vulkan: fuse mul_mat_id + mul (#17095)
* vulkan: fuse mul_mat_id + mul This comes up in qwen3 moe. * split mul_mat_id fusion tests into a separate class
This commit is contained in:
parent
0750a59903
commit
80a6cf6347
|
|
@ -830,6 +830,7 @@ struct vk_mat_vec_push_constants {
|
|||
uint32_t batch_stride_b;
|
||||
uint32_t batch_stride_d;
|
||||
uint32_t enable_bias;
|
||||
uint32_t enable_scale;
|
||||
uint32_t ne02;
|
||||
uint32_t ne12;
|
||||
uint32_t broadcast2;
|
||||
|
|
@ -852,6 +853,7 @@ struct vk_mat_vec_id_push_constants {
|
|||
uint32_t batch_stride_b;
|
||||
uint32_t batch_stride_d;
|
||||
uint32_t enable_bias;
|
||||
uint32_t enable_scale;
|
||||
uint32_t nei0;
|
||||
uint32_t ne11;
|
||||
};
|
||||
|
|
@ -6863,7 +6865,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
// compute
|
||||
const vk_mat_vec_push_constants pc = {
|
||||
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
|
||||
stride_batch_x, stride_batch_y, stride_batch_d, enable_bias,
|
||||
stride_batch_x, stride_batch_y, stride_batch_d, enable_bias, 0,
|
||||
(uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3,
|
||||
};
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
||||
|
|
@ -7684,13 +7686,22 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
groups_x = CEIL_DIV(groups_x, groups_z);
|
||||
}
|
||||
|
||||
uint32_t enable_bias = ctx->num_additional_fused_ops > 0;
|
||||
uint32_t enable_bias = 0;
|
||||
uint32_t enable_scale = 0;
|
||||
if (ctx->num_additional_fused_ops > 0) {
|
||||
if (cgraph->nodes[node_idx + 1]->op == GGML_OP_MUL) {
|
||||
enable_scale = 1;
|
||||
} else {
|
||||
GGML_ASSERT(cgraph->nodes[node_idx + 1]->op == GGML_OP_ADD_ID);
|
||||
enable_bias = 1;
|
||||
}
|
||||
}
|
||||
|
||||
vk_buffer d_B = d_D;
|
||||
size_t b_buf_offset = 0;
|
||||
uint64_t b_sz = 0;
|
||||
|
||||
if (enable_bias) {
|
||||
if (enable_bias || enable_scale) {
|
||||
const ggml_tensor * bias = cgraph->nodes[node_idx + 1]->src[1];
|
||||
|
||||
bool b_uma = false;
|
||||
|
|
@ -7712,7 +7723,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
|
||||
(uint32_t)x_ne, stride_batch_y, (uint32_t)(ne20*ne21),
|
||||
|
||||
enable_bias,
|
||||
enable_bias, enable_scale,
|
||||
|
||||
(uint32_t)nei0, (uint32_t)ne11,
|
||||
};
|
||||
|
|
@ -12490,6 +12501,40 @@ static bool ggml_vk_can_fuse(const ggml_backend_vk_context * ctx, const struct g
|
|||
}
|
||||
}
|
||||
|
||||
if (ops.size() == 2 && ops.begin()[0] == GGML_OP_MUL_MAT_ID && ops.begin()[1] == GGML_OP_MUL) {
|
||||
// additional constraints specific to this fusion
|
||||
const ggml_tensor *mmid = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor *scale = mul->src[1];
|
||||
|
||||
if (mmid != mul->src[0]) {
|
||||
return false;
|
||||
}
|
||||
// mat-vec only
|
||||
if (!ggml_vk_use_mul_mat_vec_id(cgraph, node_idx)) {
|
||||
return false;
|
||||
}
|
||||
// shaders assume the types match
|
||||
if (mmid->type != scale->type) {
|
||||
return false;
|
||||
}
|
||||
// shaders assume the bias is contiguous
|
||||
if (!ggml_is_contiguous(scale)) {
|
||||
return false;
|
||||
}
|
||||
// unaligned bias isn't handled
|
||||
if (get_misalign_bytes(ctx, scale) != 0) {
|
||||
return false;
|
||||
}
|
||||
// shader only indexes by expert index
|
||||
if (scale->ne[0] != 1 ||
|
||||
scale->ne[1] != mul->ne[1] ||
|
||||
scale->ne[2] != 1 ||
|
||||
scale->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
@ -12798,6 +12843,8 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
ctx->num_additional_fused_ops = 1;
|
||||
} else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID })) {
|
||||
ctx->num_additional_fused_ops = 1;
|
||||
} else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT_ID, GGML_OP_MUL })) {
|
||||
ctx->num_additional_fused_ops = 1;
|
||||
} else if (ggml_can_fuse_subgraph(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ROPE, GGML_OP_VIEW, GGML_OP_SET_ROWS }, { i + 4 }) &&
|
||||
ggml_check_edges(cgraph, i, rms_norm_mul_rope_view_set_rows_edges) &&
|
||||
ggml_vk_can_fuse_rms_norm_mul_rope(ctx, cgraph, i) &&
|
||||
|
|
@ -13033,7 +13080,8 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
is_src_of(graph->nodes[j], graph->nodes[c]) &&
|
||||
!(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_RMS_NORM && graph->nodes[j]->op == GGML_OP_MUL) &&
|
||||
!(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_MUL_MAT && graph->nodes[j]->op == GGML_OP_ADD) &&
|
||||
