WIP: almost working
This commit is contained in:
parent
6d12288037
commit
3ea524e9c4
|
|
@ -49,10 +49,11 @@ static __global__ void cpy_flt_transpose(const char * cx, char * cdst_direct, co
|
|||
const T* src = reinterpret_cast<const T*>(cx);
|
||||
T* dst = reinterpret_cast<T*>(cdst);
|
||||
|
||||
const int64_t nmat = ne /(ne00 * ne01);
|
||||
const int64_t nmat = ne / (ne00 * ne01);
|
||||
const int64_t n = ne00 * ne01;
|
||||
// const int64_t n = ne01 * ne02;
|
||||
int width = ne01;
|
||||
int height = ne00;
|
||||
int x = blockIdx.x * TILE_DIM + threadIdx.x;
|
||||
int y = blockIdx.y * TILE_DIM + threadIdx.y;
|
||||
int tx = blockIdx.y * TILE_DIM + threadIdx.x; // transpose block offset
|
||||
|
|
@ -62,29 +63,65 @@ static __global__ void cpy_flt_transpose(const char * cx, char * cdst_direct, co
|
|||
__shared__ T tile[TILE_DIM][TILE_DIM];
|
||||
|
||||
for(int i = 0; i < BLOCK_NM; ++i){
|
||||
const unsigned int imat = blockIdx.z * BLOCK_NM + i;
|
||||
if(imat < nmat){
|
||||
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS){
|
||||
const unsigned int idx = (y+j)*width + x;
|
||||
if(idx < n){
|
||||
const int row = threadIdx.y+j;
|
||||
const int col = threadIdx.x ^ row;
|
||||
// tile[threadIdx.y+j][threadIdx.x] = src[imat*n + idx];
|
||||
tile[row][col] = src[imat*n + idx];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
__syncthreads();
|
||||
|
||||
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS){
|
||||
const unsigned int idx = (ty+j)*width + tx;
|
||||
if(idx < n){
|
||||
// const int row = threadIdx.x;
|
||||
const int col = (threadIdx.y+j) ^ threadIdx.x;
|
||||
// dst[imat*n + idx] = tile[threadIdx.x][threadIdx.y + j];
|
||||
dst[imat*n + idx] = tile[threadIdx.x][col];
|
||||
}
|
||||
const unsigned int imat = blockIdx.z * BLOCK_NM + i;
|
||||
if(imat >= nmat)
|
||||
break;
|
||||
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS){
|
||||
if(imat < nmat && x < width && y + j < height){
|
||||
const unsigned int idx = (y+j)*width + x;
|
||||
const int row = threadIdx.y+j;
|
||||
const int col = threadIdx.x ^ row;
|
||||
// tile[threadIdx.y+j][threadIdx.x] = src[imat*n + idx];
|
||||
tile[row][col] = src[imat*n + idx];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
|
||||
// if(threadIdx.x == 0 && threadIdx.y == 0 && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0){
|
||||
// printf("BEGIN %d\n", i);
|
||||
// for(int jj = 0; jj < TILE_DIM; ++jj){
|
||||
// for(int ii = 0; ii < TILE_DIM; ++ii)
|
||||
// printf("%.f, ", tile[jj][ii]);
|
||||
// printf("]\n");
|
||||
// }
|
||||
// }
|
||||
|
||||
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS){
|
||||
|
||||
if(imat < nmat && ty + j < width && tx < height){
|
||||
const unsigned int idx = (ty+j)*height + tx;
|
||||
// const int row = threadIdx.x;
|
||||
const int col = (threadIdx.y+j) ^ threadIdx.x;
|
||||
// dst[imat*n + idx] = tile[threadIdx.x][threadIdx.y + j];
|
||||
dst[imat*n + idx] = tile[threadIdx.x][col];
|
||||
// if(imat*n + idx == 4*ne00){
|
||||
// printf("DEBUG: (%u, %u, %u, %u, %u), j=%d, tx=%d, ty=%d, imat=%u idx=%u dst[%u]=%.2f, %f\n",
