Commit Graph

1900 Commits

Author SHA1 Message Date
hipudding baa4ba0aec
CANN: support gated linear attn (#18653)
* CANN: support gated linear attn

This change adds support for the GGML_OP_GATED_LINEAR_ATTN operator.
The feature was implemented by YushengZhao. Because the previous
submission was based on an outdated codebase, this PR was rebased to
merge.

Co-authored-by: YushengZhao <yusheng.chao@outlook.com>
Co-authored-by: hipudding <huafengchun@gmail.com>

* CANN: optimize OP gla

Optimize gla for high preformance

* Remove unused comments

---------

Co-authored-by: 赵禹昇 <2501112001@cninfer02.localdomain>
Co-authored-by: YushengZhao <yusheng.chao@outlook.com>
2026-01-16 16:18:49 +08:00
shaofeiqi 785a710085
OpenCL: add SOLVE_TRI op support (#18846) 2026-01-15 11:17:17 -08:00
Georgi Gerganov 6e7fc8a146
cuda : print less debug logs when disabling cuda graphs (#18868) 2026-01-15 20:53:01 +02:00
Johannes Gäßler 5c662d21a3
CUDA: fix allignment on register spill for FA (#18815) 2026-01-15 15:14:50 +01:00
shalinib-ibm 8cc0ba957b
ggml-cpu: optimize ggml_vec_dot_bf16 for Power9 (#18837) 2026-01-15 17:31:18 +08:00
Max Krasnyansky cff777f226
hexagon: support for OP_CPY, host buffers now optional, hvx-utils refactoring and optimizations (#18822)
* hexagon: disable repack buffers if host buffers are disabled, improved handling of env vars

* hexagon: add support for OP_CPY fp16/fp32 -> fp16/fp32

Factore out all hvx_copy functions into hvx-copy.h header and reduced code duplication.
Update HTP ops infra to support OP_CPY

* hexagon: cleanup and refactor hex/hvx/htp headers and helper libs

hex is basically all scalar/core platform stuff (L2, DMA, basic utils)
hvx is all hvx related utils, helpers, etc
htp is higher level stuff like Ops, etc

hvx-utils library got a nice round of cleanup and refactoring to reduce duplication

use hvx_vec_store_a where possible

* hexagon: refactor HVX sigmoid functions to hvx-sigmoid.h

Moved sigmoid and tanh vector functions from hvx-utils.h to a new header
hvx-sigmoid.h. Implemented aligned and unaligned variants for sigmoid
array processing using a macro pattern similar to hvx-copy.h. Updated
act-ops.c to use the new aligned variant hvx_sigmoid_f32_aa. Removed
unused hvx-sigmoid.c.

* hexagon: factor out hvx-sqrt.h

* hexagon: mintor update to hvx-utils.h

* hexagon: remove spurios log

* hexagon: factor out and optimize hvx_add/sub/mul

* hexagon: remove _opt variants of add/sub/mul as they simply fully aligned versions

* hexagon: refactor reduction functions to hvx-reduce.h

Moved `hvx_self_max_f32` and `hvx_self_sum_f32` from `hvx-utils.h`/`.c` to `hvx-reduce.h`.
Renamed them to `hvx_reduce_max_f32` and `hvx_reduce_sum_f32`.
Added aligned (`_a`) and unaligned (`_u`) variants and used macros to unify logic.
Updated `softmax-ops.c` to use the new functions.

* hexagon: refactor the rest of arithmetic functions to hvx-arith.h

Moved `hvx_sum_of_squares_f32`, `hvx_min_scalar_f32`, and `hvx_clamp_scalar_f32` from `hvx-utils.c/h` to `hvx-arith.h`. Implemented aligned/unaligned variants (`_aa`, `_au`, etc.) and used macros to reduce code duplication. Updated `hvx_min_scalar_f32` and `hvx_clamp_scalar_f32` to use `dst, src, ..., n` argument order. Updated call sites in `act-ops.c`.

Refactor Hexagon HVX arithmetic functions (min, clamp) to hvx-arith.h

Moved `hvx_min_scalar_f32` and `hvx_clamp_scalar_f32` from `hvx-utils.c/h` to `hvx-arith.h`. Implemented aligned/unaligned variants (`_aa`, `_au`, etc.) and used macros to reduce code duplication. Updated these functions to use `dst, src, ..., n` argument order and updated call sites in `act-ops.c`. `hvx_sum_of_squares_f32` remains in `hvx-utils.c` as requested.