!(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_MUL_MAT_ID && graph->nodes[j]->op == GGML_OP_ADD_ID)) {
|
||||
!(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_MUL_MAT_ID && graph->nodes[j]->op == GGML_OP_ADD_ID) &&
|
||||
!(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_MUL_MAT_ID && graph->nodes[j]->op == GGML_OP_MUL)) {
|
||||
ok = false;
|
||||
break;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -49,6 +49,7 @@ layout (push_constant) uniform parameter
|
|||
uint batch_stride_d;
|
||||
|
||||
uint enable_bias;
|
||||
uint enable_scale;
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
uint nei0;
|
||||
|
|
@ -129,6 +130,12 @@ void reduce_result(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t
|
|||
temp[j][n] += FLOAT_TYPE(data_bias[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
#endif
|
||||
}
|
||||
#ifdef MUL_MAT_ID
|
||||
if (p.enable_scale != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
temp[j][n] *= FLOAT_TYPE(data_bias[expert_idx]);
|
||||
}
|
||||
#endif
|
||||
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]);
|
||||
}
|
||||
}
|
||||
|
|
@ -171,6 +178,12 @@ void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offs
|
|||
temp[j][n] += FLOAT_TYPE(data_bias[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
#endif
|
||||
}
|
||||
#ifdef MUL_MAT_ID
|
||||
if (p.enable_scale != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
temp[j][n] *= FLOAT_TYPE(data_bias[expert_idx]);
|
||||
}
|
||||
#endif
|
||||
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]);
|
||||
}
|
||||
}
|
||||
|
|
@ -203,6 +216,12 @@ void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offs
|
|||
tmpsh[j][n][0] += FLOAT_TYPE(data_bias[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
#endif
|
||||
}
|
||||
#ifdef MUL_MAT_ID
|
||||
if (p.enable_scale != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
tmpsh[j][n][0] *= FLOAT_TYPE(data_bias[expert_idx]);
|
||||
}
|
||||
#endif
|
||||
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(tmpsh[j][n][0]);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -3557,6 +3557,27 @@ struct test_mul_mat : public test_case {
|
|||
}
|
||||
};
|
||||
|
||||
static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
|
||||
std::random_device rd;
|
||||
std::default_random_engine rng(rd());
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
if (ggml_is_view_op(t->op)) { continue; }
|
||||
// ids
|
||||
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
||||
std::vector<int32_t> data(t->ne[0]);
|
||||
for (int i = 0; i < t->ne[0]; i++) {
|
||||
data[i] = i % n_mats;
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), rng);
|
||||
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
|
||||
}
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// GGML_OP_MUL_MAT_ID
|
||||
struct test_mul_mat_id : public test_case {
|
||||
const ggml_type type_a;
|
||||
|
|
@ -3567,10 +3588,9 @@ struct test_mul_mat_id : public test_case {
|
|||
const int64_t m;
|
||||
const int64_t n;
|
||||
const int64_t k;
|
||||
const uint32_t o; // number of outputs
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR9(type_a, type_b, n_mats, n_used, b, m, n, k, o);
|
||||
return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
|
|
@ -3584,9 +3604,69 @@ struct test_mul_mat_id : public test_case {
|
|||
|
||||
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||
int n_mats = 8, int n_used = 2, bool b = false,
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1)
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32)
|
||||
: type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
|
||||
m(m), n(n), k(k), o(o) {
|
||||
m(m), n(n), k(k) {
|
||||
GGML_ASSERT(n_used <= n_mats);
|
||||
}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
||||
ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
|
||||
ggml_set_name(as, "as");
|
||||
|
||||
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
|
||||
ggml_set_name(ids, "ids");
|
||||
if (n_used != n_mats) {
|
||||
ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
|
||||
ggml_set_name(ids, "view_of_ids");
|
||||
}
|
||||
|
||||
ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
|
||||
ggml_set_name(b, "b");
|
||||
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
init_mul_mat_id_tensors(ctx, n_mats);
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
|
||||
struct test_mul_mat_id_fusion : public test_case {
|
||||