|
||||
// threadIdx.x, threadIdx.y, blockIdx.x, blockIdx.y, blockIdx.z, j, tx, ty,
|
||||
// imat, idx, imat*n + idx, dst[imat*n + idx], tile[threadIdx.x][threadIdx.y + j]);
|
||||
// }
|
||||
}
|
||||
}
|
||||
// }
|
||||
}
|
||||
|
||||
if(threadIdx.x == 0 && threadIdx.y == 0 && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0){
|
||||
// for(int j = 0; j < 32; ++j){
|
||||
// j = 0;
|
||||
for(int i = 0; i < 32; ++i)
|
||||
// printf("%.2f, ", src[j*48+i]);
|
||||
// printf("%.2f, ", src[j*48+i]);
|
||||
printf("%.2f, ", __half2float(src[i]));
|
||||
printf("]\n");
|
||||
// }
|
||||
printf("==============================\n");
|
||||
// for(int j = 0; j < 32; ++j){
|
||||
for(int i = 0; i < 32; ++i)
|
||||
printf("%.2f, ", __half2float(dst[i]));
|
||||
printf("]\n");
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -195,11 +232,11 @@ static void ggml_cpy_flt_cuda(
|
|||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
if constexpr ((std::is_same_v<src_t, half> && std::is_same_v<dst_t, half> ||
|
||||
if constexpr ((std::is_same_v<src_t, half> && std::is_same_v<dst_t, half> ||
|
||||
std::is_same_v<src_t, float> && std::is_same_v<dst_t, float>)
|
||||
&& transpose){
|
||||
// printf("cuda cpy transpose ne=%d ne00=%d ne01=%d ne10=%d ne11=%d\n", ne, ne00, ne01, ne10, ne11);
|
||||
// printf("cuda cpy transpose nb00=%d nb01=%d nb10=%d nb11=%d\n", nb00, nb01, nb10, nb11);
|
||||
printf("cuda cpy transpose ne=%d ne00=%d ne01=%d ne10=%d ne11=%d\n", ne, ne00, ne01, ne10, ne11);
|
||||
printf("cuda cpy transpose nb00=%d nb01=%d nb10=%d nb11=%d\n", nb00, nb01, nb10, nb11);
|
||||
// if (ne00 == ne11 && ne01 == ne10 && nb00 == nb11 && nb10 == nb01){ //transpose
|
||||
// if (transpose) { //transpose
|
||||
// printf("cuda cpy transpose ne=%d ne00=%d ne01=%d ne10=%d ne11=%d\n", ne, ne00, ne01, ne10, ne11);
|
||||
|
|
|
|||
|
|
@ -199,6 +199,7 @@ endif()
|
|||
llama_build_and_test(test-gguf.cpp)
|
||||
llama_build_and_test(test-backend-ops.cpp)
|
||||
llama_build_and_test(test-conv2d-implicit.cpp)
|
||||
llama_build_and_test(test-transpose.cpp)
|
||||
|
||||
llama_build_and_test(test-model-load-cancel.cpp LABEL "model")
|
||||
llama_build_and_test(test-autorelease.cpp LABEL "model")
|
||||
|
|
|
|||
|
|
@ -2458,7 +2458,7 @@ struct test_cpy : public test_case {
|
|||
|
||||
ggml_tensor * out = ggml_cpy(ctx, src, dst);
|
||||
if(is_transpose)
|
||||
dst->op_params[10] = 999;
|
||||
src->op_params[10] = 999;
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
|
|
@ -6136,6 +6136,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {48, 48, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}, true));
|
||||
|
||||
test_cases.emplace_back(new test_cont());
|
||||
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
|
||||
|
|
|
|||
|
|
@ -451,17 +451,17 @@ int main(void)
|
|||
|
||||
// for(int i = 0; i < ggml_nelements(wino_res); i++) {
|
||||
// for(int i = 0; i < 26*38; i++) {
|
||||
// for(int i = 0; i < conv2d_data.size(); i++) {
|
||||
// // float diff = fabs(conv2d_data[i] - wino_data[i]);
|
||||
