ggml : optimize cuda ssm_scan using warp-level reduction (#18505)
* ggml : optimize cuda ssm_scan using warp-level reduction * ggml : apply code review suggestions (style, const, constexpr) * ggml : add TODO regarding stride consistency
This commit is contained in:
parent
07fbe19f1f
commit
24af22fc36
|
|
@ -114,7 +114,7 @@ __global__ void __launch_bounds__(splitD, 1)
|
|||
#endif // __clang__
|
||||
|
||||
// assumes as many threads as d_state
|
||||
template <int splitH, int d_state>
|
||||
template <int c_factor, int d_state>
|
||||
__global__ void __launch_bounds__(d_state, 1)
|
||||
ssm_scan_f32_group(
|
||||
const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
|
||||
|
|
@ -125,20 +125,25 @@ __global__ void __launch_bounds__(d_state, 1)
|
|||
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
|
||||
const int64_t s_off, const int64_t n_head, const int64_t d_head, const int64_t n_group, const int64_t n_tok) {
|
||||
|
||||
const int head_idx = (blockIdx.x * splitH) / d_head;
|
||||
const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float);
|
||||
const int seq_idx = blockIdx.y;
|
||||
const int warp = threadIdx.x / WARP_SIZE;
|
||||
const int lane = threadIdx.x % WARP_SIZE;
|
||||
const int warp_idx = blockIdx.x * c_factor + warp;
|
||||
|
||||
const int head_idx = warp_idx / d_head;
|
||||
const int head_off = (warp_idx % d_head) * sizeof(float);
|
||||
const int seq_idx = blockIdx.y;
|
||||
|
||||
const int group_off = (head_idx / (n_head / n_group)) * d_state * sizeof(float);
|
||||
|
||||
const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
|
||||
const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float));
|
||||
const float * dt_block = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float));
|
||||
const float * A_block = (const float *) ((const char *) src3 + head_idx * src3_nb1);
|
||||
const float * B_block = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off));
|
||||
const float * C_block = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off));
|
||||
float * y_block = dst + (seq_idx * n_tok * n_head * d_head) + blockIdx.x * splitH;
|
||||
float * s_block = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
|
||||
// TODO: refactor strides to be in elements/floats instead of bytes to be cleaner and consistent with the rest of the codebase
|
||||
const float * s0_warp = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
|
||||
const float * x_warp = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + (warp_idx * sizeof(float)));
|
||||
const float * dt_warp = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float));
|
||||
const float * A_warp = (const float *) ((const char *) src3 + head_idx * src3_nb1);
|
||||
const float * B_warp = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off));
|
||||
const float * C_warp = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off));
|
||||
float * y_warp = dst + (seq_idx * n_tok * n_head * d_head) + warp_idx;
|
||||
float * s_warp = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
|
||||
|
||||
// strides across n_seq_tokens
|
||||
const int stride_x = src1_nb2 / sizeof(float);
|
||||
|
|
@ -147,80 +152,42 @@ __global__ void __launch_bounds__(d_state, 1)
|
|||
const int stride_C = src5_nb2 / sizeof(float);
|
||||
const int stride_y = n_head * d_head;
|
||||
|
||||
float state[splitH];
|
||||
// for the parallel accumulation
|
||||
__shared__ float stateC[splitH * d_state];
|
||||
float state[c_factor];
|
||||
float state_sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < splitH; j++) {
|
||||
state[j] = s0_block[j * d_state + threadIdx.x];
|
||||
for (int j = 0; j < c_factor; j++) {
|
||||
state[j] = s0_warp[WARP_SIZE * j + lane];
|
||||
}
|
||||
|
||||
for (int64_t i = 0; i < n_tok; i++) {
|
||||
// TODO: only calculate dA and dt_soft_plus once per head instead of every splitH head elements
|
||||
// TODO: only calculate B and C once per head group
|
||||
// NOTE: dt_soft_plus, dA and x_dt have the same value across threads here.
|
||||
float dt_soft_plus = dt_block[i * stride_dt];
|
||||
if (dt_soft_plus <= 20.0f) {
|
||||
dt_soft_plus = log1pf(expf(dt_soft_plus));
|
||||
}
|
||||
const float dA = expf(dt_soft_plus * A_block[0]);
|
||||
const float B = B_block[i * stride_B + threadIdx.x];
|
||||
const float C = C_block[i * stride_C + threadIdx.x];
|
||||
// NOTE: dt_soft_plus, dA and x_dt have the same value for a warp here.
|
||||
// Recalculation is intentional; sharing via shuffles/smem proved slower due to sync overhead.
