Merge branch 'master' of github.com:ymcki/llama.cpp into Kimi-Linear
sync to latest
This commit is contained in:
commit
e55caf5be0
|
|
@ -89,7 +89,10 @@ nix:
|
|||
embedding:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/embedding/
|
||||
|
||||
jinja parser:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- common/jinja/**
|
||||
Ascend NPU:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@
|
|||
/common/common.* @ggerganov
|
||||
/common/console.* @ggerganov
|
||||
/common/http.* @angt
|
||||
/common/jinja/ @ngxson @CISC @aldehir
|
||||
/common/llguidance.* @ggerganov
|
||||
/common/log.* @ggerganov
|
||||
/common/peg-parser.* @aldehir
|
||||
|
|
|
|||
|
|
@ -254,7 +254,7 @@ function gg_run_ctest_release {
|
|||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
(time ctest --output-on-failure -L 'main|python' ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
else
|
||||
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
fi
|
||||
|
|
|
|||
|
|
@ -129,7 +129,7 @@ static void parse_json_tool_calls(
|
|||
}
|
||||
}
|
||||
|
||||
common_chat_msg_parser::common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax)
|
||||
common_chat_msg_parser::common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_parser_params & syntax)
|
||||
: input_(input), is_partial_(is_partial), syntax_(syntax)
|
||||
{
|
||||
result_.role = "assistant";
|
||||
|
|
@ -1611,7 +1611,7 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
|
|||
builder.finish();
|
||||
}
|
||||
|
||||
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax) {
|
||||
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_parser_params & syntax) {
|
||||
if (syntax.format == COMMON_CHAT_FORMAT_PEG_SIMPLE ||
|
||||
syntax.format == COMMON_CHAT_FORMAT_PEG_NATIVE ||
|
||||
syntax.format == COMMON_CHAT_FORMAT_PEG_CONSTRUCTED) {
|
||||
|
|
@ -1635,7 +1635,7 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
|
|||
return msg;
|
||||
}
|
||||
|
||||
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_syntax & syntax) {
|
||||
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_parser_params & syntax) {
|
||||
if (parser.empty()) {
|
||||
throw std::runtime_error("Failed to parse due to missing parser definition.");
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
#include "json-partial.h"
|
||||
#include "regex-partial.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <nlohmann/json_fwd.hpp>
|
||||
|
||||
#include <optional>
|
||||
#include <string>
|
||||
|
|
@ -19,20 +19,20 @@ class common_chat_msg_partial_exception : public std::runtime_error {
|
|||
class common_chat_msg_parser {
|
||||
std::string input_;
|
||||
bool is_partial_;
|
||||
common_chat_syntax syntax_;
|
||||
common_chat_parser_params syntax_; // TODO: rename to params
|
||||
std::string healing_marker_;
|
||||
|
||||
size_t pos_ = 0;
|
||||
common_chat_msg result_;
|
||||
|
||||
public:
|
||||
common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_parser_params & syntax);
|
||||
const std::string & input() const { return input_; }
|
||||
size_t pos() const { return pos_; }
|
||||
const std::string & healing_marker() const { return healing_marker_; }
|
||||
const bool & is_partial() const { return is_partial_; }
|
||||
const common_chat_msg & result() const { return result_; }
|
||||
const common_chat_syntax & syntax() const { return syntax_; }
|
||||
const common_chat_parser_params & syntax() const { return syntax_; }
|
||||
|
||||
void move_to(size_t pos) {
|
||||
if (pos > input_.size()) {
|
||||
|
|
|
|||
|
|
@ -601,18 +601,18 @@ bool common_chat_templates_was_explicit(const struct common_chat_templates * tmp
|
|||
return tmpls->has_explicit_template;
|
||||
}
|
||||
|
||||
const char * common_chat_templates_source(const struct common_chat_templates * tmpls, const char * variant) {
|
||||
if (variant != nullptr) {
|
||||
if (strcmp(variant, "tool_use") == 0) {
|
||||
std::string common_chat_templates_source(const struct common_chat_templates * tmpls, const std::string & variant) {
|
||||
if (!variant.empty()) {
|
||||
if (variant == "tool_use") {
|
||||
if (tmpls->template_tool_use) {
|
||||
return tmpls->template_tool_use->source().c_str();
|
||||
return tmpls->template_tool_use->source();
|
||||
}
|
||||
return nullptr;
|
||||
return "";
|
||||
} else {
|
||||
LOG_DBG("%s: unknown template variant: %s\n", __func__, variant);
|
||||
LOG_DBG("%s: unknown template variant: %s\n", __func__, variant.c_str());
|
||||
}
|
||||
}
|
||||
return tmpls->template_default->source().c_str();
|
||||
return tmpls->template_default->source();
|
||||
}
|
||||
|
||||
common_chat_templates_ptr common_chat_templates_init(
|
||||
|
|
|
|||
|
|
@ -145,7 +145,7 @@ struct common_chat_templates_inputs {
|
|||
std::vector<common_chat_tool> tools;
|
||||
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||||
bool parallel_tool_calls = false;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE; // TODO: refactor this to "bool enable_thinking"
|
||||
bool enable_thinking = true;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
std::map<std::string, std::string> chat_template_kwargs;
|
||||
|
|
@ -165,14 +165,21 @@ struct common_chat_params {
|
|||
std::string parser;
|
||||
};
|
||||
|
||||
struct common_chat_syntax {
|
||||
// per-message parsing syntax
|
||||
// should be derived from common_chat_params
|
||||
struct common_chat_parser_params {
|
||||
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE; // TODO: refactor this to "bool parse_reasoning"
|
||||
// Whether reasoning_content should be inlined in the content (e.g. for reasoning_format=deepseek in stream mode)
|
||||
bool reasoning_in_content = false;
|
||||
bool thinking_forced_open = false;
|
||||
bool parse_tool_calls = true;
|
||||
common_peg_arena parser = {};
|
||||
common_chat_parser_params() = default;
|
||||
common_chat_parser_params(const common_chat_params & chat_params) {
|
||||
format = chat_params.format;
|
||||
thinking_forced_open = chat_params.thinking_forced_open;
|
||||
}
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
|
|
@ -191,7 +198,7 @@ common_chat_templates_ptr common_chat_templates_init(
|
|||
const std::string & eos_token_override = "");
|
||||
|
||||
bool common_chat_templates_was_explicit(const struct common_chat_templates * tmpls);
|
||||
const char * common_chat_templates_source(const struct common_chat_templates * tmpls, const char * variant = nullptr);
|
||||
std::string common_chat_templates_source(const struct common_chat_templates * tmpls, const std::string & variant = "");
|
||||
|
||||
|
||||
struct common_chat_params common_chat_templates_apply(
|
||||
|
|
@ -213,10 +220,12 @@ std::string common_chat_format_example(
|
|||
const std::map<std::string, std::string> & chat_template_kwargs);
|
||||
|
||||
const char* common_chat_format_name(common_chat_format format);
|
||||
const char* common_reasoning_format_name(common_reasoning_format format);
|
||||
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
|
||||
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_parser_params & syntax);
|
||||
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_parser_params & syntax);
|
||||
|
||||
// used by arg and server
|
||||
const char * common_reasoning_format_name(common_reasoning_format format);
|
||||
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
|
||||
|
||||
|
|
|
|||
|
|
@ -57,6 +57,8 @@ extern const char * LLAMA_COMMIT;
|
|||
extern const char * LLAMA_COMPILER;
|
||||
extern const char * LLAMA_BUILD_TARGET;
|
||||
|
||||
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
|
||||
|
||||
struct common_control_vector_load_info;
|
||||
|
||||
//
|
||||
|
|
@ -284,6 +286,7 @@ struct common_params_diffusion {
|
|||
};
|
||||
|
||||
// reasoning API response format (not to be confused as chat template's reasoning format)
|
||||
// only used by server
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content`
|
||||
|
|
|
|||
|
|
@ -314,23 +314,26 @@ static bool common_pull_file(httplib::Client & cli,
|
|||
|
||||
// download one single file from remote URL to local path
|
||||
// returns status code or -1 on error
|
||||
static int common_download_file_single_online(const std::string & url,
|
||||
const std::string & path,
|
||||
const std::string & bearer_token,
|
||||
const common_header_list & custom_headers) {
|
||||
static int common_download_file_single_online(const std::string & url,
|
||||
const std::string & path,
|
||||
const std::string & bearer_token,
|
||||
const common_header_list & custom_headers) {
|
||||
static const int max_attempts = 3;
|
||||
static const int retry_delay_seconds = 2;
|
||||
|
||||
auto [cli, parts] = common_http_client(url);
|
||||
|
||||
httplib::Headers default_headers = {{"User-Agent", "llama-cpp"}};
|
||||
if (!bearer_token.empty()) {
|
||||
default_headers.insert({"Authorization", "Bearer " + bearer_token});
|
||||
}
|
||||
httplib::Headers headers;
|
||||
for (const auto & h : custom_headers) {
|
||||
default_headers.emplace(h.first, h.second);
|
||||
headers.emplace(h.first, h.second);
|
||||
}
|
||||
cli.set_default_headers(default_headers);
|
||||
if (headers.find("User-Agent") == headers.end()) {
|
||||
headers.emplace("User-Agent", "llama-cpp/" + build_info);
|
||||
}
|
||||
if (!bearer_token.empty()) {
|
||||
headers.emplace("Authorization", "Bearer " + bearer_token);
|
||||
}
|
||||
cli.set_default_headers(headers);
|
||||
|
||||
const bool file_exists = std::filesystem::exists(path);
|
||||
|
||||
|
|
@ -437,10 +440,12 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string
|
|||
const common_remote_params & params) {
|
||||
auto [cli, parts] = common_http_client(url);
|
||||
|
||||
httplib::Headers headers = {{"User-Agent", "llama-cpp"}};
|
||||
|
||||
for (const auto & header : params.headers) {
|
||||
headers.emplace(header.first, header.second);
|
||||
httplib::Headers headers;
|
||||
for (const auto & h : params.headers) {
|
||||
headers.emplace(h.first, h.second);
|
||||
}
|
||||
if (headers.find("User-Agent") == headers.end()) {
|
||||
headers.emplace("User-Agent", "llama-cpp/" + build_info);
|
||||
}
|
||||
|
||||
if (params.timeout > 0) {
|
||||
|
|
|
|||
|
|
@ -91,6 +91,16 @@ lexer_result lexer::tokenize(const std::string & source) {
|
|||
return str;
|
||||
};
|
||||
|
||||
auto consume_numeric = [&]() -> std::string {
|
||||
std::string num = consume_while(is_integer);
|
||||
if (pos < src.size() && src[pos] == '.' && pos + 1 < src.size() && is_integer(src[pos + 1])) {
|
||||
++pos; // Consume '.'
|
||||
std::string frac = consume_while(is_integer);
|
||||
num += "." + frac;
|
||||
}
|
||||
return num;
|
||||
};
|
||||
|
||||
auto next_pos_is = [&](std::initializer_list<char> chars, size_t n = 1) -> bool {
|
||||
if (pos + n >= src.size()) return false;
|
||||
for (char c : chars) {
|
||||
|
|
@ -258,7 +268,7 @@ lexer_result lexer::tokenize(const std::string & source) {
|
|||
++pos; // Consume the operator
|
||||
|
||||
// Check for numbers following the unary operator
|
||||
std::string num = consume_while(is_integer);
|
||||
std::string num = consume_numeric();
|
||||
std::string value = std::string(1, ch) + num;
|
||||
token::type t = num.empty() ? token::unary_operator : token::numeric_literal;
|
||||
// JJ_DEBUG("consumed unary operator or numeric literal: '%s'", value.c_str());
|
||||
|
|
@ -307,12 +317,7 @@ lexer_result lexer::tokenize(const std::string & source) {
|
|||
// Numbers
|
||||
if (is_integer(ch)) {
|
||||
start_pos = pos;
|
||||
std::string num = consume_while(is_integer);
|
||||
if (pos < src.size() && src[pos] == '.' && pos + 1 < src.size() && is_integer(src[pos + 1])) {
|
||||
++pos; // Consume '.'