* hexagon: refactor hvx_sum_of_squares_f32

- Modify `hvx_sum_of_squares_f32` in `ggml/src/ggml-hexagon/htp/hvx-reduce.h` to use `dst, src` signature.
- Implement `_a` (aligned) and `_u` (unaligned) variants for `hvx_sum_of_squares_f32`.
- Update `hvx_reduce_loop_body` macro to support both returning and storing results via `finalize_op`.
- Update existing reduction functions in `hvx-reduce.h` to use the updated macro.
- Update `rms_norm_htp_f32` in `ggml/src/ggml-hexagon/htp/unary-ops.c` to match the new signature.

* hexagon: use hvx_splat instead of memset

* hexagon: consistent use of f32/f16 in all function names to match the rest of GGML

* hexagon: fix hvx_copy_f16_f32 on v75 and older

* hexagon: update readme to include GGML_HEXAGON_EXPERIMENTAL

* scripts: update snapdragon/adb scripts to enable host param
2026-01-14 21:46:12 -08:00
Oliver Simons 36f0132464
CUDA: Factor out and re-use `block_reduce` function (#18785)
* CUDA: Refactor and expose two_stage_warp_reduce_* function

* Use `two_stage_warp_reduce` also in softmax kernel, move smem out of it

Moving smem out of `__device__` function to `__global__` function
allows for explicit smem reuse, as either compiler or cuda rt seem to not
free it afterwards (`cudaFuncSetAttribute` fails when not accounting for
it once for each call to two_stage_warp_reduce)

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Use two_stage_warp_reduce in group_norm_f32

* Use two_stage_warp_reduce in rms_norm_f32

* Fix smem calculation which expects bytes

* Make `two_stage_warp_reduce` accept all values warp_reduce accepts

Also integrate it into norm_f32 function

* Use two_stage_warp_reduce in l2_norm_f32

* Use type traits for block reduction for better legibility

Also adresss other requests by @am17an such as variable renaming

* Make norm tests cover all cuda paths

* Mark columns % WARP_SIZE !=0 as supported for RMS_NORM_BACK

Unit-tests passed locally, let's see if they pass in the CI as well

* Use `enum class` for `block_reduce_method`

This is more type-safe than plain enum

* Rename variables as suggested in code review by @am17an

* Rename two_stage_warp_reduce -> block_reduce

* Fix trailing whitespace in common.cuh

* Make condition of static_assert type-dependent

This delays evaluation until the template is actually instantiated.
Otherwise, some compilers may evaluate the assert when parsing the
template, resulting in build errors as observed here:

https://github.com/ggml-org/llama.cpp/actions/runs/20960323123/job/60235530068?pr=18785

* Inline definitions

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2026-01-15 10:44:54 +08:00
Jeff Bolz 3e4bb29666
vulkan: Check maxStorageBufferRange in supports_op (#18709)
* vulkan: Check maxStorageBufferRange in supports_op

* skip maxStorageBufferRange check when shader64BitIndexing is enabled
2026-01-14 10:59:05 +01:00
Daniel Bevenius 01cbdfd7eb
CUDA : fix typo in clang pragma comment [no ci] (#18830) 2026-01-14 10:31:49 +01:00
Ruben Ortlam 635ef78ec5
vulkan: work around Intel fp16 bug in mmq (#18814) 2026-01-14 09:41:23 +01:00
Perry Naseck 7d587e5544
ggml-metal: do not copy headers for embedded, use current binary dir for embedded (#18705) 2026-01-14 09:22:25 +02:00
yulo ea4a321f2a
HIP: add fattn-mma-f16 for RDNA4 (#18481)
* finish VQ mma