// float diff = fabs(im2col_data[i] - wino_data[i]);
|
||||
// float diff1 = fabs(im2col_data[i] - conv2d_data[i]);
|
||||
// if(diff > 0.5) {
|
||||
// printf("(%7.3f, %7.3f, %7.3f, %.2f, %.2f, %d) \n",
|
||||
// im2col_data[i], conv2d_data[i],
|
||||
// wino_data[i], diff, diff1, i);
|
||||
// // break;
|
||||
// }
|
||||
// }
|
||||
for(int i = 0; i < conv2d_data.size(); i++) {
|
||||
// float diff = fabs(conv2d_data[i] - wino_data[i]);
|
||||
float diff = fabs(im2col_data[i] - wino_data[i]);
|
||||
float diff1 = fabs(im2col_data[i] - conv2d_data[i]);
|
||||
if(diff > 0.5) {
|
||||
printf("(%7.3f, %7.3f, %7.3f, %.2f, %.2f, %d) \n",
|
||||
im2col_data[i], conv2d_data[i],
|
||||
wino_data[i], diff, diff1, i);
|
||||
// break;
|
||||
}
|
||||
}
|
||||
|
||||
ggml_free(model.ctx);
|
||||
ggml_backend_buffer_free(model.buffer);
|
||||
|
|
|
|||
|
|
@ -0,0 +1,375 @@
|
|||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
//#include <cuda_runtime.h>
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
fputs(text, stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
struct test_model {
|
||||
struct ggml_tensor * a;
|
||||
struct ggml_tensor * b;
|
||||
ggml_backend_t backend = NULL;
|
||||
ggml_backend_buffer_t buffer;
|
||||
struct ggml_context * ctx;
|
||||
};
|
||||
|
||||
|
||||
|
||||
void load_model(test_model & model, int ic, int oc, int iw, int ih, int kw = 3, int kh = 3, bool use_gpu = false ) {
|
||||
// create data
|
||||
int KW = kw, KH = kh, IC = ic, OC = oc;
|
||||
int IW = iw, IH = ih, N = 1;
|
||||
srand(time(NULL));
|
||||
|
||||
// printf(" input: IC = %d, OC = %d, IW = %d, IH = %d \n ", IC, OC, IW, IH);
|
||||
|
||||
// Initialize adata
|
||||
std::vector<float> adata(KW * KH * IC * OC);
|
||||
for (int i = 0; i < KW * KH * IC * OC; i++) {
|
||||
// adata[i] = 2.f;
|
||||
adata[i] = (float)i;
|
||||
// adata[i] = (rand() % 255) / 255.0;
|
||||
// float r = -1.f + static_cast <float> (rand()) /( static_cast <float> (RAND_MAX/(1.f-(-1.f))));
|
||||
// adata[i] = r;
|
||||
}
|
||||
|
||||
// Convert adata to fp16 format
|
||||
std::vector<ggml_fp16_t> hadata(KW * KH * IC * OC);
|
||||
ggml_fp32_to_fp16_row(adata.data(), hadata.data(), KW * KH * IC * OC);
|
||||
|
||||
// Initialize bdata
|
||||
std::vector<float> bdata(IW * IH * IC * N);
|
||||
for (int i = 0; i < IW * IH * IC * N; i++) {
|
||||
// bdata[i] = (float)(i%IW)/10.f;
|
||||
// bdata[i] = 1.5f;
|
||||
bdata[i] = (float)(i+1);
|
||||
// bdata[i] = (rand() % 255) / 255.0;
|
||||
// float r = -1.f + static_cast <float> (rand()) /( static_cast <float> (RAND_MAX/(1.f-(-1.f))));
|
||||
// bdata[i] = r;
|
||||
}
|
||||
|
||||
// for(int i = 0; i < IH; i++) {
|
||||
// // float diff = fabs(conv2d_data[i] - wino_data[i]);
|
||||
// for(int j = 0; j < IW; j++) {
|
||||
// printf("%.0f, ", bdata[i*IW+j]);
|
||||
// }
|
||||
// printf("\n");
|
||||
// }
|
||||
for(int i = 0; i < KH; i++) {
|
||||
// float diff = fabs(conv2d_data[i] - wino_data[i]);
|
||||
for(int j = 0; j < KW; j++) {
|
||||
printf("%.0f, ", adata[i*KW+j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
|
||||
|
||||
size_t buffer_size = 0;