|
||||
std::string frac = consume_while(is_integer);
|
||||
num += "." + frac;
|
||||
}
|
||||
std::string num = consume_numeric();
|
||||
// JJ_DEBUG("consumed numeric literal: '%s'", num.c_str());
|
||||
tokens.push_back({token::numeric_literal, num, start_pos});
|
||||
continue;
|
||||
|
|
|
|||
|
|
@ -268,8 +268,7 @@ value binary_expression::execute_impl(context & ctx) {
|
|||
// String in object
|
||||
if (is_val<value_string>(left_val) && is_val<value_object>(right_val)) {
|
||||
auto key = left_val->as_string().str();
|
||||
auto & obj = right_val->as_object();
|
||||
bool has_key = obj.find(key) != obj.end();
|
||||
bool has_key = right_val->has_key(key);
|
||||
if (op.value == "in") {
|
||||
return mk_val<value_bool>(has_key);
|
||||
} else if (op.value == "not in") {
|
||||
|
|
@ -464,7 +463,7 @@ value for_statement::execute_impl(context & ctx) {
|
|||
std::vector<value> items;
|
||||
if (is_val<value_object>(iterable_val)) {
|
||||
JJ_DEBUG("%s", "For loop over object keys");
|
||||
auto & obj = iterable_val->as_object();
|
||||
auto & obj = iterable_val->as_ordered_object();
|
||||
for (auto & p : obj) {
|
||||
auto tuple = mk_val<value_array>();
|
||||
if (iterable_val->val_obj.is_key_numeric) {
|
||||
|
|
@ -560,6 +559,7 @@ value for_statement::execute_impl(context & ctx) {
|
|||
for (size_t i = 0; i < filtered_items.size(); i++) {
|
||||
JJ_DEBUG("For loop iteration %zu/%zu", i + 1, filtered_items.size());
|
||||
value_object loop_obj = mk_val<value_object>();
|
||||
loop_obj->has_builtins = false; // loop object has no builtins
|
||||
loop_obj->insert("index", mk_val<value_int>(i + 1));
|
||||
loop_obj->insert("index0", mk_val<value_int>(i));
|
||||
loop_obj->insert("revindex", mk_val<value_int>(filtered_items.size() - i));
|
||||
|
|
@ -717,6 +717,7 @@ value member_expression::execute_impl(context & ctx) {
|
|||
|
||||
value property;
|
||||
if (this->computed) {
|
||||
// syntax: obj[expr]
|
||||
JJ_DEBUG("Member expression, computing property type %s", this->property->type().c_str());
|
||||
|
||||
int64_t arr_size = 0;
|
||||
|
|
@ -745,10 +746,24 @@ value member_expression::execute_impl(context & ctx) {
|
|||
property = this->property->execute(ctx);
|
||||
}
|
||||
} else {
|
||||
// syntax: obj.prop
|
||||
if (!is_stmt<identifier>(this->property)) {
|
||||
throw std::runtime_error("Non-computed member property must be an identifier");
|
||||
throw std::runtime_error("Static member property must be an identifier");
|
||||
}
|
||||
property = mk_val<value_string>(cast_stmt<identifier>(this->property)->val);
|
||||
std::string prop = property->as_string().str();
|
||||
JJ_DEBUG("Member expression, object type %s, static property '%s'", object->type().c_str(), prop.c_str());
|
||||
|
||||
// behavior of jinja2: obj having prop as a built-in function AND 'prop', as an object key,
|
||||
// then obj.prop returns the built-in function, not the property value.
|
||||
// while obj['prop'] returns the property value.
|
||||
// example: {"obj": {"items": 123}} -> obj.items is the built-in function, obj['items'] is 123
|
||||
|
||||
value val = try_builtin_func(ctx, prop, object, true);
|
||||
if (!is_val<value_undefined>(val)) {
|
||||
return val;
|
||||
}
|
||||
// else, fallthrough to normal property access below
|
||||
}
|
||||
|
||||
JJ_DEBUG("Member expression on object type %s, property type %s", object->type().c_str(), property->type().c_str());
|
||||
|
|
@ -763,11 +778,8 @@ value member_expression::execute_impl(context & ctx) {
|
|||
throw std::runtime_error("Cannot access object with non-string: got " + property->type());
|
||||
}
|
||||
auto key = property->as_string().str();
|
||||
auto & obj = object->as_object();
|
||||
auto it = obj.find(key);
|
||||
if (it != obj.end()) {
|
||||
val = it->second;
|
||||
} else {
|
||||
val = object->at(key, val);
|
||||
if (is_val<value_undefined>(val)) {
|
||||
val = try_builtin_func(ctx, key, object, true);
|
||||
}
|
||||
JJ_DEBUG("Accessed property '%s' value, got type: %s", key.c_str(), val->type().c_str());
|
||||
|
|
@ -793,7 +805,7 @@ value member_expression::execute_impl(context & ctx) {
|
|||
} else if (is_val<value_string>(property)) {
|
||||
auto key = property->as_string().str();
|
||||
JJ_DEBUG("Accessing %s built-in '%s'", is_val<value_array>(object) ? "array" : "string", key.c_str());
|
||||
val = try_builtin_func(ctx, key, object);
|
||||
val = try_builtin_func(ctx, key, object, true);
|
||||
} else {
|
||||
throw std::runtime_error("Cannot access property with non-string/non-number: got " + property->type());
|
||||
}
|
||||
|
|
@ -802,7 +814,7 @@ value member_expression::execute_impl(context & ctx) {
|
|||
throw std::runtime_error("Cannot access property with non-string: got " + property->type());
|
||||
}
|
||||
auto key = property->as_string().str();
|
||||
val = try_builtin_func(ctx, key, object);
|
||||
val = try_builtin_func(ctx, key, object, true);
|
||||
}
|
||||
|
||||
if (ctx.is_get_stats && val && object && property) {
|
||||
|
|
|
|||
|
|
@ -56,6 +56,7 @@ struct context {
|
|||
// src is optional, used for error reporting
|
||||
context(std::string src = "") : src(std::make_shared<std::string>(std::move(src))) {
|
||||
env = mk_val<value_object>();
|
||||
env->has_builtins = false; // context object has no builtins
|
||||
env->insert("true", mk_val<value_bool>(true));
|
||||
env->insert("True", mk_val<value_bool>(true));
|
||||
env->insert("false", mk_val<value_bool>(false));
|
||||
|
|
@ -68,7 +69,7 @@ struct context {
|
|||
|
||||
context(const context & parent) : context() {
|
||||
// inherit variables (for example, when entering a new scope)
|
||||
auto & pvar = parent.env->as_object();
|
||||
auto & pvar = parent.env->as_ordered_object();
|
||||
for (const auto & pair : pvar) {
|
||||
set_val(pair.first, pair.second);
|
||||
}
|
||||
|
|
@ -265,7 +266,7 @@ struct comment_statement : public statement {
|
|||
struct member_expression : public expression {
|
||||
statement_ptr object;
|
||||
statement_ptr property;
|
||||
bool computed;
|
||||
bool computed; // true if obj[expr] and false if obj.prop
|
||||
|
||||
member_expression(statement_ptr && object, statement_ptr && property, bool computed)
|
||||
: object(std::move(object)), property(std::move(property)), computed(computed) {
|
||||
|
|
|
|||
|
|
@ -698,6 +698,7 @@ const func_builtins & value_bool_t::get_builtins() const {
|
|||
bool val = args.get_pos(0)->as_bool();
|
||||
return mk_val<value_string>(val ? "True" : "False");
|
||||
}},
|
||||
{"tojson", tojson},
|
||||
};
|
||||
return builtins;
|
||||
}
|
||||
|
|
@ -775,19 +776,30 @@ const func_builtins & value_array_t::get_builtins() const {
|
|||
if (!is_val<value_array>(args.get_pos(0))) {
|
||||
throw raised_exception("join() first argument must be an array");
|
||||
}
|
||||
value val_delim = args.get_kwarg_or_pos("d", 1);
|
||||
value val_attribute = args.get_kwarg_or_pos("attribute", 2);
|
||||
if (!val_attribute->is_undefined()) {
|
||||
throw not_implemented_exception("array attribute join not implemented");
|
||||
}
|
||||
value val_delim = args.get_kwarg_or_pos("d", 1);
|
||||
value attribute = args.get_kwarg_or_pos("attribute", 2);
|
||||
const auto & arr = args.get_pos(0)->as_array();
|
||||
std::string delim = is_val<value_string>(val_delim) ? val_delim->as_string().str() : "";
|
||||
const bool attr_is_int = is_val<value_int>(attribute);
|
||||
if (!attribute->is_undefined() && !is_val<value_string>(attribute) && !attr_is_int) {
|
||||
throw raised_exception("join() attribute must be string or integer");
|
||||
}
|
||||
const int64_t attr_int = attr_is_int ? attribute->as_int() : 0;
|
||||
const std::string delim = val_delim->is_undefined() ? "" : val_delim->as_string().str();
|
||||
const std::string attr_name = attribute->is_undefined() ? "" : attribute->as_string().str();
|
||||
std::string result;
|
||||
for (size_t i = 0; i < arr.size(); ++i) {
|
||||
if (!is_val<value_string>(arr[i]) && !is_val<value_int>(arr[i]) && !is_val<value_float>(arr[i])) {
|
||||
value val_arr = arr[i];
|
||||
if (!attribute->is_undefined()) {
|
||||
if (attr_is_int && is_val<value_array>(val_arr)) {
|
||||
val_arr = val_arr->at(attr_int);
|
||||
} else if (!attr_is_int && !attr_name.empty() && is_val<value_object>(val_arr)) {
|
||||
val_arr = val_arr->at(attr_name);
|
||||
}
|
||||
}
|
||||
if (!is_val<value_string>(val_arr) && !is_val<value_int>(val_arr) && !is_val<value_float>(val_arr)) {
|
||||
throw raised_exception("join() can only join arrays of strings or numerics");
|
||||
}
|
||||
result += arr[i]->as_string().str();
|
||||
result += val_arr->as_string().str();
|
||||
if (i < arr.size() - 1) {
|
||||
result += delim;
|
||||
}
|
||||
|
|
@ -802,26 +814,30 @@ const func_builtins & value_array_t::get_builtins() const {
|
|||
}},
|
||||
{"tojson", tojson},
|
||||
{"map", [](const func_args & args) -> value {
|
||||
args.ensure_count(2, 3);
|
||||
args.ensure_count(2);
|
||||
if (!is_val<value_array>(args.get_pos(0))) {
|
||||
throw raised_exception("map: first argument must be an array");
|
||||
}
|
||||
value attribute = args.get_kwarg_or_pos("attribute", 1);
|
||||
if (is_val<value_int>(attribute)) {
|
||||
throw not_implemented_exception("map: integer attribute not implemented");
|
||||
if (!is_val<value_kwarg>(args.get_args().at(1))) {
|
||||
throw not_implemented_exception("map: filter-mapping not implemented");
|
||||
}
|
||||
if (!is_val<value_string>(attribute)) {
|
||||
value attribute = args.get_kwarg_or_pos("attribute", 1);
|
||||
const bool attr_is_int = is_val<value_int>(attribute);
|
||||
if (!is_val<value_string>(attribute) && !attr_is_int) {
|
||||
throw raised_exception("map: attribute must be string or integer");
|
||||
}
|
||||
std::string attr_name = attribute->as_string().str();
|
||||
const int64_t attr_int = attr_is_int ? attribute->as_int() : 0;
|
||||
const std::string attr_name = attribute->as_string().str();
|
||||
value default_val = args.get_kwarg("default", mk_val<value_undefined>());
|
||||
auto out = mk_val<value_array>();
|
||||
auto arr = args.get_pos(0)->as_array();
|
||||
for (const auto & item : arr) {
|
||||
if (!is_val<value_object>(item)) {
|
||||
throw raised_exception("map: item is not an object");
|
||||
value attr_val;
|
||||
if (attr_is_int) {
|
||||
attr_val = is_val<value_array>(item) ? item->at(attr_int, default_val) : default_val;
|
||||
} else {
|
||||
attr_val = is_val<value_object>(item) ? item->at(attr_name, default_val) : default_val;
|
||||
}
|
||||
value attr_val = item->at(attr_name, default_val);
|
||||
out->push_back(attr_val);
|
||||
}
|
||||
return out;
|
||||
|
|
@ -847,29 +863,35 @@ const func_builtins & value_array_t::get_builtins() const {
|
|||
return arr_editable->pop_at(index);
|
||||
}},
|
||||
{"sort", [](const func_args & args) -> value {
|
||||
args.ensure_count(1, 3);
|
||||
args.ensure_count(1, 4);
|
||||
if (!is_val<value_array>(args.get_pos(0))) {
|
||||
throw raised_exception("sort: first argument must be an array");
|
||||
}
|
||||
bool reverse = args.get_kwarg("reverse", mk_val<value_undefined>())->as_bool();
|
||||