* flash_attn_ext_f16_iter

* KQ_rowsum

* correct exp

* fix scale error

* fix softmax scale

* fix softmax scale

* enable fattn on cpu side

* fix random error

* disable fattn-mma-f16 on rdna3

* fix wrong col for rdna

* use identity mat to transpose

* resolve conflicts

* basic tuning for DeepSeek-R1-Distill-Qwen-1.5B

* fix volta compile error

* align rdna4 policy for fattn

* adjust fattn policy

* adjust kernel selection logic

* update as the review comments

* keep fattn-wmma logic

* adjust kernel selection logic

---------

Co-authored-by: zhang hui <you@example.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2026-01-13 13:52:16 +01:00
Georgi Gerganov 0a57271ab6
CUDA : fix unused argument when USE_CUDA_GRAPH=OFF (#18800) 2026-01-13 12:25:53 +02:00
Jeff Bolz 8e2da778da
vulkan: change memory_logger to be controlled by an env var (#18769) 2026-01-12 13:32:55 +01:00
Jeff Bolz 2bbe4c2cf8
vulkan: Use VK_EXT_shader_64bit_indexing to handle large mat_mul(_id) (#18678)
This fixes incoherent output in Llama-4-Maverick-17B-128E-PAB-Q8_0, which
has a mul_mat_id with an A matrix that's Q8_0 8192 x 5120 x 128.

This should work when the number of blocks in the A matrix is less than 2^32
(for mul_mat_vec or mul_mm_cm2), or for mul_mm I think the limit is like
2^32*LOAD_VEC_A elements.

- Divide batch_stride by QUANT_K earlier, so the block index calculation works in 32b.
- Each vk_pipeline_struct has a linked list of pipelines that will allow it to handle
variants. So far this change just adds a single use case for this, compiling with the
e64BitIndexingEXT flag.
- Use the 64b indexing variant when the A matrix is larger than maxStorageBufferRange.

64-bit indexing has some cost - around 3-5% in MoE models, so it's worth the effort
to avoid enabling it unconditionally.
2026-01-12 12:32:13 +01:00
Ruben Ortlam 1051ecd289
vulkan: Disable large coopmat matmul configuration on proprietary AMD driver (#18763)
* vulkan: Disable large coopmat matmul configuration on proprietary AMD driver

* Also disable the large tile size
2026-01-12 07:29:35 +01:00
Ruben Ortlam 0e76501e1d
Vulkan: Optimize Matmul parameters for AMD GPUs with Coopmat support (#18749)
* vulkan: Enable and optimize large matmul parameter combination for AMD

* limit tuning to AMD GPUs with coopmat support

* use tx_m values instead of _l
2026-01-11 17:33:33 +01:00
shaofeiqi 707cbafcaa
opencl: add SOFTPLUS op support (#18726) 2026-01-10 21:57:44 -08:00
Johannes Gäßler d2ff4e23ac
HIP: adjust RDNA3.5 MMQ kernel selction logic (#18666) 2026-01-10 17:19:01 +01:00
Perry Naseck 657a2e644b
cmake : update blas logic (#18205) 2026-01-10 18:00:54 +02:00
Michael Wand 600a366478
Corrected: changed s13 = src1->nb[3] instead of nb[2] (#18724) 2026-01-10 10:16:07 +01:00
shaofeiqi 593da7fa49
opencl: add EXPM1 op (#18704) 2026-01-09 10:13:13 -08:00
Reese Levine 9e41884dce
Updates to webgpu get_memory (#18707) 2026-01-09 08:17:18 -08:00
Aaron Teo 046d5fd44e
llama: use host memory if device reports 0 memory (#18587) 2026-01-09 05:34:56 +08:00
Masashi Yoshimura 480160d472
ggml-webgpu: Fix GGML_MEM_ALIGN to 8 for emscripten. (#18628)
* Fix GGML_MEM_ALIGN to 8 for emscripten.

* Add a comment explaining the need for GGML_MEM_ALIGN == 8 in 64-bit wasm with emscripten
2026-01-08 08:36:42 -08:00
Reese Levine 15bff84bf5
ggml webgpu: initial flashattention implementation (#18610)
* FlashAttention (#13)

* Add inplace softmax

* Move rms_norm to split row approach

* Update debug for supports_op

* clean up debug statements

* neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

* neg passes backend test

* unary operators pass ggml tests

* rms_norm double declaration bug atoned

* abides by editor-config

* removed vestigial files

* fixed autoconfig

* All operators (inlcluding xielu) working

* removed unnecesarry checking if node->src[1] exists for unary operators

* responded and dealt with PR comments

* implemented REPL_Template support and removed bug in unary operators kernel

* formatted embed wgsl and ggml-webgpu.cpp

* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings

* Wasm (#9)

