* convert : yield Mamba2Model/GraniteMoeModel modify_tensors
This commit updates the `GraniteHybridModel` class' modify_tensors
function to properly delegate to `Mamba2Model.modify_tensors` and
`GraniteMoeModel.modify_tensors` using 'yield from' instead of 'return'.
The motivation for this is that modify_tensors is a generator function
(it uses 'yield from'), but the two calls above use return statements
but don't yield anything which means that the the caller of this
function will not receive any yielded values from it. And this causes
layer tensors to be silently dropped during conversion.
* Add Ministral3ForCausalLM architeture
This adds support for newer architectres like Devstral-2
* removed blank line found after function decorator
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* convert : use n_groups instead of hardcoded values in reshape
This commit modifies the conversion script for NemotronHModel to use
the 'n_groups' hyperparameter, and allow Python to calculate the the
last dimension, using -1, when reshaping the 'mixer.norm.weight' tensor.
* use self.n_group instead of self.hparams["n_groups"]
* qwen3next: simplify qkvz projection
* use ggml_swiglu_split
* revert swiglu_split, but remove redundant repeat()
* fix missing reshape
* rm 2 redundant transposes
* move mul_mat(k,q) to outside of chunking
* rm redundant cont
* improve g_cs_chunk
* add comments about no cont
* use std::pair instead of ggml_concat
* vectorize key_gdiff calculation
* rm unused tensor
* avoid ggml_concat inside loop
* bring back ggml_concat as it may not work on other backend
* nits
* Add Gemma3nVisionModel - MobileNetV5 vision encoder convertor to convert_hf_to_gguf.py. Add gemma3n to vision projectors in gguf-py/gguf/constants.py.
* Add mobilenetv5 impl
* Fix comments, remove unused vars
* Fix permute and remove transpose of projection weights
* Fix comments, remove debugging prints from hf_to_gguf
* 1. Hard-code image_mean = 0 and image_std = 1
2. Use available tensor mapping logic
3. Remove redundant chat template replacement of soft tokens placeholder with media placeholder
* 1. Move mobilenetv5 helpers declarations to `clip_graph_mobilenetv5` struct and definitions to mobilenetv5.cpp
2.Remove unused `clip_is_gemma3n` func declarations and definitions
3. Remove redundant `rescale_image_u8_to_f32` func and use `normalize_image_u8_to_f32` with zero mean and unit std
4. Calculate n_patches using image_size / patch_size
* Remove obsolete comments
* - convert_hf_to_gguf.py & constants.py & tensor_mapping.py: Use explicit mapping: Custom map for double indexed blocks and tensor_mapping.py for rest
- convert_hf_to_gguf.py: Unsqueeze Stem Bias and Layer scale tensors to correct shape while converting to gguf
- mobilenetv5.cpp: Remove explicit reshaping of Stem Bias and Layer scale which are now handled while converting to gguf, replace fprintf with LOG_*
- clip.cpp: Remove unused embedding and hard_emb_norm tensor loading
* - Rename tensors to v.conv..., v.blk..., v.msfa... to better align with already existing terminology
* Fix stem conv bias name
* Remove explicit handling of bias term for stem conv
* - Change order of addition in "project_per_layer_inputs" to support broadcasting of vision inp_per_layer
- Simplify the vision embeddings path of "get_per_layer_inputs" to output [n_embd_altup, n_layer, 1], broadcastable
* clean up conversion script
* fix code style
* also preserve audio tensors
* trailing space
* split arch A and V
* rm unused gemma3 func
* fix alignment
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* convert : clarify sentence-transformers-dense-modules help [no ci]
This commit updates this options help message which currently looks
like this:
```console
--sentence-transformers-dense-modules
Whether to include sentence-transformers dense modules.It can be used for sentence-transformers models, like
google/embeddinggemma-300mDefault these modules are not included.
```
* Add Maincoder model support
* Removed SPM model vocabulary setting and MOE related GGUF parameters
Removed trailing spaces from maincoder.cpp
* removed set_vocab
* added new line
* Fix formatting
* Add a new line for PEP8
* model: add Solar-Open model
* vocab: add solar-open to end eog blacklist
* model: add proper llm type
* chat: basic template for solar open
* typo: fix comment about vocab
* convert: sugested changes
* convert: suggested changes
* chat: change reasoning end tag for solar-open
* llama-chat: add solar-open template