value attribute = args.get_kwarg("attribute", mk_val<value_undefined>());
|
||||
std::string attr = attribute->is_undefined() ? "" : attribute->as_string().str();
|
||||
value val_reverse = args.get_kwarg_or_pos("reverse", 1);
|
||||
value val_case = args.get_kwarg_or_pos("case_sensitive", 2);
|
||||
value attribute = args.get_kwarg_or_pos("attribute", 3);
|
||||
// FIXME: sorting is currently always case sensitive
|
||||
//const bool case_sensitive = val_case->as_bool(); // undefined == false
|
||||
const bool reverse = val_reverse->as_bool(); // undefined == false
|
||||
const bool attr_is_int = is_val<value_int>(attribute);
|
||||
const int64_t attr_int = attr_is_int ? attribute->as_int() : 0;
|
||||
const std::string attr_name = attribute->is_undefined() ? "" : attribute->as_string().str();
|
||||
std::vector<value> arr = cast_val<value_array>(args.get_pos(0))->as_array(); // copy
|
||||
std::sort(arr.begin(), arr.end(),[&](const value & a, const value & b) {
|
||||
value val_a = a;
|
||||
value val_b = b;
|
||||
if (!attribute->is_undefined()) {
|
||||
if (!is_val<value_object>(a) || !is_val<value_object>(b)) {
|
||||
throw raised_exception("sort: items are not objects");
|
||||
if (attr_is_int && is_val<value_array>(a) && is_val<value_array>(b)) {
|
||||
val_a = a->at(attr_int);
|
||||
val_b = b->at(attr_int);
|
||||
} else if (!attr_is_int && !attr_name.empty() && is_val<value_object>(a) && is_val<value_object>(b)) {
|
||||
val_a = a->at(attr_name);
|
||||
val_b = b->at(attr_name);
|
||||
} else {
|
||||
throw raised_exception("sort: unsupported object attribute comparison");
|
||||
}
|
||||
val_a = attr.empty() ? a : a->at(attr);
|
||||
val_b = attr.empty() ? b : b->at(attr);
|
||||
}
|
||||
if (reverse) {
|
||||
return value_compare(val_a, val_b, value_compare_op::gt);
|
||||
} else {
|
||||
return !value_compare(val_a, val_b, value_compare_op::gt);
|
||||
}
|
||||
return value_compare(val_a, val_b, reverse ? value_compare_op::gt : value_compare_op::lt);
|
||||
});
|
||||
return mk_val<value_array>(arr);
|
||||
}},
|
||||
|
|
@ -888,6 +910,11 @@ const func_builtins & value_array_t::get_builtins() const {
|
|||
|
||||
|
||||
const func_builtins & value_object_t::get_builtins() const {
|
||||
if (!has_builtins) {
|
||||
static const func_builtins no_builtins = {};
|
||||
return no_builtins;
|
||||
}
|
||||
|
||||
static const func_builtins builtins = {
|
||||
// {"default", default_value}, // cause issue with gpt-oss
|
||||
{"get", [](const func_args & args) -> value {
|
||||
|
|
@ -902,18 +929,13 @@ const func_builtins & value_object_t::get_builtins() const {
|
|||
if (args.count() == 3) {
|
||||
default_val = args.get_pos(2);
|
||||
}
|
||||
const auto & obj = args.get_pos(0)->as_object();
|
||||
const value obj = args.get_pos(0);
|
||||
std::string key = args.get_pos(1)->as_string().str();
|
||||
auto it = obj.find(key);
|
||||
if (it != obj.end()) {
|
||||
return it->second;
|
||||
} else {
|
||||
return default_val;
|
||||
}
|
||||
return obj->at(key, default_val);
|
||||
}},
|
||||
{"keys", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_object>();
|
||||
const auto & obj = args.get_pos(0)->as_object();
|
||||
const auto & obj = args.get_pos(0)->as_ordered_object();
|
||||
auto result = mk_val<value_array>();
|
||||
for (const auto & pair : obj) {
|
||||
result->push_back(mk_val<value_string>(pair.first));
|
||||
|
|
@ -922,7 +944,7 @@ const func_builtins & value_object_t::get_builtins() const {
|
|||
}},
|
||||
{"values", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_object>();
|
||||
const auto & obj = args.get_pos(0)->as_object();
|
||||
const auto & obj = args.get_pos(0)->as_ordered_object();
|
||||
auto result = mk_val<value_array>();
|
||||
for (const auto & pair : obj) {
|
||||
result->push_back(pair.second);
|
||||
|
|
@ -931,7 +953,7 @@ const func_builtins & value_object_t::get_builtins() const {
|
|||
}},
|
||||
{"items", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_object>();
|
||||
const auto & obj = args.get_pos(0)->as_object();
|
||||
const auto & obj = args.get_pos(0)->as_ordered_object();
|
||||
auto result = mk_val<value_array>();
|
||||
for (const auto & pair : obj) {
|
||||
auto item = mk_val<value_array>();
|
||||
|
|
@ -945,7 +967,7 @@ const func_builtins & value_object_t::get_builtins() const {
|
|||
{"string", tojson},
|
||||
{"length", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_object>();
|
||||
const auto & obj = args.get_pos(0)->as_object();
|
||||
const auto & obj = args.get_pos(0)->as_ordered_object();
|
||||
return mk_val<value_int>(static_cast<int64_t>(obj.size()));
|
||||
}},
|
||||
{"tojson", [](const func_args & args) -> value {
|
||||
|
|
@ -958,21 +980,18 @@ const func_builtins & value_object_t::get_builtins() const {
|
|||
value val_case = args.get_kwarg_or_pos("case_sensitive", 1);
|
||||
value val_by = args.get_kwarg_or_pos("by", 2);
|
||||
value val_reverse = args.get_kwarg_or_pos("reverse", 3);
|
||||
// FIXME: sorting is case sensitive
|
||||
// FIXME: sorting is currently always case sensitive
|
||||
//const bool case_sensitive = val_case->as_bool(); // undefined == false
|
||||
const bool reverse = val_reverse->as_bool(); // undefined == false
|
||||
if (!val_by->is_undefined()) {
|
||||
throw not_implemented_exception("dictsort by key not implemented");
|
||||
}
|
||||
if (reverse) {
|
||||
throw not_implemented_exception("dictsort reverse not implemented");
|
||||
}
|
||||
value_t::map obj = val_input->val_obj; // copy
|
||||
std::sort(obj.ordered.begin(), obj.ordered.end(), [&](const auto & a, const auto & b) {