const ggml_type type_a;
|
||||
const ggml_type type_b;
|
||||
const int n_mats;
|
||||
const int n_used;
|
||||
const bool b; // broadcast b matrix
|
||||
const int64_t m;
|
||||
const int64_t n;
|
||||
const int64_t k;
|
||||
const uint32_t o; // number of outputs
|
||||
const bool mul;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
return 5e-4;
|
||||
}
|
||||
|
||||
uint64_t op_flops(ggml_tensor * t) override {
|
||||
GGML_UNUSED(t);
|
||||
return 2 * m * k * n * n_used;
|
||||
}
|
||||
|
||||
test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||
int n_mats = 8, int n_used = 2, bool b = false,
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
|
||||
: type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
|
||||
m(m), n(n), k(k), o(o), mul(mul) {
|
||||
GGML_ASSERT(n_used <= n_mats);
|
||||
}
|
||||
|
||||
|
|
@ -3615,35 +3695,25 @@ struct test_mul_mat_id : public test_case {
|
|||
out = ggml_add(ctx, out, out2);
|
||||
}
|
||||
|
||||
if (mul) {
|
||||
std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
|
||||
ne[0] = 1;
|
||||
ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
|
||||
out = ggml_mul(ctx, out, m);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
if (ggml_is_view_op(t->op)) { continue; }
|
||||
std::random_device rd;
|
||||
std::default_random_engine rng(rd());
|
||||
// ids
|
||||
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
||||
std::vector<int32_t> data(t->ne[0]);
|
||||
for (int i = 0; i < t->ne[0]; i++) {
|
||||
data[i] = i % n_mats;
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), rng);
|
||||
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
|
||||
}
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
}
|
||||
init_mul_mat_id_tensors(ctx, n_mats);
|
||||
}
|
||||
|
||||
bool run_whole_graph() override { return o > 1; }
|
||||
bool run_whole_graph() override { return true; }
|
||||
|
||||
std::string op_desc(ggml_tensor * t) override {
|
||||
GGML_UNUSED(t);
|
||||
return ggml_op_name(GGML_OP_MUL_MAT_ID);
|
||||
return "MUL_MAT_ID_FUSION";
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -4992,24 +5062,7 @@ struct test_mul_mat_vec_fusion : public test_case {
|
|||
init_tensor_uniform(t);
|
||||
}
|
||||
} else {
|
||||
std::random_device rd;
|
||||
std::default_random_engine rng(rd());
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
if (ggml_is_view_op(t->op)) { continue; }
|
||||
// ids
|
||||
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
||||
std::vector<int32_t> data(t->ne[0]);
|
||||
for (int i = 0; i < t->ne[0]; i++) {
|
||||
data[i] = i % n_mats;
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), rng);
|
||||
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
|
||||
}
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
}
|
||||
init_mul_mat_id_tensors(ctx, n_mats);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -6979,7 +7032,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
}
|
||||
|
||||
test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
|
||||
test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
|
||||
test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
|
||||
|
||||
// gpt-oss issue with Vulkan mmq_id
|
||||
test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
|
||||
|
|
@ -7016,6 +7069,15 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
}
|
||||
}
|
||||
|
||||
for (int bs : {1, 4, 512}) {
|
||||
for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
// test with mul after (ffn_moe_weighted)
|
||||
test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (ggml_type type_a : base_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
for (int n : {1, 16}) {
|
||||
|
|
@ -7472,7 +7534,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|||
for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
|
||||
for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
|
||||
test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -7480,7 +7542,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|||
for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
|
||||
for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
|
||||
test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -7490,7 +7552,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|||
for (int bs : {1, 4, 8, 512}) {
|
||||
for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
|
||||
test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue