llama : refactor rope_freq_base/scale_swa conversion and init (#18553)

* refactor rope_freq_base/scale_swa conversion and init

* safe defaults for unknowns

* update relevant models

* grammar

* add get_rope_freq_scale to modern-bert

* const

* const

* log swa info
This commit is contained in:
Sigbjørn Skjæret 2026-01-05 09:14:04 +01:00 committed by GitHub
parent 67e3f6f601
commit eadc4184ca
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 94 additions and 37 deletions

View File

@ -771,9 +771,14 @@ class TextModel(ModelBase):
self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
rope_theta = self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)
local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "swa_rope_theta", "rope_local_base_freq"], optional=True)
# Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
if local_rope_theta is not None:
self.rope_parameters["sliding_attention"] = {"rope_theta": local_rope_theta}
if "rope_theta" not in self.rope_parameters and rope_theta is not None:
self.rope_parameters["rope_theta"] = rope_theta
if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
self.rope_parameters["rope_type"] = rope_type
@ -839,6 +844,7 @@ class TextModel(ModelBase):
self.gguf_writer.add_head_count_kv(n_head_kv)
logger.info(f"gguf: key-value head count = {n_head_kv}")
# TODO: Handle "sliding_attention" similarly when models start implementing it
rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
if (rope_type := rope_params.get("rope_type")) is not None:
rope_factor = rope_params.get("factor")
@ -885,6 +891,9 @@ class TextModel(ModelBase):
if (rope_theta := rope_params.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta)
logger.info(f"gguf: rope theta = {rope_theta}")
if (local_rope_theta := self.rope_parameters.get("sliding_attention", {}).get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base_swa(local_rope_theta)
logger.info(f"gguf: rope theta swa = {local_rope_theta}")
if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
@ -5004,7 +5013,6 @@ class Plamo3Model(TextModel):
if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
self.gguf_writer.add_sliding_window(sliding_window)
self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("rope_local_theta")})["rope_theta"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
@ -7480,7 +7488,6 @@ class MimoV2Model(TextModel):
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
self.gguf_writer.add_rope_freq_base_swa(self.hparams["swa_rope_theta"])
self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
@ -10218,7 +10225,6 @@ class ModernBertModel(BertModel):
self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("local_rope_theta")})["rope_theta"])
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])

View File

@ -105,9 +105,9 @@ struct llama_hparams {
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_base_train_swa;
float rope_freq_base_train_swa = 10000.0f;
float rope_freq_scale_train;
float rope_freq_scale_train_swa;
float rope_freq_scale_train_swa = 1.0f;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul = 0.0f;

View File

@ -578,6 +578,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
// TODO: Handle SWA metadata similarly when models start implementing it
// rope_freq_scale (inverse of the kv) is optional
float ropescale = 0.0f;
if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
@ -586,10 +587,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
}
hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
// by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
// non-transformer models do not have attention heads
@ -677,6 +674,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.f_attn_temp_scale = 0.1f;
hparams.f_attn_temp_offset = 1.0f;
hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
}
switch (hparams.n_expert) {
@ -722,6 +723,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
if (hparams.n_swa > 0) {
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.set_swa_pattern(4);
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
} else {
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
}
@ -1243,7 +1248,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
if (found_swa && hparams.n_swa > 0) {
uint32_t swa_period = 8;
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.rope_freq_scale_train_swa = 1.0f;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, swa_period, false);
hparams.set_swa_pattern(swa_period);
@ -1309,7 +1313,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.n_swa = 4096; // default value of gemma 2
hparams.set_swa_pattern(2);
hparams.attn_soft_cap = true;
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
@ -1334,8 +1341,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.set_swa_pattern(6);
hparams.rope_freq_base_train_swa = 10000.0f;
hparams.rope_freq_scale_train_swa = 1.0f;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
} else {
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
}
@ -1365,10 +1371,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.set_swa_pattern(5);
hparams.n_layer_kv_from_start = 20;
hparams.rope_freq_base_train_swa = 10000.0f;
hparams.rope_freq_scale_train_swa = 1.0f;
hparams.f_attention_scale = 1.0f;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -1384,9 +1389,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.set_swa_pattern(6);
hparams.causal_attn = false; // embeddings do not use causal attention
hparams.rope_freq_base_train_swa = 10000.0f;
hparams.rope_freq_scale_train_swa = 1.0f;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
@ -1525,7 +1529,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
{
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.set_swa_pattern(4);
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@ -1564,6 +1571,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
if (found_swa && hparams.n_swa > 0) {
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.set_swa_pattern(4);
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = 1.0; // See olmo2.cpp
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
} else {
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
}
@ -1906,6 +1917,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.n_swa = 4096;
hparams.set_swa_pattern(4);
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
}
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
@ -2208,6 +2223,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.set_swa_pattern(2);
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
switch (hparams.n_layer) {
case 24: type = LLM_TYPE_20B; break;
case 36: type = LLM_TYPE_120B; break;
@ -2252,6 +2271,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.n_swa = 4096;
hparams.set_swa_pattern(4, true);
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
} else {
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
hparams.n_no_rope_layer_step = hparams.n_layer;
@ -7098,6 +7121,10 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
LLAMA_LOG_INFO("%s: freq_base_swa = %.1f\n", __func__, hparams.rope_freq_base_train_swa);
LLAMA_LOG_INFO("%s: freq_scale_swa = %g\n", __func__, hparams.rope_freq_scale_train_swa);
}
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
LLAMA_LOG_INFO("%s: rope_yarn_log_mul= %.4f\n", __func__, hparams.rope_yarn_log_mul);
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");

