* Add support for CUMSUM and TRI for CUDA.
* Minor optimizations.
* Correct warp_prefix_inclusive_sum in float2 variant to return float2
* Optimize TRI
* Whitespace
* Fix strides.
* Implement double loop
* Whitespace
* Fix HIP compilation bugs
* Optimizations + big case performance tests
* Implement using CUB with fallback to custom kernel
* Remove error message.
* Fixes from code review
* Comment out CPU-unsupported F16/BF16 cases to fix CI
* Fine, you win :P
* Fix last cast, use NO_DEVICE_CODE and GGML_UNUSED_VARS
* Vary warp-size based on physical warp size
* Add GGML_UNUSED_VARS in tri as well
* Use constexpr and call prefix_inclusive with warp_size template param
* Update ggml/src/ggml-cuda/cumsum.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Change to tid % warp_size
* Fix strides; hardcode mask; add ggml_lane_mask_t
* Missing renames, remove unused get_warp_mask(), explicit calls to ggml_cuda_info()
* Too hasty...
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Faster tensors (#8)
Add fast matrix and matrix/vector multiplication.
* Use map for shader replacements instead of pair of strings
* Wasm (#9)
* webgpu : fix build on emscripten
* more debugging stuff
* test-backend-ops: force single thread on wasm
* fix single-thread case for init_tensor_uniform
* use jspi
* add pthread
* test: remember to set n_thread for cpu backend
* Add buffer label and enable dawn-specific toggles to turn off some checks
* Intermediate state
* Fast working f16/f32 vec4
* Working float fast mul mat
* Clean up naming of mul_mat to match logical model, start work on q mul_mat
* Setup for subgroup matrix mat mul
* Basic working subgroup matrix
* Working subgroup matrix tiling
* Handle weirder sg matrix sizes (but still % sg matrix size)
* Working start to gemv
* working f16 accumulation with shared memory staging
* Print out available subgroup matrix configurations
* Vectorize dst stores for sg matrix shader
* Gemv working scalar
* Minor set_rows optimization (#4)
* updated optimization, fixed errors
* non vectorized version now dispatches one thread per element
* Simplify
* Change logic for set_rows pipelines
---------
Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>
* Comment on dawn toggles
* Working subgroup matrix code for (semi)generic sizes
* Remove some comments
* Cleanup code
* Update dawn version and move to portable subgroup size
* Try to fix new dawn release
* Update subgroup size comment
* Only check for subgroup matrix configs if they are supported
* Add toggles for subgroup matrix/f16 support on nvidia+vulkan
* Make row/col naming consistent
* Refactor shared memory loading
* Move sg matrix stores to correct file
* Working q4_0
* Formatting
* Work with emscripten builds
* Fix test-backend-ops emscripten for f16/quantized types
* Use emscripten memory64 to support get_memory
* Add build flags and try ci
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* Remove extra whitespace
* Move wasm single-thread logic out of test-backend-ops for cpu backend
* Disable multiple threads for emscripten single-thread builds in ggml_graph_plan
* Fix .gitignore
* Add memory64 option and remove unneeded macros for setting threads to 1
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* Adjust to pytorch
* Add antialiasing upscale
* Increase number of patches to 1024
* Handle default marker insertion for LFM2
* Switch to flag
* Reformat
* Cuda implementation of antialias kernel
* Change placement in ops.cpp
* consistent float literals
* Pad only for LFM2
* Address PR feedback
* Rollback default marker placement changes
* Fallback to CPU implementation for antialias implementation of upscale
* vulkan: Implement top-k
Each pass launches workgroups that each sort 2^N elements (where N is usually 7-10)
and discards all but the top K. Repeat until only K are left. And there's a fast
path when K==1 to just find the max value rather than sorting.
* fix pipeline selection
* vulkan: Add N-ary search algorithm for topk
* microoptimizations
* vulkan: support larger argsort
This is an extension of the original bitonic sorting shader that puts the
temporary values in global memory and when more than 1024 threads are needed
it runs multiple workgroups and synchronizes through a pipelinebarrier.
To improve the memory access pattern, a copy of the float value is kept with
the index value. I've applied this same change to the original shared memory
version of the shader, which is still used when ncols <= 1024.
* Reduce the number of shader variants. Use smaller workgroups when doing a single pass, for a modest perf boost
* reduce loop overhead
* run multiple cols per invocation, to reduce barrier overhead
* Fix too relaxed check on CUDA "fast copy" (can_be_transposed) condition
* Argh.
* Making CISC happy ;)
* Integrate CONT tests
* Use loopy loop
* Skip new tests for (B)F16 for now.