|
||||
return a.first < b.first;
|
||||
const bool by_value = is_val<value_string>(val_by) && val_by->as_string().str() == "value" ? true : false;
|
||||
auto result = mk_val<value_object>(val_input); // copy
|
||||
std::sort(result->val_obj.ordered.begin(), result->val_obj.ordered.end(), [&](const auto & a, const auto & b) {
|
||||
if (by_value) {
|
||||
return value_compare(a.second, b.second, reverse ? value_compare_op::gt : value_compare_op::lt);
|
||||
} else {
|
||||
return reverse ? a.first > b.first : a.first < b.first;
|
||||
}
|
||||
});
|
||||
auto result = mk_val<value_object>();
|
||||
result->val_obj = std::move(obj);
|
||||
return result;
|
||||
}},
|
||||
{"join", [](const func_args &) -> value {
|
||||
|
|
@ -1169,7 +1188,7 @@ static void value_to_json_internal(std::ostringstream & oss, const value & val,
|
|||
}
|
||||
oss << "]";
|
||||
} else if (is_val<value_object>(val)) {
|
||||
const auto & obj = val->val_obj.ordered; // IMPORTANT: need to keep exact order
|
||||
const auto & obj = val->as_ordered_object(); // IMPORTANT: need to keep exact order
|
||||
oss << "{";
|
||||
if (!obj.empty()) {
|
||||
oss << newline();
|
||||
|
|
|
|||
|
|
@ -146,7 +146,7 @@ struct value_t {
|
|||
virtual string as_string() const { throw std::runtime_error(type() + " is not a string value"); }
|
||||
virtual bool as_bool() const { throw std::runtime_error(type() + " is not a bool value"); }
|
||||
virtual const std::vector<value> & as_array() const { throw std::runtime_error(type() + " is not an array value"); }
|
||||
virtual const std::map<std::string, value> & as_object() const { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual const std::vector<std::pair<std::string, value>> & as_ordered_object() const { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual value invoke(const func_args &) const { throw std::runtime_error(type() + " is not a function value"); }
|
||||
virtual bool is_none() const { return false; }
|
||||
virtual bool is_undefined() const { return false; }
|
||||
|
|
@ -154,6 +154,9 @@ struct value_t {
|
|||
throw std::runtime_error("No builtins available for type " + type());
|
||||
}
|
||||
|
||||
virtual bool has_key(const std::string & key) {
|
||||
return val_obj.unordered.find(key) != val_obj.unordered.end();
|
||||
}
|
||||
virtual value & at(const std::string & key, value & default_val) {
|
||||
auto it = val_obj.unordered.find(key);
|
||||
if (it == val_obj.unordered.end()) {
|
||||
|
|
@ -168,8 +171,20 @@ struct value_t {
|
|||
}
|
||||
return val_obj.unordered.at(key);
|
||||
}
|
||||
virtual value & at(size_t index) {
|
||||
if (index >= val_arr.size()) {
|
||||
virtual value & at(int64_t index, value & default_val) {
|
||||
if (index < 0) {
|
||||
index += val_arr.size();
|
||||
}
|
||||
if (index < 0 || static_cast<size_t>(index) >= val_arr.size()) {
|
||||
return default_val;
|
||||
}
|
||||
return val_arr[index];
|
||||
}
|
||||
virtual value & at(int64_t index) {
|
||||
if (index < 0) {
|
||||
index += val_arr.size();
|
||||
}
|
||||
if (index < 0 || static_cast<size_t>(index) >= val_arr.size()) {
|
||||
throw std::runtime_error("Index " + std::to_string(index) + " out of bounds for array of size " + std::to_string(val_arr.size()));
|
||||
}
|
||||
return val_arr[index];
|
||||
|
|
@ -188,6 +203,9 @@ struct value_int_t : public value_t {
|
|||
virtual int64_t as_int() const override { return val_int; }
|
||||
virtual double as_float() const override { return static_cast<double>(val_int); }
|
||||
virtual string as_string() const override { return std::to_string(val_int); }
|
||||
virtual bool as_bool() const override {
|
||||
return val_int != 0;
|
||||
}
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
};
|
||||
using value_int = std::shared_ptr<value_int_t>;
|
||||
|
|
@ -204,6 +222,9 @@ struct value_float_t : public value_t {
|
|||
if (out.back() == '.') out.push_back('0'); // leave one zero if no decimals
|
||||
return out;
|
||||
}
|
||||
virtual bool as_bool() const override {
|
||||
return val_flt != 0.0;
|
||||
}
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
};
|
||||
using value_float = std::shared_ptr<value_float_t>;
|
||||
|
|
@ -286,6 +307,7 @@ using value_array = std::shared_ptr<value_array_t>;
|
|||
|
||||
|
||||
struct value_object_t : public value_t {
|
||||
bool has_builtins = true; // context and loop objects do not have builtins
|
||||
value_object_t() = default;
|
||||
value_object_t(value & v) {
|
||||
val_obj = v->val_obj;
|
||||
|
|
@ -295,11 +317,16 @@ struct value_object_t : public value_t {
|
|||
val_obj.insert(pair.first, pair.second);
|
||||
}
|
||||
}
|
||||
value_object_t(const std::vector<std::pair<std::string, value>> & obj) {
|
||||
for (const auto & pair : obj) {
|
||||
val_obj.insert(pair.first, pair.second);
|
||||
}
|
||||
}
|
||||
void insert(const std::string & key, const value & val) {
|
||||
val_obj.insert(key, val);
|
||||
}
|
||||
virtual std::string type() const override { return "Object"; }
|
||||
virtual const std::map<std::string, value> & as_object() const override { return val_obj.unordered; }
|
||||
virtual const std::vector<std::pair<std::string, value>> & as_ordered_object() const override { return val_obj.ordered; }
|
||||
virtual bool as_bool() const override {
|
||||
return !val_obj.unordered.empty();
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
#pragma once
|
||||
|
||||
// TODO: use json_fwd.hpp when possible
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
// Healing marker (empty if the JSON was fully parsed / wasn't healed).
|
||||
|
|
|
|||
|
|
@ -1082,6 +1082,9 @@ class TextModel(ModelBase):
|
|||
if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
|
||||
# ref: https://huggingface.co/aari1995/German_Semantic_V3
|
||||
res = "jina-v2-de"
|
||||
if chkhsh == "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267":
|
||||
# ref: https://huggingface.co/zai-org/GLM-4.7-Flash
|
||||
res = "glm4"
|
||||
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
|
||||
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
|
||||
res = "llama-bpe"
|
||||
|
|
@ -7720,7 +7723,7 @@ class DeepseekModel(TextModel):
|
|||
"DeepseekV3ForCausalLM",
|
||||
"KimiVLForConditionalGeneration",
|
||||
"YoutuForCausalLM",
|
||||
"YoutuVLForConditionalGeneration"
|
||||
"YoutuVLForConditionalGeneration",
|
||||
)
|
||||
class DeepseekV2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
|
||||
|
|
@ -8708,6 +8711,32 @@ class Glm4MoeModel(TextModel):
|
|||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("Glm4MoeLiteForCausalLM")
|
||||
class Glm4MoeLiteModel(DeepseekV2Model):
|
||||
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
|
||||
|
||||
# copied from Glm4MoeModel
|
||||
def set_vocab(self):
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
# Special tokens
|
||||
# Note: Using <|endoftext|> (151329) for eot causes endless generation
|
||||
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
|
||||
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
|
||||
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
|
||||
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||
class ChatGLMModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||||
|
|
@ -9445,7 +9474,7 @@ class NemotronHModel(GraniteHybridModel):
|
|||
return [(mapped_name, reshaped_data)]
|
||||
|
||||
if name.endswith("mixer.norm.weight"):
|
||||
reshaped_data = data_torch.reshape(8, 512)
|
||||
reshaped_data = data_torch.reshape(self.n_group, -1)
|
||||
mapped_name = self.map_tensor_name(name)
|
||||
return [(mapped_name, reshaped_data)]
|
||||
|
||||
|
|
|
|||
|
|
@ -170,6 +170,7 @@ pre_computed_hashes = [
|
|||
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
|
||||
# jina-v2-de variants
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/aari1995/German_Semantic_V3", "chkhsh": "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df"},
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.7-Flash", "chkhsh": "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267"},
|
||||
]
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@
|
|||
- [CMake Options](#cmake-options)
|
||||
- [Android](#android)
|
||||
- [Windows 11 Arm64](#windows-11-arm64)
|
||||
- [Linux](#Linux)
|
||||
- [Known Issue](#known-issues)
|
||||
- [TODO](#todo)
|
||||
|
||||
|
|
|
|||
33
docs/ops.md
33
docs/ops.md
|
|
@ -20,10 +20,10 @@ Legend:
|
|||
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ADD_ID | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
|
||||
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
|
|
@ -36,17 +36,17 @@ Legend:
|
|||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CUMSUM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CUMSUM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
|
||||
| DIAG | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | ❌ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| FILL | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| FILL | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
|
||||
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| GATED_LINEAR_ATTN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
|
|
@ -63,7 +63,7 @@ Legend:
|
|||
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| L2_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
|
|
@ -73,8 +73,9 @@ Legend:
|
|||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| OUT_PROD | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ | 🟡 |
|
||||
| PAD | ❌ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| PAD | ❌ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| POOL_1D | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
|
|
@ -85,7 +86,7 @@ Legend:
|
|||
| ROLL | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ROPE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
|
|
@ -96,7 +97,7 @@ Legend:
|
|||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| SOLVE_TRI | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
|
|
@ -106,14 +107,14 @@ Legend:
|
|||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SUM | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| SUM | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
|
|
|
|||
15267
docs/ops/WebGPU.csv
15267
docs/ops/WebGPU.csv
File diff suppressed because it is too large
Load Diff
|
|
@ -4,6 +4,7 @@ set -e
|
|||
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
BUILD_DIR="${2:-"$BUILD_DIR"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
|
|
@ -13,6 +14,10 @@ if [ -z "$CONVERTED_MODEL" ]; then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
cmake --build ../../build --target llama-debug -j8
|
||||
if [ -z "$BUILD_DIR" ]; then
|
||||
BUILD_DIR="../../build"
|
||||
fi
|
||||
|
||||
../../build/bin/llama-debug -m $CONVERTED_MODEL --embedding -p "Hello world today" --save-logits
|
||||
cmake --build ${BUILD_DIR} --target llama-debug -j8
|
||||
|
||||
${BUILD_DIR}/bin/llama-debug -m $CONVERTED_MODEL --embedding -p "Hello world today" --save-logits
|
||||
|
|
|
|||
|
|
@ -5,11 +5,16 @@ set -e
|
|||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
MODEL_TESTING_PROMPT="${2:-"$MODEL_TESTING_PROMPT"}"
|
||||
BUILD_DIR="${3:-"$BUILD_DIR"}"
|
||||
|
||||
if [ -z "$MODEL_TESTING_PROMPT"]; then
|
||||
if [ -z "$MODEL_TESTING_PROMPT" ]; then
|
||||
MODEL_TESTING_PROMPT="Hello, my name is"
|
||||
fi
|
||||
|
||||
if [ -z "$BUILD_DIR" ]; then
|
||||
BUILD_DIR="../../build"
|
||||
fi
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
|
|
@ -21,6 +26,6 @@ fi
|
|||
echo $CONVERTED_MODEL
|
||||
echo $MODEL_TESTING_PROMPT
|
||||
|
||||
cmake --build ../../build --target llama-debug -j8
|
||||
cmake --build ${BUILD_DIR} --target llama-debug -j8
|
||||
|
||||
../../build/bin/llama-debug -m "$CONVERTED_MODEL" -p "$MODEL_TESTING_PROMPT" --save-logits
|
||||
${BUILD_DIR}/bin/llama-debug -m "$CONVERTED_MODEL" -p "$MODEL_TESTING_PROMPT" --save-logits
|
||||
|
|
|
|||
|
|
@ -28,6 +28,7 @@ done
|
|||
|
||||
# First try command line argument, then environment variable
|
||||
CONVERTED_MODEL="${CONVERTED_MODEL:-"$CONVERTED_EMBEDDING_MODEL"}"
|
||||
BUILD_DIR="${BUILD_DIR:-"../../build"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
|
|
@ -50,5 +51,5 @@ fi
|
|||
|
||||
echo $CONVERTED_MODEL
|
||||
|
||||
cmake --build ../../build --target llama-debug -j8
|
||||
../../build/bin/llama-debug -m "$CONVERTED_MODEL" --embedding -p "$PROMPT" --save-logits --embd-normalize $EMBD_NORMALIZE
|
||||
cmake --build ${BUILD_DIR} --target llama-debug -j8
|
||||
${BUILD_DIR}/bin/llama-debug -m "$CONVERTED_MODEL" --embedding -p "$PROMPT" --save-logits --embd-normalize $EMBD_NORMALIZE
|
||||
|
|
|
|||
|
|
@ -630,10 +630,11 @@ extern "C" {
|
|||
|
||||
// this tensor...