|
||||
{
|
||||
// buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F32); // tensor a
|
||||
buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F16); // tensor a
|
||||
buffer_size += IW * IH * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor b
|
||||
buffer_size += 1024; // overhead
|
||||
}
|
||||
|
||||
// printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
|
||||
// printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f));
|
||||
|
||||
int num_tensors = 2;
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
// initialize the backend
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (use_gpu) {
|
||||
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
model.backend = ggml_backend_cuda_init(0);
|
||||
if (!model.backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (use_gpu) {
|
||||
fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||||
ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr);
|
||||
model.backend = ggml_backend_metal_init();
|
||||
if (!model.backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if(!model.backend) {
|
||||
// fallback to CPU backend
|
||||
model.backend = ggml_backend_cpu_init();
|
||||
}
|
||||
|
||||
model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size);
|
||||
|
||||
// create context
|
||||
model.ctx = ggml_init(params);
|
||||
|
||||
// create tensors
|
||||
model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F16, KW, KH, IC, OC);
|
||||
// model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, KW, KH, IC, OC);
|
||||
model.b = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, IW, IH, IC, N);
|
||||
|
||||
int64_t *ne = model.a->ne;
|
||||
printf("before trans: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
||||
|
||||
// create a allocator
|
||||
struct ggml_tallocr alloc = ggml_tallocr_new(model.buffer);
|
||||
|
||||
// alloc memory
|
||||
ggml_tallocr_alloc(&alloc, model.a);
|
||||
|
||||
// load data to buffer
|
||||
if(ggml_backend_is_cpu(model.backend)) {
|
||||
memcpy(model.a->data, hadata.data(), ggml_nbytes(model.a));
|
||||
// memcpy(model.a->data, adata.data(), ggml_nbytes(model.a));
|
||||
} else {
|
||||
ggml_backend_tensor_set(model.a, hadata.data(), 0, ggml_nbytes(model.a));
|
||||
// ggml_backend_tensor_set(model.a, adata.data(), 0, ggml_nbytes(model.a));
|
||||
}
|
||||
|
||||
// alloc memory
|
||||
ggml_tallocr_alloc(&alloc, model.b);
|
||||
|
||||
if(ggml_backend_is_cpu(model.backend)
|
||||
#ifdef GGML_USE_METAL
|
||||
|| ggml_backend_is_metal(model.backend)
|
||||
#endif
|
||||
) {
|
||||
memcpy(model.b->data, bdata.data(), ggml_nbytes(model.b));
|
||||
} else {
|
||||
ggml_backend_tensor_set(model.b, bdata.data(), 0, ggml_nbytes(model.b));
|
||||
}
|
||||
}
|
||||
|
||||
typedef struct ggml_cgraph* (*build_graph_t)(const test_model& model);
|
||||
|
||||
struct ggml_cgraph * build_graph_0(const test_model& model) {
|
||||
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
||||
static std::vector<uint8_t> buf(buf_size);
|
||||
|
||||
struct ggml_init_params params0 = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