* extract rotate_pairs logic from ggml_compute_forward_rope_f32
* templateify ggml_compute_forward_rope_f32 and _f16
* abort when rope type not supported, remove GLM from test-rope
* add imrope branch to switch
* add rope tests for perf
* Update ggml/src/ggml-cpu/ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* vulkan : implement upscale with bicubic interpolation
* cuda : implement upscale with bicubic interpolation
* tests : add ggml_interpolate with GGML_SCALE_MODE_BICUBIC to backend tests
* adapt OpenCL backend to not support the OP in that case so tests don't fail
* print scale mode & flags in test-backend-ops
This change combines the rms_norm+mul and rope+view+set_rows fusions to
allow fusing the whole sequence together. This comes up in Qwen3, Bailing,
and some other models.
* WIP
* added a cpy kernel specific to transposed tensor which uses smem to avoid uncoalesced access; test cases also added shwoing improved memory bandwidth
* added BF16 support
* more strict check to make sure src0 is a transpose
* reformulated to handle more complicated transpose cases
* bring back 2D transpose for higher performance
* allow build on windows
* tranpose copy more shapes
* minor tweak
* final clean up
* restore some test cases
* keep only the kernel for true tranposed case; updated with review suggestions
* make CI happy
* remove headers not needed
* reduced bank conflicts for fp16 and bf16
* add missing const*
* now bank conflicts free
* use padding instead of swizzling
---------
Co-authored-by: bssrdf <bssrdf@gmail.com>
* tests: fix segfault in moe-expert-reduce test in support mode and --show-coverage
* tests: init gf and filter out fusion tests for support mode
* tests: filter out fusion cases before calling eval_support
* tests: filter out fusion cases from show_test_coverage as well, fix lint
* clip : use FA
* cont : add warning about unsupported ops
* implement "auto" mode for clip flash attn
* clip : print more detailed op support info during warmup
* cont : remove obsolete comment [no ci]
* improve debugging message
* trailing space
* metal : remove stray return
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This pattern appears in a lot of models, the rope operation is applied right
before storing into the KV cache (usually on the K tensor).
Add a path to some of the rope shaders that computes the destination address
based on the set_rows tensor. Compile variants of the shader with D_TYPE of
f16 (the usual KV cache type).
Add a src3 operand to ggml_vk_op_f32 - sometimes rope uses three srcs and needs
the fourth for the row indices.
Add fused_ops_write_mask to indicate which intermediate tensors need to write
their results to memory. Skipping writing the roped K value helps to allow more
nodes to run concurrently.
Add logic to ggml_vk_graph_optimize to make ROPE+VIEW+SET_ROWS consecutive. It
rarely starts out that way in the graph.
Add new backend tests.
* ggml : fix interpolate with align-corners and ne=1
* avoid division by zero if one of the spatial dimensions is 1
* cpu, cuda, opencl returned correct result anyway due to clamp
* vulkan didn't clamp for align-corners so results were broken
* fix clang warning
* SYCL: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators
Clean up unrelated changes from previous commit
* Chore: remove empty lines and fix indentation
* Clean up: remove leftover blank lines and fix spacing
* chore: fix trailing whitespace and ensure final newline
* Cleanup: remove redundant declarations already defined in header
* Sync docs/ops.md with updated backend operation support
* docs: update ops.md after rebase
* docs: update ops.md - Vulkan supports SSM_CONV and SSM_SCAN
* opencl: add mm_q8_0_f32
* opencl: fix data loading for incomplete tile
* opencl: use q8_0 mm for larger matrix
* opencl: add some tests to cover the path
* optimise GGML_OP_SUM
* add non-contiguous tests by permuting the input
* change tests to require full contiguity of OP_SUM
* cuda : add check GGML_OP_SUM
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* metal : pad K, V and Mask when needed
* cont : simplify
* cuda : add TODO about KV padding requirement
* metal : add comments
* metal : remove mask padding requirement
* tests : add -INF blocks to the KQ mask in the FA tests
* cont : bump -INF block size to 64
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* ggml : prevent division by zero in FA CPU op
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* Work on rope
* Simplify inplace operation generation and combine mul/add generation
* Work on rope variants
* implement neox rope
* rope complete
* Add sub,div,glu operators
* implement scale op
* Update cpy shader to handle cont/more types
* formatting
* Update test vars printing for rope,rms_norm
* Avoid ROPE hardcoded constants
* Add TODO to change ROPE constants to enum
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix TODO comment
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* vulkan: 64-bit im2col
Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.
* fix validation error for large im2col
* metal : support mul_mm with src1->type == GGML_TYPE_F16
* metal : support mul_mm_id with src1->type == GGML_TYPE_F16
[no ci]
* metal : mul_mm support ne00 % 32 != 0
* metal : support mul_mm_id with ne00 % 32 != 0
* cont : remove unnecessary unrolls
* cont : simplify data loading
* metal : optimize mul_mm when output bounds checks are not needed
* vulkan: handle mat_mul with A matrix > 4GB
This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.
Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.