|
||||
const float dt_soft_plus = (dt_warp[i * stride_dt] <= 20.0f ? log1pf(expf(dt_warp[i * stride_dt])) : dt_warp[i * stride_dt]);
|
||||
|
||||
// across d_head
|
||||
state_sum = 0.0f;
|
||||
const float dA = expf(dt_soft_plus * A_warp[0]);
|
||||
const float x_dt = x_warp[i * stride_x] * dt_soft_plus;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < splitH; j++) {
|
||||
const float x_dt = x_block[i * stride_x + j] * dt_soft_plus;
|
||||
|
||||
state[j] = (state[j] * dA) + (B * x_dt);
|
||||
|
||||
stateC[j * d_state + threadIdx.x] = state[j] * C;
|
||||
for (int j = 0; j < c_factor; j++) {
|
||||
const float B_val = B_warp[i * stride_B + WARP_SIZE * j + lane];
|
||||
const float C_val = C_warp[i * stride_C + WARP_SIZE * j + lane];
|
||||
state[j] = (state[j] * dA) + (B_val * x_dt);
|
||||
state_sum += state[j] * C_val;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
// parallel accumulation for output
|
||||
state_sum = warp_reduce_sum(state_sum);
|
||||
|
||||
// parallel accumulation for stateC
|
||||
// TODO: simplify
|
||||
{
|
||||
static_assert((d_state & -d_state) == d_state, "the state size has to be a power of 2");
|
||||
static_assert((splitH & -splitH) == splitH, "splitH has to be a power of 2");
|
||||
|
||||
// reduce until w matches the warp size
|
||||
// TODO: does this work even when the physical warp size is 64?
|
||||
#pragma unroll
|
||||
for (int w = d_state; w > WARP_SIZE; w >>= 1) {
|
||||
// (assuming there are d_state threads)
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ((w >> 1) * splitH + d_state - 1) / d_state; j++) {
|
||||
// TODO: check for bank conflicts
|
||||
const int k = (threadIdx.x % (w >> 1)) + (d_state * (threadIdx.x / (w >> 1))) + j * d_state * (d_state / (w >> 1));
|
||||
stateC[k] += stateC[k + (w >> 1)];
|
||||
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
static_assert(splitH >= d_state / WARP_SIZE);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < splitH / (d_state / WARP_SIZE); j++) {
|
||||
float y = stateC[(threadIdx.x % WARP_SIZE) + d_state * (threadIdx.x / WARP_SIZE) + j * d_state * (d_state / WARP_SIZE)];
|
||||
y = warp_reduce_sum(y);
|
||||
|
||||
// store the above accumulations
|
||||
if (threadIdx.x % WARP_SIZE == 0) {
|
||||
const int k = threadIdx.x / WARP_SIZE + j * (d_state / WARP_SIZE);
|
||||
y_block[i * stride_y + k] = y;
|
||||
}
|
||||
}
|
||||
if (lane == 0) {
|
||||
y_warp[i * stride_y] = state_sum;
|
||||
}
|
||||
}
|
||||
|
||||
// write back the state
|
||||
#pragma unroll
|
||||
for (int j = 0; j < splitH; j++) {
|
||||
s_block[j * d_state + threadIdx.x] = state[j];
|
||||
for (int j = 0; j < c_factor; j++) {
|
||||
s_warp[WARP_SIZE * j + lane] = state[j];
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -231,27 +198,24 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
|
|||
const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim,
|
||||
const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq,
|
||||
cudaStream_t stream) {
|
||||
const int threads = 128;
|
||||
// NOTE: if you change conditions here, be sure to update the corresponding supports_op condition!
|
||||
if (src3_nb1 == sizeof(float)) {
|
||||
// Mamba-2
|
||||
if (d_state == 128) {
|
||||
GGML_ASSERT(d_state % threads == 0);
|
||||
// NOTE: can be any power of two between 4 and 64
|
||||
const int splitH = 16;
|
||||
GGML_ASSERT(head_dim % splitH == 0);
|
||||
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
|
||||
ssm_scan_f32_group<16, 128><<<blocks, threads, 0, stream>>>(
|
||||
constexpr int threads = 128;
|
||||
constexpr int num_warps = threads/WARP_SIZE;
|
||||
|
||||
const dim3 blocks((n_head * head_dim + (num_warps - 1)) / num_warps, n_seq, 1);
|
||||
ssm_scan_f32_group<128/WARP_SIZE, 128><<<blocks, threads, 0, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
|
||||
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
|
||||
} else if (d_state == 256) { // Falcon-H1
|
||||
const int threads = 256;
|
||||
// NOTE: can be any power of two between 8 and 64
|
||||
const int splitH = 16;
|
||||
GGML_ASSERT(head_dim % splitH == 0);
|
||||
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
|
||||
ssm_scan_f32_group<16, 256><<<blocks, threads, 0, stream>>>(
|
||||
constexpr int threads = 256;
|
||||
constexpr int num_warps = threads/WARP_SIZE;
|
||||
|
||||
const dim3 blocks((n_head * head_dim + (num_warps - 1)) / num_warps, n_seq, 1);
|
||||
ssm_scan_f32_group<256/WARP_SIZE, 256><<<blocks, threads, 0, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
|
||||
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
|
||||
|
|
@ -260,6 +224,7 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
|
|||
}
|
||||
} else {
|
||||
// Mamba-1
|
||||
constexpr int threads = 128;
|
||||
GGML_ASSERT(n_head % threads == 0);
|
||||
GGML_ASSERT(head_dim == 1);
|
||||
GGML_ASSERT(n_group == 1);
|
||||
|
|
|
|||
Loading…
Reference in New Issue