ggml-cuda: refactor cuda graph usage (#18637)

* ggml-cuda: refactor cuda graph usage

* use is_enabled() instead of enabled
This commit is contained in:
Aman Gupta 2026-01-06 23:48:45 +08:00 committed by GitHub
parent 968929528c
commit 090b137e56
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 72 additions and 96 deletions

View File

@ -1036,7 +1036,7 @@ struct ggml_tensor_extra_gpu {
#define USE_CUDA_GRAPH
#endif
struct ggml_graph_node_properties {
struct ggml_cuda_graph_node_properties {
void * node_address;
ggml_op node_op;
int64_t ne[GGML_MAX_DIMS];
@ -1061,11 +1061,25 @@ struct ggml_cuda_graph {
std::vector<cudaGraphNode_t> nodes;
bool disable_due_to_gpu_arch = false;
bool disable_due_to_too_many_updates = false;
bool disable_due_to_failed_graph_capture = false;
int number_consecutive_updates = 0;
bool cuda_graphs_enabled = false;
std::vector<ggml_graph_node_properties> ggml_graph_properties;
std::vector<ggml_graph_node_properties> extraneous_srcs_properties;
std::vector<ggml_cuda_graph_node_properties> props;
void record_update(bool use_graph, bool update_required) {
if (use_graph && update_required) {
number_consecutive_updates++;
} else {
number_consecutive_updates = 0;
}
if (number_consecutive_updates >= 4) {
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
disable_due_to_too_many_updates = true;
}
}
bool is_enabled() const {
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
return !(disable_due_to_gpu_arch || disable_cuda_graphs_due_to_env || disable_due_to_too_many_updates);
}
#endif
};

