set n_embd_head_k/v to ensure kv cache works

This commit is contained in:
Yee Man Chan 2026-01-03 08:26:41 +08:00
parent f85e5c73b9
commit 8bd617eb1c
1 changed files with 58 additions and 56 deletions

View File

@ -4987,10 +4987,65 @@ class KimiLinearModel(TextModel):
_experts: list[dict[str, Tensor]] | None = None
def set_vocab(self):
try:
self._set_vocab_gpt2()
return
except Exception:
pass
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
tokpre = self.get_vocab_base_pre(tokenizer)
if tokpre == "kimi-k2":
# Build merges list using the approach similar to HunYuanMoE
merges = []
vocab = {}
mergeable_ranks = tokenizer.model._mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
if len(merged) == 2:
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# Build token list
vocab_size = self.hparams["vocab_size"]
special_tokens = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
tokens: list[str] = []
toktypes: list[int] = []
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
tokens.append(token)
if i in special_tokens.values():
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_token_merges(merges)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.add_to_gguf(self.gguf_writer)
# override eos id in config.json with tiktoken eos id
self.gguf_writer.add_eos_token_id(tokenizer.eos_id)
else:
raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
# Use find_hparam for context length
@ -5043,8 +5098,9 @@ class KimiLinearModel(TextModel):
# Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim
qk_nope_head_dim = self.hparams.get("qk_nope_head_dim")
qk_rope_head_dim = self.hparams.get("qk_rope_head_dim")
self.gguf_writer.add_key_length(qk_nope_head_dim + qk_rope_head_dim)
v_head_dim = self.hparams.get("v_head_dim")
self.gguf_writer.add_rope_dimension_count(self.hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(v_head_dim)
# Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
if "n_embd_head_k_mla" in self.hparams:
@ -5106,60 +5162,6 @@ class KimiLinearModel(TextModel):
if routed_scaling_factor is not None:
self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
def set_vocab(self):
try:
self._set_vocab_gpt2()
return
except Exception:
pass
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
tokpre = self.get_vocab_base_pre(tokenizer)
if tokpre == "kimi-k2":
# Build merges list using the approach similar to HunYuanMoE
merges = []
vocab = {}
mergeable_ranks = tokenizer.model._mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
if len(merged) == 2:
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# Build token list
vocab_size = self.hparams["vocab_size"]
special_tokens = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
tokens: list[str] = []
toktypes: list[int] = []
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
tokens.append(token)
if i in special_tokens.values():
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_token_merges(merges)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.add_to_gguf(self.gguf_writer)
else:
raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None: