL = auto()
COGVLM = auto()
@ -674,6 +678,15 @@ class MODEL_TENSOR(IntEnum):
V_MM_INP_NORM = auto()
V_MM_INP_PROJ = auto() # gemma3
V_MM_SOFT_EMB_NORM = auto() # gemma3
V_MM_EMBEDDING = auto() # gemma3n
V_MM_HARD_EMB_NORM = auto() # gemma3n
V_ENC_CONV_STEM = auto() # gemma3n
V_ENC_CONV_STEM_NORM = auto() # gemma3n
V_ENC_MSFA_EXP = auto() # gemma3n
V_ENC_MSFA_EXP_NORM = auto() # gemma3n
V_ENC_MSFA_PROJ = auto() # gemma3n
V_ENC_MSFA_PROJ_NORM = auto() # gemma3n
V_ENC_MSFA_NORM = auto() # gemma3n
V_RESMPL_POS_EMBD_K = auto() # minicpmv
V_RESMPL_ATTN_Q = auto() # minicpmv
V_RESMPL_ATTN_K = auto() # minicpmv
@ -697,30 +710,41 @@ class MODEL_TENSOR(IntEnum):
V_TOK_BOI = auto() # cogvlm
V_TOK_EOI = auto() # cogvlm
# audio (mtmd)
A_ENC_EMBD_POS = auto()
A_ENC_EMBD_NORM = auto()
A_ENC_EMBD_TO_LOGITS = auto()
A_ENC_CONV1D = auto()
A_PRE_NORM = auto()
A_POST_NORM = auto()
A_ENC_ATTN_Q = auto()
A_ENC_ATTN_K = auto()
A_ENC_ATTN_V = auto()
A_ENC_INPUT_NORM = auto()
A_ENC_OUTPUT = auto()
A_ENC_OUTPUT_NORM = auto()
A_ENC_FFN_UP = auto()
A_ENC_FFN_NORM = auto()
A_ENC_FFN_GATE = auto()
A_ENC_FFN_DOWN = auto()
A_ENC_FFN_UP_1 = auto()
A_ENC_FFN_NORM_1 = auto()
A_ENC_FFN_GATE_1 = auto()
A_ENC_FFN_DOWN_1 = auto()
A_MMPROJ = auto()
A_MMPROJ_FC = auto()
A_MM_NORM_PRE = auto()
A_MM_NORM_MID = auto()
A_ENC_EMBD_POS = auto()
A_ENC_EMBD_NORM = auto()
A_ENC_EMBD_TO_LOGITS = auto() # lfm2
A_ENC_CONV1D = auto()
A_ENC_CONV1D_NORM = auto() # gemma3n
A_PRE_NORM = auto()
A_POST_NORM = auto()
A_ENC_LAYER_PRE_NORM = auto() # gemma3n
A_ENC_ATTN_Q = auto()
A_ENC_ATTN_K = auto()
A_ENC_ATTN_V = auto()
A_ENC_PER_DIM_SCALE = auto() # gemma3n
A_ENC_INPUT_NORM = auto()
A_ENC_OUTPUT = auto()
A_ENC_OUTPUT_NORM = auto()
A_ENC_FFN_UP = auto()
A_ENC_FFN_NORM = auto()
A_ENC_FFN_POST_NORM = auto() # gemma3n
A_ENC_FFN_SCALE = auto() # gemma3n
A_ENC_FFN_GATE = auto()
A_ENC_FFN_DOWN = auto()
A_ENC_FFN_UP_1 = auto() # lfm2, gemma3n
A_ENC_FFN_NORM_1 = auto() # lfm2, gemma3n (pre-norm)
A_ENC_FFN_POST_NORM_1 = auto() # gemma3n
A_ENC_FFN_SCALE_1 = auto() # gemma3n
A_ENC_FFN_GATE_1 = auto() # lfm2, gemma3n
A_ENC_FFN_DOWN_1 = auto() # lfm2, gemma3n
A_MMPROJ = auto()
A_MMPROJ_FC = auto()
A_MM_NORM_PRE = auto()
A_MM_NORM_MID = auto()
A_MM_EMBEDDING = auto() # gemma3n
A_MM_HARD_EMB_NORM = auto() # gemma3n
A_MM_SOFT_EMB_NORM = auto() # gemma3n
A_MM_INP_PROJ = auto() # gemma3n
# nextn/mtp
NEXTN_EH_PROJ = auto()
NEXTN_EMBED_TOKENS = auto()
@ -1070,7 +1094,16 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_MM_POST_NORM: "mm.post_norm",
MODEL_TENSOR.V_MM_INP_PROJ: "mm.input_projection",
MODEL_TENSOR.V_MM_INP_NORM: "mm.input_norm",
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: "mm.soft_emb_norm",
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: "mm.soft_emb_norm", # gemma3n
MODEL_TENSOR.V_MM_EMBEDDING: "mm.embedding", # gemma3n
MODEL_TENSOR.V_MM_HARD_EMB_NORM: "mm.hard_emb_norm", # gemma3n
MODEL_TENSOR.V_ENC_CONV_STEM: "v.conv_stem.conv", # gemma3n
MODEL_TENSOR.V_ENC_CONV_STEM_NORM: "v.conv_stem.bn", # gemma3n
MODEL_TENSOR.V_ENC_MSFA_EXP: "v.msfa.ffn.pw_exp.conv", # gemma3n
MODEL_TENSOR.V_ENC_MSFA_EXP_NORM: "v.msfa.ffn.pw_exp.bn", # gemma3n
MODEL_TENSOR.V_ENC_MSFA_PROJ: "v.msfa.ffn.pw_proj.conv", # gemma3n
MODEL_TENSOR.V_ENC_MSFA_PROJ_NORM: "v.msfa.ffn.pw_proj.bn", # gemma3n
MODEL_TENSOR.V_ENC_MSFA_NORM: "v.msfa.norm", # gemma3n
MODEL_TENSOR.V_RESMPL_POS_EMBD_K: "resampler.pos_embd_k",
MODEL_TENSOR.V_RESMPL_ATTN_Q: "resampler.attn.q",
MODEL_TENSOR.V_RESMPL_ATTN_K: "resampler.attn.k",
@ -1099,19 +1132,26 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.A_ENC_EMBD_NORM: "a.position_embd_norm",
MODEL_TENSOR.A_ENC_EMBD_TO_LOGITS: "a.embd_to_logits",
MODEL_TENSOR.A_ENC_CONV1D: "a.conv1d.{bid}",
MODEL_TENSOR.A_ENC_CONV1D_NORM: "a.conv1d.{bid}.norm",
MODEL_TENSOR.A_PRE_NORM: "a.pre_ln",
MODEL_TENSOR.A_POST_NORM: "a.post_ln",
MODEL_TENSOR.A_ENC_LAYER_PRE_NORM: "a.blk.{bid}.layer_pre_norm",
MODEL_TENSOR.A_ENC_ATTN_Q: "a.blk.{bid}.attn_q",
MODEL_TENSOR.A_ENC_ATTN_K: "a.blk.{bid}.attn_k",
MODEL_TENSOR.A_ENC_ATTN_V: "a.blk.{bid}.attn_v",
MODEL_TENSOR.A_ENC_PER_DIM_SCALE: "a.blk.{bid}.per_dim_scale",
MODEL_TENSOR.A_ENC_INPUT_NORM: "a.blk.{bid}.ln1",
MODEL_TENSOR.A_ENC_OUTPUT: "a.blk.{bid}.attn_out",
MODEL_TENSOR.A_ENC_OUTPUT_NORM: "a.blk.{bid}.ln2",
MODEL_TENSOR.A_ENC_FFN_NORM: "a.blk.{bid}.ffn_norm",
MODEL_TENSOR.A_ENC_FFN_POST_NORM: "a.blk.{bid}.ffn_post_norm",
MODEL_TENSOR.A_ENC_FFN_SCALE: "a.blk.{bid}.ffn_scale",
MODEL_TENSOR.A_ENC_FFN_UP: "a.blk.{bid}.ffn_up",
MODEL_TENSOR.A_ENC_FFN_GATE: "a.blk.{bid}.ffn_gate",
MODEL_TENSOR.A_ENC_FFN_DOWN: "a.blk.{bid}.ffn_down",
MODEL_TENSOR.A_ENC_FFN_NORM_1: "a.blk.{bid}.ffn_norm_1",
MODEL_TENSOR.A_ENC_FFN_POST_NORM_1: "a.blk.{bid}.ffn_post_norm_1",
MODEL_TENSOR.A_ENC_FFN_SCALE_1: "a.blk.{bid}.ffn_scale_1",
MODEL_TENSOR.A_ENC_FFN_UP_1: "a.blk.{bid}.ffn_up_1",
MODEL_TENSOR.A_ENC_FFN_GATE_1: "a.blk.{bid}.ffn_gate_1",
MODEL_TENSOR.A_ENC_FFN_DOWN_1: "a.blk.{bid}.ffn_down_1",
@ -1119,6 +1159,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.A_MMPROJ_FC: "mm.a.fc",
MODEL_TENSOR.A_MM_NORM_PRE: "mm.a.norm_pre",
MODEL_TENSOR.A_MM_NORM_MID: "mm.a.norm_mid",
MODEL_TENSOR.A_MM_INP_PROJ: "mm.a.input_projection", # gemma3n