* build fixes
* CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32
This commit adds mul_mat_id support for ncols_dst >= 16. It does this by
packing ncols_dst tiles into the blockDim.y.
My tests on a RTX 3090 show that this is faster than the cuBLAS fallback
for f16 till bs=64, and for f32 till bs=32
* Review: refactor if statement
* CUDA: add a fused top-K MoE kernel
This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
* Refactor into ggml_cuda_should_use_topk_moe
* Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before
* Review: format + micro-optimizations
* Fix bug: fix tie breakers
* Add optional norm + clean-up code
* Use smem for final write
* Add bounds check
* Use better memory pattern for writeback
* implement set_rows with i32 index
* template fix
* test quantized path
warnings--
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* forgotten name change
* deduplicate cuda/sycl and test-fix
* indent++
* vulkan: support set_rows with i32 index type (#16162)
* disable i32 index for webgpu for now
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* Vulkan: add conv_transpose_2d operation
* Vulkan: fix typo in conv_transpose_2d shader(s0mp, s0L, s1mp, s1L)
* Vulkan: fix incorrect indentation in conv_transpose_2d shader
* Vulkan: add checking the push constants size limit and reuse conv2d_mm.comp for conv_transpose_2d operation
* Vulkan: revert the order of the index calculation and bound check in conv_2d shader
* Vulkan: explicity check push constants limit in supports_op() for conv_transpose_2d operation.
* Vulkan: remove unnecessary lower bound checks for H/W_idx in the conv_2d shader.
* CUDA: Optimize PAD_REFLECT_1D
feat: add more test cases for PAD_REFLECT_1D
* use fast_div to improve performance
* Apply suggestion from JohannesGaessler
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Apply suggestion from JohannesGaessler
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* optimize
* use a concise expression to further speedup the cuda kernel
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Add paramater buffer pool, batching of submissions, refactor command building/submission
* Add header for linux builds
* Free staged parameter buffers at once
* Format with clang-format
* Fix thread-safe implementation
* Use device implicit synchronization
* Update workflow to use custom release
* Remove testing branch workflow
* some f32 tests passing
* Disable set_rows until it's implemented
* f32 add all tests passing
* Begin work on set_rows
* Work on set rows
* Add error buffers for reporting unsupported SET_ROWS indices
* Remove extra comments
* Add templated addition, clean up code
* Get addition and multiplication working
* Implement rms_norm
* Add get_rows implementation
* Add new get_rows files
* Refactor use of wg size entry
* Fix compilation
* Try manually unrolled q4_0 quant
* Revert "Try manually unrolled q4_0 quant"
This reverts commit 77f8b96515.
* Move to constant max wg size
* Check for tensor size in supports_op
* Vectorize f32 and change default workgroup size
* Move f32 get_rows from < 4 to % 4 != 0
* fix linter errors
* Add in-place tests
---------
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
* metal : improve naming
* metal : refactor device
ggml-ci
* cont : props
ggml-ci
* metal : apply ggml_mem_ranges_t
ggml-ci
* metal : remove GGML_METAL_USE_BF16
ggml-ci
* metal : refactor device buffer
ggml-ci
* cont : fix naming
* metal : sync before destroying the backend
ggml-ci
* metal : refactor context
ggml-ci
* metal : migrate ggml-metal.m to ggml-metal.cpp
ggml-ci
* metal : adjust ops API
ggml-ci
* metal : use C++ to store piplienes
ggml-ci
* metal : migrate ops to separate functions
ggml-ci
* metal : add ggml_metal_library_t
ggml-ci
* metal : improve naming
ggml-ci
* metal : cleanp
ggml-ci
* metal : add support for GGML_OP_LOG
ggml-ci
* metal : fix error handling
ggml-ci
* Add fastdiv and fastmodulo to k_bin_bcast kernel
* Address review comments
* `prod_` instead of `prod` suffix
* Add test case for `k_bin_bcast_unravel` in CUDA backend
* CUDA: Add mul_mat_id support the mmf
Add support for mul_mat_id for bs < 16
* Review: use warp_size, fix should_use_mmf condition
* Launch one block per expert, stride along n_expert_used
* templatize mul_mat_id
* Pad shmem to 16 bytes, add helper function mul_mat_f_switch_ids
* Reduce compile times by dividing mmf into f16, bf16 and f32 variants
* Divide mmf by ncols_dst
* Add missing files
* Fix MUSA/HIP builds
* ggml: allow casting between f32 and i32
* fix cuda
* add vulkan
* fix CPU non-cont
* add non-cont test case
* add note
* extend test number range
* correct note
* add cont version for vulkan
This commit adds two new command-line options to the
test-backend-ops.cpp that allow users to list all available GGML
operations and to show test coverage of these operations.
The motivation for this is that it can be useful to quickly see which
operations are currently covered by tests and which are not. Also it
migth be useful when using the `support` mode.