* webgpu : fix build on emscripten

* more debugging stuff

* test-backend-ops: force single thread on wasm

* fix single-thread case for init_tensor_uniform

* use jspi

* add pthread

* test: remember to set n_thread for cpu backend

* Add buffer label and enable dawn-specific toggles to turn off some checks

* Intermediate state

* Fast working f16/f32 vec4

* Working float fast mul mat

* Clean up naming of mul_mat to match logical model, start work on q mul_mat

* Setup for subgroup matrix mat mul

* Basic working subgroup matrix

* Working subgroup matrix tiling

* Handle weirder sg matrix sizes (but still % sg matrix size)

* Working start to gemv

* working f16 accumulation with shared memory staging

* Print out available subgroup matrix configurations

* Vectorize dst stores for sg matrix shader

* Gemv working scalar

* Minor set_rows optimization (#4)

* updated optimization, fixed errors

* non vectorized version now dispatches one thread per element

* Simplify

* Change logic for set_rows pipelines

---------

Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Comment on dawn toggles

* Working subgroup matrix code for (semi)generic sizes

* Remove some comments

* Cleanup code

* Update dawn version and move to portable subgroup size

* Try to fix new dawn release

* Update subgroup size comment

* Only check for subgroup matrix configs if they are supported

* Add toggles for subgroup matrix/f16 support on nvidia+vulkan

* Make row/col naming consistent

* Refactor shared memory loading

* Move sg matrix stores to correct file

* Working q4_0

* Formatting

* Work with emscripten builds

* Fix test-backend-ops emscripten for f16/quantized types

* Use emscripten memory64 to support get_memory

* Add build flags and try ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* Remove extra whitespace

* Move wasm single-thread logic out of test-backend-ops for cpu backend

* Disable multiple threads for emscripten single-thread builds in ggml_graph_plan

* Refactored pipelines and workgroup calculations (#10)

* refactored pipelines

* refactored workgroup calculation

* removed commented out block of prior maps

* Clean up ceiling division pattern

---------

Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Start work on flash attention

* Shader structure set up (many bugs still)

* debugging

* Working first test

* Working with head grouping, head sizes to 128, logit softcap, mask/sinks enabled, f32

* Generalize softmax to work with multiple subgroups, f16 accumulation, mask shared memory tiling

* Start work on integrating pre-wgsl

* Separate structs/initial shader compilation library into separate files

* Work on compilation choices for flashattention

* Work on subgroup matrix/tile size portability

* subgroup size agnostic online softmax

* Cleanups, quantization types

* more cleanup

* fix wasm build

* Refactor flashattention to increase parallelism, use direct loads for KV in somce cases

* Checkpoint

* formatting

* Update to account for default kv cache padding

* formatting shader

* Add workflow for ggml-ci webgpu

* Try passing absolute path to dawn in ggml-ci

* Avoid error on device destruction, add todos for proper cleanup

* Fix unused warning

* Forgot one parameter unused

* Move some flashattn computation to f32 for correctness
2026-01-08 08:23:39 -08:00
Jeff Bolz 2524c26164
vulkan: fix push constant size for quantize_q8_1 (#18687)
I added an assert to catch further mismatches, and it found several.
Fix those, too.
2026-01-08 15:40:58 +01:00
Jeff Bolz cb14b06995
vulkan: optimize ssm_scan (#18630)
* vulkan: optimize ssm_scan

* fix warp vs subgroup naming
2026-01-08 15:16:54 +01:00
도로로도로또 945bf10627
metal : add MoE kernel specialization for ne20=5 (#18667)
Add template specialization for kernel_mul_mm_id_map0 with ne20=5
to support models using 5 active experts (e.g., VAETKI).
2026-01-08 12:37:45 +02:00
Doctor Shotgun 9a5724dee2
ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH (#18535)
* ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH
* makes the min_batch_size for triggering op offload configurable via env var, defaulting to the prior hardcoded value of 32

* ggml: read GGML_OP_OFFLOAD_MIN_BATCH once and store to dev ctx

* cann: forward declaration of device context struct

* cann: move offload op check after device context declaration

* cuda: fix whitespace

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2026-01-08 11:03:21 +02:00
shaofeiqi 568371a726
opencl: add FILL op support (#18682) 2026-01-07 22:04:50 -08:00
Oliver Walsh f5245b5e4e
cuda : fix build on cuda 12.8 (#18672)
compute121 requires 12.9