MODEL_TENSOR.A_MM_SOFT_EMB_NORM: "mm.a.soft_emb_norm", # gemma3n
MODEL_TENSOR.A_MM_EMBEDDING: "mm.a.embedding", # gemma3n
MODEL_TENSOR.A_MM_HARD_EMB_NORM: "mm.a.hard_emb_norm", # gemma3n
# lfm2 audio
MODEL_TENSOR.A_ENC_NORM_CONV: "a.blk.{bid}.norm_conv",
MODEL_TENSOR.A_ENC_LINEAR_POS: "a.blk.{bid}.linear_pos",
@ -1169,6 +1213,15 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_MM_INP_PROJ,
MODEL_TENSOR.V_MM_INP_NORM,
MODEL_TENSOR.V_MM_SOFT_EMB_NORM,
MODEL_TENSOR.V_MM_EMBEDDING,
MODEL_TENSOR.V_MM_HARD_EMB_NORM,
MODEL_TENSOR.V_ENC_CONV_STEM,
MODEL_TENSOR.V_ENC_CONV_STEM_NORM,
MODEL_TENSOR.V_ENC_MSFA_EXP,
MODEL_TENSOR.V_ENC_MSFA_EXP_NORM,
MODEL_TENSOR.V_ENC_MSFA_PROJ,
MODEL_TENSOR.V_ENC_MSFA_PROJ_NORM,
MODEL_TENSOR.V_ENC_MSFA_NORM,
MODEL_TENSOR.V_RESMPL_POS_EMBD_K,
MODEL_TENSOR.V_RESMPL_ATTN_Q,
MODEL_TENSOR.V_RESMPL_ATTN_K,
@ -1196,19 +1249,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.A_ENC_EMBD_NORM,
MODEL_TENSOR.A_ENC_EMBD_TO_LOGITS,
MODEL_TENSOR.A_ENC_CONV1D,
MODEL_TENSOR.A_ENC_CONV1D_NORM,
MODEL_TENSOR.A_PRE_NORM,
MODEL_TENSOR.A_POST_NORM,
MODEL_TENSOR.A_ENC_LAYER_PRE_NORM,
MODEL_TENSOR.A_ENC_ATTN_Q,
MODEL_TENSOR.A_ENC_ATTN_K,
MODEL_TENSOR.A_ENC_ATTN_V,
MODEL_TENSOR.A_ENC_PER_DIM_SCALE,
MODEL_TENSOR.A_ENC_INPUT_NORM,
MODEL_TENSOR.A_ENC_OUTPUT,
MODEL_TENSOR.A_ENC_OUTPUT_NORM,
MODEL_TENSOR.A_ENC_FFN_NORM,
MODEL_TENSOR.A_ENC_FFN_POST_NORM,
MODEL_TENSOR.A_ENC_FFN_SCALE,
MODEL_TENSOR.A_ENC_FFN_UP,
MODEL_TENSOR.A_ENC_FFN_GATE,
MODEL_TENSOR.A_ENC_FFN_DOWN,
MODEL_TENSOR.A_ENC_FFN_NORM_1,
MODEL_TENSOR.A_ENC_FFN_POST_NORM_1,
MODEL_TENSOR.A_ENC_FFN_SCALE_1,
MODEL_TENSOR.A_ENC_FFN_UP_1,
MODEL_TENSOR.A_ENC_FFN_GATE_1,
MODEL_TENSOR.A_ENC_FFN_DOWN_1,
@ -1225,6 +1285,10 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.A_ENC_CONV_NORM,
MODEL_TENSOR.A_ENC_CONV_PW1,
MODEL_TENSOR.A_ENC_CONV_PW2,
MODEL_TENSOR.A_MM_INP_PROJ,
MODEL_TENSOR.A_MM_SOFT_EMB_NORM,
MODEL_TENSOR.A_MM_EMBEDDING,
MODEL_TENSOR.A_MM_HARD_EMB_NORM,
],
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.TOKEN_EMBD,
@ -1674,6 +1738,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.ATTN_GATE,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_INP_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
@ -3038,6 +3103,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.DENSE_2_OUT, # LFM2-ColBert-350M
],
MODEL_ARCH.LFM2MOE: [
MODEL_TENSOR.TOKEN_EMBD,
@ -3494,6 +3560,8 @@ class GGUFValueType(IntEnum):
class VisionProjectorType:
GEMMA3 = "gemma3"
GEMMA3NV = "gemma3nv"
GEMMA3NA = "gemma3na"
IDEFICS3 = "idefics3"
PIXTRAL = "pixtral"
LLAMA4 = "llama4"