View File

@ -22,8 +22,15 @@ llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_para
const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * inpSA = inpL;
// This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
(il + 1) % hparams.n_no_rope_layer_step != 0;
// dual attention normalization (pre)
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
@ -56,19 +63,16 @@ llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_para
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
// RoPE only for sliding_attention layers
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
((il + 1) % hparams.n_no_rope_layer_step) != 0;
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_rope", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur_rope", il);
}

View File

@ -21,6 +21,9 @@ llm_build_cohere2_iswa::llm_build_cohere2_iswa(const llama_model & model, const
for (int il = 0; il < n_layer; ++il) {
const bool is_swa = hparams.is_swa(il);
// UNUSED:
// const float freq_base_l = model.get_rope_freq_base (cparams, il);
// const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);

View File

@ -19,6 +19,9 @@ llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const ll
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
@ -43,12 +46,12 @@ llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const ll
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);

View File

@ -25,8 +25,12 @@ llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * inpSA = inpL;
// This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
(il + 1) % hparams.n_no_rope_layer_step != 0;
@ -67,13 +71,13 @@ llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
} else if (inp_attn_scale) {

View File

@ -23,7 +23,8 @@ llm_build_modern_bert::llm_build_modern_bert(const llama_model & model, const ll
auto * inp_attn = build_attn_inp_no_cache();
for (int il = 0; il < n_layer; ++il) {
float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
cur = inpL;
@ -48,13 +49,13 @@ llm_build_modern_bert::llm_build_modern_bert(const llama_model & model, const ll
// RoPE
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);

View File

@ -14,6 +14,9 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * inpSA = inpL;
// norm
@ -49,13 +52,13 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);

View File

@ -26,10 +26,16 @@ llm_build_smallthinker<iswa>::llm_build_smallthinker(const llama_model & model,
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
ggml_tensor * probs = nullptr;
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
probs = build_lora_mm(model.layers[il].ffn_gate_inp, inpL); // [n_expert, n_tokens]
ggml_tensor * inpSA = inpL;
// This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
const bool use_rope = hparams.n_no_rope_layer_step == n_layer ||
il % hparams.n_no_rope_layer_step != 0;
ggml_tensor * probs = build_lora_mm(model.layers[il].ffn_gate_inp, inpL); // [n_expert, n_tokens]
cb(probs, "ffn_moe_logits", il);
// norm
@ -52,11 +58,11 @@ llm_build_smallthinker<iswa>::llm_build_smallthinker(const llama_model & model,
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (hparams.n_no_rope_layer_step == n_layer || il % hparams.n_no_rope_layer_step != 0) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
if (use_rope) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);