Signed-off-by: Oliver Walsh <owalsh@redhat.com>
2026-01-07 22:32:44 +01:00
Jeff Bolz ca4a8370bc
vulkan: reject ops when a tensor is too large to allocate (#18646) 2026-01-07 12:03:32 +01:00
virajwad 03023296cf
vulkan: Warptile tuning for Intel Xe2/Xe3 (#18178)
* modify warptile tuning for xe3

* intel vendor check w/ coopmat support

* fix back formatting

* fix formatting change 2

* move intel check to chip specific tuning part

* Change to support both windows and linux

* modify m_warptile to l_warptile for intel

* modify warptile tuning for bf16 matmuls to fix regression (m_warptile to l_warptile)

* Code style changes

* Code style changes (2)

* Code style changes (3)
2026-01-07 11:59:47 +01:00
Eve 8c77a04cc7
vulkan: more mul mat optimizations (#18533)
* q4_k

* q5_k

* q2_k

* q4_1

* q5_1

* better buf index
2026-01-07 11:13:17 +01:00
hipudding 3333951d86
CANN: Fix rename for get_env (#18652)
In #18624, get_env in ggml-cann was renamed to get_env_as_lowercase
to accurately reflect the function’s behavior and reduce the chance
of misuse. However, the update missed renaming call sites in other
files. This commit fixes that oversight.
2026-01-07 16:11:31 +08:00
Raul Torres 193ee38a1b
CANN: Rename `get_env` to `get_env_as_lowercase` (#18624) 2026-01-07 10:01:25 +08:00
Max Krasnyansky 95ea9e0861
Hexagon add support for f16/f32 flash attention, scale, set-rows and improve f16/32 matmul (#18611)
* hexagon: improve fp16 matmul and add fp32/fp16 flash-attention

* hexagon: add support for set-rows fp32 -> fp16 with i32/i64 row-idx

* hexagon: add support for SCALE fp32

* hexagon: replace scalar fp32 -> fp16 copy with HVX

* hexagon: optimize flash_atten_ext with aligned VTCM buffers and DMA

- Implements double-buffered DMA prefetching for K, V, and Mask tensors.
- Ensures K and V rows in VTCM are padded to 128 bytes to support aligned HVX operations.
- Correctly synchronizes DMA transfers to prevent race conditions.
- Uses `FLASH_ATTN_BLOCK_SIZE` of 128 for efficient chunking.

* hexagon: use aligned mad_f16

* hexagon: flash_atten more aligned ops

* hexagon: optimize scale_f32 hvx helpers

* hexagon: unroll fa loops

* hexagon: remove unused set-rows log

* hexagon: flash_attn_ext add support for DMAing Q

- Update `op_flash_attn_ext` to include Q row size in scratchpad allocation.
- Pad Q row size to 128 bytes for alignment.
- Implement DMA transfer for Q tensor in `flash_attn_ext_f16_thread`.
- Update dot product computations to use VTCM-buffered Q data.

* hexagon: fix handling of NANs hvx dotproducts

* hexagon: cleanup spad allocation in flash-atten

* hexagon: improve fp16/fp32 matmul

- Introduced `vec_dot_f16_f16` and `vec_dot_f16_f16_rx2` kernels using efficient HVX dot product intrinsics.
- Added `quantize_fp32_f16` to copy/convert weights from DDR to VTCM
- Updated `op_matmul` to use the optimized path when VTCM capacity allows and broadcasting requirements are compatible.
- Implemented fallback logic to the original implementation for complex broadcasting scenarios.

* hexagon: fix HVX_ARCH check

* hexagon: matmul cleanup and fp16 fixes

Use aligned vec_dot_f16 for 2d matmuls and unaligned version for 4d.

* hexagon: fix fp16 x fp16 matmuls and some minor refactoring

* hexagon: add support for GET_ROWS f32 -> f32

Also optimize SET_ROWS threading a bit when we have just a few rows to process.