View File

@ -681,6 +681,9 @@ class GGUFWriter:
def add_embedding_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_embedding_length_out(self, length: int) -> None:
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH_OUT.format(arch=self.arch), length)
def add_features_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.FEATURES_LENGTH.format(arch=self.arch), length)
@ -1083,6 +1086,9 @@ class GGUFWriter:
def add_clip_projector_type(self, value: str) -> None:
self.add_string(Keys.Clip.PROJECTOR_TYPE, value)
def add_clip_vision_projector_type(self, value: str) -> None:
self.add_string(Keys.ClipVision.PROJECTOR_TYPE, value)
def add_vision_projection_dim(self, value: int) -> None:
self.add_uint32(Keys.ClipVision.PROJECTION_DIM, value)
@ -1165,6 +1171,9 @@ class GGUFWriter:
# audio models
def add_clip_audio_projector_type(self, value: str) -> None:
self.add_string(Keys.ClipAudio.PROJECTOR_TYPE, value)
def add_audio_projection_dim(self, value: int) -> None:
self.add_uint32(Keys.ClipAudio.PROJECTION_DIM, value)

View File

@ -123,6 +123,40 @@ class TensorNameMap:
MODEL_TENSOR.CONV1D: (
"backbone.embed", # roberta
),
MODEL_TENSOR.V_MM_EMBEDDING: (
"model.embed_vision.embedding", # gemma3n
),
MODEL_TENSOR.V_MM_HARD_EMB_NORM: (
"model.embed_vision.hard_embedding_norm", # gemma3n
),
MODEL_TENSOR.V_MM_INP_PROJ: (
"model.embed_vision.embedding_projection", # gemma3n
),
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
"model.embed_vision.soft_embedding_norm", # gemma3n
),
MODEL_TENSOR.V_ENC_CONV_STEM: (
"model.vision_tower.timm_model.conv_stem.conv", # gemma3n
),
MODEL_TENSOR.V_ENC_CONV_STEM_NORM: (
"model.vision_tower.timm_model.conv_stem.bn", # gemma3n
),
MODEL_TENSOR.V_ENC_MSFA_EXP: (
"model.vision_tower.timm_model.msfa.ffn.pw_exp.conv", # gemma3n
),
MODEL_TENSOR.V_ENC_MSFA_EXP_NORM: (
"model.vision_tower.timm_model.msfa.ffn.pw_exp.bn", # gemma3n
),
MODEL_TENSOR.V_ENC_MSFA_PROJ: (
"model.vision_tower.timm_model.msfa.ffn.pw_proj.conv", # gemma3n
),
MODEL_TENSOR.V_ENC_MSFA_PROJ_NORM: (
"model.vision_tower.timm_model.msfa.ffn.pw_proj.bn", # gemma3n
),
MODEL_TENSOR.V_ENC_MSFA_NORM: (
"model.vision_tower.timm_model.msfa.norm", # gemma3n
),
}
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
@ -1575,6 +1609,11 @@ class TensorNameMap:
MODEL_TENSOR.A_ENC_CONV1D: (
"audio_tower.conv{bid}", # ultravox
"conformer.pre_encode.conv.{bid}", # lfm2
"model.audio_tower.subsample_conv_projection.conv_{bid}.conv", # gemma3n
),
MODEL_TENSOR.A_ENC_CONV1D_NORM: (
"model.audio_tower.subsample_conv_projection.conv_{bid}.norm", # gemma3n
),
MODEL_TENSOR.A_PRE_NORM: (),
@ -1587,40 +1626,64 @@ class TensorNameMap:
MODEL_TENSOR.A_ENC_ATTN_Q: (
"audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
"conformer.layers.{bid}.self_attn.linear_q", # lfm2
"conformer.layers.{bid}.attention.attn.q_proj", # gemma3n
),
MODEL_TENSOR.A_ENC_ATTN_K: (
"audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
"conformer.layers.{bid}.self_attn.linear_k", # lfm2
"conformer.layers.{bid}.attention.attn.k_proj", # gemma3n
),
MODEL_TENSOR.A_ENC_ATTN_V: (
"audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
"conformer.layers.{bid}.self_attn.linear_v", # lfm2
"conformer.layers.{bid}.attention.attn.v_proj", # gemma3n
),
MODEL_TENSOR.A_ENC_PER_DIM_SCALE: (
"conformer.layers.{bid}.attention.attn.per_dim_scale", # gemma3n
),
MODEL_TENSOR.A_ENC_LAYER_PRE_NORM: (
"conformer.layers.{bid}.norm", # gemma3n
),
MODEL_TENSOR.A_ENC_INPUT_NORM: (
"audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
"conformer.layers.{bid}.norm_self_att", # lfm2
"conformer.layers.{bid}.attention.pre_attn_norm", # gemma3n
),