View File

@ -2853,9 +2853,9 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
}
#ifdef USE_CUDA_GRAPH
static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
bool use_cuda_graph) {
static bool ggml_cuda_graph_check_compability(ggml_cgraph * cgraph) {
bool use_cuda_graph = true;
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected";
@ -2915,41 +2915,41 @@ static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
return use_cuda_graph;
}
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
graph_node_properties->node_address = node->data;
graph_node_properties->node_op = node->op;
static void ggml_cuda_graph_node_set_properties(ggml_cuda_graph_node_properties * props, ggml_tensor * node) {
props->node_address = node->data;
props->node_op = node->op;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
graph_node_properties->ne[i] = node->ne[i];
graph_node_properties->nb[i] = node->nb[i];
props->ne[i] = node->ne[i];
props->nb[i] = node->nb[i];
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
props->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
}
memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
memcpy(props->op_params, node->op_params, GGML_MAX_OP_PARAMS);
}
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
if (node->data != graph_node_properties->node_address &&
static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_graph_node_properties * props) {
if (node->data != props->node_address &&
node->op != GGML_OP_VIEW) {
return false;
}
if (node->op != graph_node_properties->node_op) {
if (node->op != props->node_op) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (node->ne[i] != graph_node_properties->ne[i]) {
if (node->ne[i] != props->ne[i]) {
return false;
}
if (node->nb[i] != graph_node_properties->nb[i]) {
if (node->nb[i] != props->nb[i]) {
return false;
}
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node->src[i] &&
node->src[i]->data != graph_node_properties->src_address[i] &&
node->src[i]->data != props->src_address[i] &&
node->op != GGML_OP_VIEW
) {
return false;
@ -2957,56 +2957,55 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
}
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
return true;
}
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
static bool ggml_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
bool cuda_graph_update_required = false;
bool res = false;
if (cuda_ctx->cuda_graph->instance == nullptr) {
cuda_graph_update_required = true;
res = true;
}
// Check if the graph size has changed
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes + cgraph->n_leafs) {
cuda_graph_update_required = true;
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes + cgraph->n_leafs);
if (cuda_ctx->cuda_graph->props.size() != (size_t)cgraph->n_nodes + cgraph->n_leafs) {
res = true;
cuda_ctx->cuda_graph->props.resize(cgraph->n_nodes + cgraph->n_leafs);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
// and store properties to allow this comparison for the next token
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = true;
if (!cuda_graph_update_required) {
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
bool props_match = true;
if (!res) {
props_match = ggml_cuda_graph_node_properties_match(cgraph->nodes[i], &cuda_ctx->cuda_graph->props[i]);
}
if (!has_matching_properties) {
cuda_graph_update_required = true;
if (!props_match) {
res = true;
}
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
ggml_cuda_graph_node_set_properties(&cuda_ctx->cuda_graph->props[i], cgraph->nodes[i]);
}
for (int i = 0; i < cgraph->n_leafs; i++) {
bool has_matching_properties = true;
if (!cuda_graph_update_required) {
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->leafs[i], &cuda_ctx->cuda_graph->ggml_graph_properties[cgraph->n_nodes + i]);
bool props_match= true;
if (!res) {
props_match = ggml_cuda_graph_node_properties_match(cgraph->leafs[i], &cuda_ctx->cuda_graph->props[cgraph->n_nodes + i]);
}
if (!has_matching_properties) {
cuda_graph_update_required = true;
if (!props_match) {
res = true;
}
set_ggml_graph_node_properties(cgraph->leafs[i], &cuda_ctx->cuda_graph->ggml_graph_properties[cgraph->n_nodes + i]);
ggml_cuda_graph_node_set_properties(&cuda_ctx->cuda_graph->props[cgraph->n_nodes + i], cgraph->leafs[i]);
}
return cuda_graph_update_required;
return res;
}
static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
static void ggml_cuda_graph_update_executable(ggml_backend_cuda_context * cuda_ctx) {
#if CUDART_VERSION >= 12000
cudaGraphExecUpdateResultInfo result_info;
@ -3237,10 +3236,11 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
return false;
}
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, const bool use_cuda_graph, const bool cuda_graph_update_required) {
bool graph_evaluated_or_captured = false;
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
ggml_cuda_stream_context & stream_ctx = cuda_ctx->stream_context();
bool is_concurrent_event_active = false;
@ -3710,7 +3710,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
}
if (cuda_graph_update_required) { // Update graph executable
update_cuda_graph_executable(cuda_ctx);
ggml_cuda_graph_update_executable(cuda_ctx);
}
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
@ -3720,43 +3720,25 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
}
}
static bool ggml_cuda_set_cuda_graph_enabled(ggml_backend_cuda_context * cuda_ctx) {
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx) {
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
// Objects required for CUDA Graph
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
bool use_cuda_graph = true;
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
}
}
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
// or previous graph capture failure.
// Also disable for multi-gpu for now. TO DO investigate
if (disable_cuda_graphs_due_to_env
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
use_cuda_graph = false;
}
cuda_ctx->cuda_graph->cuda_graphs_enabled = use_cuda_graph;
return cuda_ctx->cuda_graph->is_enabled();
#else
bool use_cuda_graph = false;
return false;
#endif // USE_CUDA_GRAPH
return use_cuda_graph;
}
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
@ -3767,30 +3749,14 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
// graph_optimize calls set_cuda_graph_enabled, in-case it not called (i.e. graph_compute is directly called)
// we call it here instead.
#ifdef USE_CUDA_GRAPH
use_cuda_graph = ggml_cuda_set_cuda_graph_enabled(cuda_ctx);
use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx);
if (use_cuda_graph) {
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
if (cuda_ctx->cuda_graph->is_enabled()) {
cuda_graph_update_required = ggml_cuda_graph_update_required(cuda_ctx, cgraph);
use_cuda_graph = ggml_cuda_graph_check_compability(cgraph);
use_cuda_graph = check_node_graph_compatibility(cgraph, use_cuda_graph);
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
cuda_ctx->cuda_graph->number_consecutive_updates++;
} else {
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
}
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
cuda_ctx->cuda_graph->cuda_graphs_enabled = false;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
#endif
}
cuda_ctx->cuda_graph->record_update(use_cuda_graph, cuda_graph_update_required);
}
#endif // USE_CUDA_GRAPH
@ -3804,9 +3770,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
bool graph_evaluated_or_captured = false;
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
ggml_cuda_graph_evaluate_and_capture(cuda_ctx, cgraph, use_cuda_graph, cuda_graph_update_required);
return GGML_STATUS_SUCCESS;
}
@ -3839,7 +3803,7 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
const bool use_cuda_graph = ggml_cuda_set_cuda_graph_enabled(cuda_ctx);
const bool use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx);
static bool enable_graph_optimization = [] {
const char * env = getenv("GGML_CUDA_GRAPH_OPT");

View File

@ -34,13 +34,11 @@ void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
// CUDA_GRAPHS_DISABLED
((ncols > 65536) &&
((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
ctx.cuda_graph->disable_due_to_failed_graph_capture)) ||
ctx.cuda_graph->is_enabled())) ||
// CUDA_GRAPHS ENABLED
((ncols > 32768) &&
!((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
ctx.cuda_graph->disable_due_to_failed_graph_capture))) {
ctx.cuda_graph->is_enabled()))) {
#else
(ncols > 65536)) {
#endif // USE_CUDA_GRAPH