||||
};
|
||||
|
||||
// create a temporally context to build the graph
|
||||
struct ggml_context * ctx0 = ggml_init(params0);
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
int s0 = 1;
|
||||
int s1 = 1;
|
||||
int p0 = 1;
|
||||
int p1 = 1;
|
||||
int d0 = 1;
|
||||
int d1 = 1;
|
||||
|
||||
|
||||
|
||||
// recalculate for avoid fragmentation
|
||||
// struct ggml_tensor* conv2d_res = ggml_cont(ctx0, ggml_transpose(ctx0, model.b));
|
||||
struct ggml_tensor* conv2d_res = ggml_cont(ctx0, ggml_transpose(ctx0, model.a));
|
||||
ggml_set_name(conv2d_res, "transpose_res");
|
||||
ggml_build_forward_expand(gf, conv2d_res);
|
||||
int64_t *ne = conv2d_res->ne;
|
||||
printf("conv2d: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
||||
|
||||
|
||||
// struct ggml_tensor* wino_res = ggml_conv_2d_3x3(ctx0, model.a, model.b);
|
||||
// ggml_set_name(wino_res, "wino_res");
|
||||
// ggml_build_forward_expand(gf, wino_res);
|
||||
// ne = wino_res->ne;
|
||||
// printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
||||
ggml_free(ctx0);
|
||||
return gf;
|
||||
}
|
||||
|
||||
|
||||
|
||||
std::vector<float> compute_graph(const test_model & model, ggml_gallocr_t allocr,
|
||||
build_graph_t build_graph, int iters, double *t) {
|
||||
struct ggml_cgraph * gf = build_graph(model);
|
||||
|
||||
|
||||
// allocate tensors
|
||||
ggml_gallocr_alloc_graph(allocr, gf);
|
||||
int n_threads = 1;
|
||||
|
||||
if (ggml_backend_is_cpu(model.backend)) {
|
||||
ggml_backend_cpu_set_n_threads(model.backend, n_threads);
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (ggml_backend_is_metal(model.backend)) {
|
||||
ggml_backend_metal_set_n_cb(model.backend, n_threads);
|
||||
}
|
||||
#endif
|
||||
|
||||
ggml_backend_synchronize(model.backend);
|
||||
|
||||
ggml_backend_graph_compute(model.backend, gf);
|
||||
|
||||
ggml_backend_synchronize(model.backend);
|
||||
|
||||
int64_t start_time = ggml_time_us();
|
||||
|
||||
for(int iter=0; iter<iters; iter++){
|
||||
ggml_backend_graph_compute(model.backend, gf);
|
||||
ggml_backend_synchronize(model.backend);
|
||||
}
|
||||
|
||||
// ggml_backend_synchronize(model.backend);
|
||||
int64_t end_time = ggml_time_us();
|
||||
double time_us = end_time - start_time;
|
||||
|
||||
time_us = time_us/iters;
|
||||
// printf(" Taking %f ms\n ", time_us/1000);
|
||||
|
||||
//ggml_graph_print(gf);
|
||||
|
||||
struct ggml_tensor *res = NULL;
|
||||
|
||||
for(int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
|
||||
if(strcmp(ggml_get_name(ggml_graph_node(gf, i)), "transpose_res") == 0) {
|
||||
res = ggml_graph_node(gf, i);
|
||||
} else if(strcmp(ggml_get_name(ggml_graph_node(gf, i)), "conv2d_res") == 0) {
|
||||
res = ggml_graph_node(gf, i);
|
||||
}
|
||||
}
|
||||
|
||||
// std::vector<float> data(ggml_nelements(res));
|
||||
std::vector<ggml_fp16_t> fdata(ggml_nelements(res));
|
||||
std::vector<float> data(ggml_nelements(res));
|
||||
ggml_backend_tensor_get(res, fdata.data(), 0, ggml_nbytes(res));
|
||||
ggml_fp16_to_fp32_row(fdata.data(), data.data(), ggml_nelements(res));
|
||||
*t = time_us/1000;
|
||||
return data;
|
||||
|
||||
}
|
||||
|
||||
|
||||
int main(void)
|
||||
{
|
||||
ggml_time_init();
|
||||
std::vector<std::tuple<int, int, int, int, int, int>> configs = {
|
||||
// std::make_tuple(64,64,48,64,3,3),
|
||||
// std::make_tuple(320,320,104,152,3,3),
|
||||
// std::make_tuple(640,640,52,76,3,3),
|
||||
// std::make_tuple(640,640,104,152,3,3),
|
||||
// std::make_tuple(960,320,104,152,3,3),
|
||||
// std::make_tuple(1,128,38,49,3,3),
|
||||
std::make_tuple(1,1,38,49,38,49),
|
||||
// std::make_tuple(1280,1280,26,38,1,1),
|
||||
// std::make_tuple(256,128,768,1024,3,3),
|
||||
// std::make_tuple(256,128,768,1024,1,1),
|
||||
// std::make_tuple(1280,640,52,76,3,3),
|
||||
// std::make_tuple(1920,1280,26,38,3,3),
|
||||
// std::make_tuple(2560,1280,26,38,3,3),
|
||||
// std::make_tuple(512,512,104,152,3,3),
|
||||
// std::make_tuple(512,512,208,304,3,3),
|
||||
// std::make_tuple(512,256,416,608,3,3),
|
||||
// std::make_tuple(256,128,832,1216,3,3),
|
||||
// std::make_tuple(256,256,832,1216,3,3),
|
||||
// std::make_tuple(320,256,1024,1920)
|
||||
};
|
||||
|
||||
int k = 0;
|
||||
|
||||
for (auto c : configs){
|
||||
test_model model;
|
||||
load_model(model, std::get<0>(c), std::get<1>(c), std::get<2>(c),
|
||||
std::get<3>(c), std::get<4>(c), std::get<5>(c), true);
|
||||
|
||||
ggml_gallocr_t allocr = NULL;
|
||||
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
||||
|
||||
//create the worst case graph for memory usage estimation
|
||||
struct ggml_cgraph * gf = build_graph_0(model);
|
||||
|
||||
// compute the required memory
|
||||
ggml_gallocr_reserve(allocr, gf);
|
||||
size_t mem_size0 = ggml_gallocr_get_buffer_size(allocr, 0);
|
||||
// fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f);
|
||||
|
||||
|
||||
struct ggml_cgraph * gf_res_0 = NULL;
|
||||
int iterations = 0;
|
||||
|
||||
double run_time0;
|
||||
std::vector<float> im2col_data = compute_graph(model, allocr, build_graph_0, iterations, &run_time0);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//create the worst case graph for memory usage estimation
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// for(int i = 0; i < ggml_nelements(wino_res); i++) {
|
||||
// for(int i = 0; i < 26*38; i++) {
|
||||
// for(int i = 0; i < std::get<2>(c); i++) {
|
||||
// // float diff = fabs(conv2d_data[i] - wino_data[i]);
|
||||
// for(int j = 0; j < std::get<3>(c); j++) {
|
||||
// printf("%4.1f, ", im2col_data[i*std::get<3>(c)+j]);
|
||||
// }
|
||||
// printf("\n");
|
||||
// }
|
||||
for(int i = 0; i < std::get<4>(c); i++) {
|
||||
// float diff = fabs(conv2d_data[i] - wino_data[i]);
|
||||
for(int j = 0; j < std::get<5>(c); j++) {
|
||||
printf("%4.1f, ", im2col_data[i*std::get<5>(c)+j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
ggml_free(model.ctx);
|
||||
ggml_backend_buffer_free(model.buffer);
|
||||
ggml_backend_free(model.backend);
|
||||
ggml_gallocr_free(allocr);
|
||||
|
||||
}
|
||||
|
||||
// printf("\nPerforming test:\n");
|
||||
return 0;
|
||||
}
|
||||
Loading…
Reference in New Issue