MODEL_TENSOR.A_ENC_OUTPUT: (
"audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
"conformer.layers.{bid}.self_attn.linear_out", # lfm2
"conformer.layers.{bid}.attention.post", # gemma3n
),
MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
"audio_tower.layers.{bid}.final_layer_norm", # ultravox
"conformer.layers.{bid}.norm_out", # lfm2
"conformer.layers.{bid}.attention.post_norm", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_NORM: (
"conformer.layers.{bid}.norm_feed_forward1", # lfm2
"conformer.layers.{bid}.ffw_layer_start.pre_layer_norm", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_POST_NORM: (
"conformer.layers.{bid}.ffw_layer_start.post_layer_norm", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_SCALE: (
"conformer.layers.{bid}.ffw_layer_start.post_layer_scale", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_UP: (
"audio_tower.layers.{bid}.fc1", # ultravox
"conformer.layers.{bid}.feed_forward1.linear1", # lfm2
"conformer.layers.{bid}.ffw_layer_start.ffw_layer_1", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_GATE: (),
@ -1628,22 +1691,35 @@ class TensorNameMap:
MODEL_TENSOR.A_ENC_FFN_DOWN: (
"audio_tower.layers.{bid}.fc2", # ultravox
"conformer.layers.{bid}.feed_forward1.linear2", # lfm2
"conformer.layers.{bid}.ffw_layer_start.ffw_layer_2", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_UP_1: (
"conformer.layers.{bid}.feed_forward2.linear1", # lfm2
"conformer.layers.{bid}.ffw_layer_end.ffw_layer_1", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_DOWN_1: (
"conformer.layers.{bid}.feed_forward2.linear2", # lfm2
"conformer.layers.{bid}.ffw_layer_end.ffw_layer_2", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_NORM_1: (
"conformer.layers.{bid}.norm_feed_forward2", # lfm2
"conformer.layers.{bid}.ffw_layer_end.pre_layer_norm", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_POST_NORM_1: (
"conformer.layers.{bid}.ffw_layer_end.post_layer_norm", # gemma3n
),
MODEL_TENSOR.A_ENC_FFN_SCALE_1: (
"conformer.layers.{bid}.ffw_layer_end.post_layer_scale", # gemma3n
),
MODEL_TENSOR.A_ENC_LINEAR_POS: (
"conformer.layers.{bid}.self_attn.linear_pos", # lfm2
"conformer.layers.{bid}.attention.attn.relative_position_embedding.pos_proj", # gemma3n
),
MODEL_TENSOR.A_ENC_POS_BIAS_U: (
@ -1656,6 +1732,7 @@ class TensorNameMap:
MODEL_TENSOR.A_ENC_OUT: (
"conformer.pre_encode.out", # lfm2
"model.audio_tower.subsample_conv_projection.input_proj_linear", # gemma3n
),
# note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
@ -1681,22 +1758,40 @@ class TensorNameMap:
MODEL_TENSOR.A_ENC_CONV_DW: (
"conformer.layers.{bid}.conv.depthwise_conv", # lfm2
"conformer.layers.{bid}.lconv1d.depthwise_conv1d", # gemma3n
),
MODEL_TENSOR.A_ENC_CONV_NORM: (
"conformer.layers.{bid}.conv.batch_norm", # lfm2
"conformer.layers.{bid}.lconv1d.pre_layer_norm", # gemma3n
),
MODEL_TENSOR.A_ENC_CONV_PW1: (
"conformer.layers.{bid}.conv.pointwise_conv1", # lfm2
"conformer.layers.{bid}.lconv1d.linear_start", # gemma3n
),
MODEL_TENSOR.A_ENC_CONV_PW2: (
"conformer.layers.{bid}.conv.pointwise_conv2", # lfm2
"conformer.layers.{bid}.lconv1d.linear_end", # gemma3n
),
MODEL_TENSOR.A_ENC_NORM_CONV: (
"conformer.layers.{bid}.norm_conv", # lfm2
"conformer.layers.{bid}.lconv1d.conv_norm", # gemma3n
),
MODEL_TENSOR.A_MM_EMBEDDING: (
"model.embed_audio.embedding", # gemma3n
),
MODEL_TENSOR.A_MM_HARD_EMB_NORM: (
"model.embed_audio.hard_embedding_norm", # gemma3n
),
MODEL_TENSOR.A_MM_INP_PROJ: (
"model.embed_audio.embedding_projection", # gemma3n
),
MODEL_TENSOR.A_MM_SOFT_EMB_NORM: (
"model.embed_audio.soft_embedding_norm", # gemma3n
),
# NextN/MTP tensors for GLM4_MOE

View File

@ -22,6 +22,7 @@ python = ">=3.8"
numpy = ">=1.17"
tqdm = ">=4.27"
pyyaml = ">=5.1"
requests = ">=2.25"
sentencepiece = { version = ">=0.1.98,<=0.2.0", optional = true }
PySide6 = { version = "^6.9", python = ">=3.9,<3.14", optional = true }

View File

@ -309,6 +309,7 @@ extern "C" {
// Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_direct_io; // use direct io, takes precedence over use_mmap
bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data
bool use_extra_bufts; // use extra buffer types (used for weight repacking)
@ -494,7 +495,7 @@ extern "C" {
struct llama_context_params * cparams,
float * tensor_split, // writable buffer for tensor split, needs at least llama_max_devices elements
struct llama_model_tensor_buft_override * tensor_buft_overrides, // writable buffer for overrides, needs at least llama_max_tensor_buft_overrides elements
size_t margin, // margin of memory to leave per device in bytes
size_t * margins, // margins of memory to leave per device in bytes
uint32_t n_ctx_min, // minimum context size to set when trying to reduce memory use
enum ggml_log_level log_level); // minimum log level to print during fitting, lower levels go to debug log
@ -535,6 +536,7 @@ extern "C" {
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_out (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
@ -1290,7 +1292,9 @@ extern "C" {
// available samplers:
LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
/// seed == LLAMA_DEFAULT_SEED to use a random seed.
LLAMA_API struct llama_sampler * llama_sampler_init_dist(uint32_t seed);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
/// Setting k <= 0 makes this a noop

View File

@ -1,9 +1,22 @@
Copyright (c) 1996 - 2025, Daniel Stenberg, daniel@haxx.se, and many contributors, see the THANKS file.
COPYRIGHT AND PERMISSION NOTICE
Copyright (c) 1996 - 2026, Daniel Stenberg, <daniel@haxx.se>, and many
contributors, see the THANKS file.
All rights reserved.
Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.
Permission to use, copy, modify, and distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.
Except as contained in this notice, the name of a copyright holder shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization of the copyright holder.

View File

@ -1,26 +0,0 @@
Copyright (c) 2010-2014, Salvatore Sanfilippo <antirez at gmail dot com>
Copyright (c) 2010-2013, Pieter Noordhuis <pcnoordhuis at gmail dot com>
Copyright (c) 2025, Eric Curtin <ericcurtin17 at gmail dot com>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Some files were not shown because too many files have changed in this diff Show More