* hexagon: optimize set-rows threading

* hexagon: update adb/run-bench.sh to properly support experimental and verbose options

* hexagon: flash_atten use aligned vectors for dot products
2026-01-06 17:38:29 -08:00
Aadeshveer Singh 24af22fc36
ggml : optimize cuda ssm_scan using warp-level reduction (#18505)
* ggml : optimize cuda ssm_scan using warp-level reduction

* ggml : apply code review suggestions (style, const, constexpr)

* ggml : add TODO regarding stride consistency
2026-01-07 02:24:34 +08:00
Jeff Bolz ea13cba850
vulkan: support buffer_from_host_ptr (#18467)
* vulkan: support buffer_from_host_ptr

* hacky use of buffer_from_host_ptr for directio

* disable buffer_from_host_ptr cap

* use external memory for ggml_vk_host_malloc, revert model loader changes

* disable external_memory_host for MoltenVK

* take buffer memory types into account

* don't use external_memory_host for ggml_vk_host_malloc
2026-01-06 17:37:07 +01:00
Aman Gupta 090b137e56
ggml-cuda: refactor cuda graph usage (#18637)
* ggml-cuda: refactor cuda graph usage

* use is_enabled() instead of enabled
2026-01-06 23:48:45 +08:00
Beinsezii 968929528c
mmq.cu: tune mmq/rocblas switching for RDNA (#18537)
* Patch perf regression for mmq kernels in ROCm

recover performance regression for https://github.com/ggml-org/llama.cpp/issues/17917

* add n_experts branch like the cdna path

* mmq.cu: tune mmq/wmma switching for RDNA

* mmq.cu: move amd wmma mmq/wmma switching behind IS_RDNA3

* Update ggml/src/ggml-cuda/mmq.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Jiacheng (Jason) Chen <76919340+jiachengjason@users.noreply.github.com>
Co-authored-by: jiachengjason <jasonchen.jiacheng@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2026-01-06 16:26:07 +01:00
Adrien Gallouët e75ee11024
ggml : fix avx512bf16 build (#18623)
- include `immintrin.h` when required
- remove unused m512bh

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-01-06 08:54:10 +02:00
Raul Torres da9b8d3300
CANN: Make `valid_values` variable `static const` (#18627) 2026-01-06 11:53:28 +08:00
nwyin e443fbcfa5
ggml webgpu: add CEIL operation support (#18605)
* ggml-webgpu: add CEIL operation support

      Add support for the CEIL unary operation in the WebGPU backend:
      - Add CEIL_FUNC shader template in unary_op.wgsl
      - Add 4 shader variants (f32, f16, inplace versions)
      - Initialize CEIL pipelines in ggml-webgpu.cpp
      - Register CEIL in supports_op function

* docs: update WebGPU ops support for CEIL
2026-01-05 11:38:57 -08:00
Johannes Gäßler df17a4c94f
CUDA: fix FA FP16 accumulator overflow for Granite (#18614) 2026-01-05 19:51:13 +01:00
Aman Gupta f47edb8c19
ggml-cuda: check for srcs outside the cgraph (#18583)
* ggml-cuda: check for srcs outside the cgraph

* review: use leafs instead
2026-01-05 22:46:36 +08:00
Jeff Bolz f1768d8f03
vulkan: fix topk_moe_sigmoid_norm_bias failures in GLM-4.6 (#18582) 2026-01-05 11:51:39 +01:00
Jeff Bolz b37124d2d2
vulkan: handle quantize_q8_1 overflowing the max workgroup count (#18515)
* vulkan: handle quantize_q8_1 overflowing the max workgroup count

* vulkan: Fix small tile size matmul on lavapipe

* fix mul_mat_id failures
2026-01-05 11:30:14 +01:00
Chenguang Li 67e3f6f601
CANN: add operator fusion support for ADD + RMS_NORM (#17512)
This commit implements operator fusion for ADD + RMS_NORM operations
in the CANN backend to reduce memory access overhead and improve
performance. The fusion is controlled by the GGML_CANN_OPERATOR_FUSION
environment variable (default: false).

Changes:
- Implement ggml_cann_op_add_rms_norm_fused() using ACLNN AddRmsNorm
- Add ggml_cann_can_fuse() to check fusion eligibility
- Integrate fusion logic into computation graph evaluation
- Add test cases for ADD + RMS_NORM fusion
- Update documentation with new environment variable

The fusion combines ADD and RMS_NORM into a single kernel call,
which is more efficient than executing them separately.
2026-01-05 15:38:18 +08:00