|
||||
enum ggml_tensor_flag {
|
||||
GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
|
||||
GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
|
||||
GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
|
||||
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
|
||||
GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
|
||||
GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
|
||||
GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
|
||||
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
|
||||
GGML_TENSOR_FLAG_COMPUTE = 16, // ...must be computed
|
||||
};
|
||||
|
||||
enum ggml_tri_type {
|
||||
|
|
@ -2577,11 +2578,42 @@ extern "C" {
|
|||
struct ggml_tensor * grad,
|
||||
struct ggml_tensor * sgd_params); // alpha, weight decay
|
||||
|
||||
// build forward mutiple tensors and select one of them for computing
|
||||
// this is useful for creating graphs that have constant topology but compute different things based on the input
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/18550
|
||||
//
|
||||
// automatic differentiation
|
||||
// nodes:
|
||||
// | - build forward into the graph but do not compute
|
||||
// c - build forward into the graph and compute
|
||||
//
|
||||
// | | ... c ... |
|
||||
// | | ... c ... |
|
||||
// | | ... c ... |
|
||||
// [0 1 ... idx ... n-1] <-- ggml_build_forward_select(..., n, idx)
|
||||
// c
|
||||
// c
|
||||
//
|
||||
// example:
|
||||
// struct ggml_tensor * curs[3];
|
||||
//
|
||||
// curs[0] = compute0(...);
|
||||
// curs[1] = compute1(...);
|
||||
// curs[2] = compute2(...);
|
||||
//
|
||||
// int idx = select_branch(some_input);
|
||||
//
|
||||
// struct ggml_tensor * out = ggml_build_forward_select(cgraph, curs, 3, idx);
|
||||
//
|
||||
GGML_API struct ggml_tensor * ggml_build_forward_select(
|
||||
struct ggml_cgraph * cgraph,
|
||||
struct ggml_tensor ** tensors,
|
||||
int n_tensors,
|
||||
int idx);
|
||||
|
||||
GGML_API void ggml_build_forward_expand(
|
||||
struct ggml_cgraph * cgraph,
|
||||
struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_build_backward_expand(
|
||||
struct ggml_context * ctx, // context for gradient computation
|
||||
struct ggml_cgraph * cgraph,
|
||||
|
|
@ -2613,7 +2645,7 @@ extern "C" {
|
|||
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
||||
|
||||
// dump the graph into a file using the dot format
|
||||
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
||||
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * cgraph, const char * filename);
|
||||
|
||||
// TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
|
||||
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
||||
|
|
|
|||
|
|
@ -77,39 +77,23 @@
|
|||
#include "ggml-zendnn.h"
|
||||
#endif
|
||||
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
static std::string path_str(const fs::path & path) {
|
||||
std::string u8path;
|
||||
try {
|
||||
#if defined(__cpp_lib_char8_t)
|
||||
// C++20 and later: u8string() returns std::u8string
|
||||
std::u8string u8str = path.u8string();
|
||||
u8path = std::string(reinterpret_cast<const char*>(u8str.c_str()));
|
||||
const std::u8string u8str = path.u8string();
|
||||
return std::string(reinterpret_cast<const char *>(u8str.data()), u8str.size());
|
||||
#else
|
||||
// C++17: u8string() returns std::string
|
||||
u8path = path.u8string();
|
||||
return path.u8string();
|
||||
#endif
|
||||
} catch (...) {
|
||||
return std::string();
|
||||
}
|
||||
return u8path;
|
||||
}
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
|
|
|
|||
|
|
@ -874,9 +874,9 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
|
|||
}
|
||||
if (sched->debug > 1) {
|
||||
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
|
||||
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:", i, ggml_op_name(node->op), node->name,
|
||||
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d,c=%d:", i, ggml_op_name(node->op), node->name,
|
||||
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node),
|
||||
graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]);
|
||||
graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)], node->flags & GGML_TENSOR_FLAG_COMPUTE ? 1 : 0);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
|
|
@ -1922,6 +1922,7 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set,
|
|||
dst->view_offs = src->view_offs;
|
||||
}
|
||||
dst->op = src->op;
|
||||
dst->flags = src->flags;
|
||||
memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
|
||||
ggml_set_name(dst, src->name);
|
||||
|
||||
|
|
|
|||
|
|
@ -226,6 +226,10 @@ static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend,
|
|||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_blas_mul_mat(ctx, node);
|
||||
|
|
|
|||
|
|
@ -2146,6 +2146,10 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
|
|||
continue;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
bool ok = ggml_cann_compute_forward(*cann_ctx, node);
|
||||
if (!ok) {
|
||||
GGML_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||||
|
|
|
|||
|
|
@ -2943,6 +2943,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
continue;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
if (state->ith == 0 && cplan->abort_callback &&
|
||||
|
|
|
|||
|
|
@ -2,6 +2,9 @@
|
|||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
# include <cub/cub.cuh>
|
||||
# if (CCCL_MAJOR_VERSION >= 3 && CCCL_MINOR_VERSION >= 1)
|
||||
# define STRIDED_ITERATOR_AVAILABLE
|
||||
# endif
|
||||
using namespace cub;
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
|
|
@ -14,12 +17,14 @@ static __global__ void init_indices(int * indices, const int ncols, const int nr
|
|||
}
|
||||
}
|
||||
|
||||
#ifndef STRIDED_ITERATOR_AVAILABLE
|
||||
static __global__ void init_offsets(int * offsets, const int ncols, const int nrows) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (idx <= nrows) {
|
||||
offsets[idx] = idx * ncols;
|
||||
}
|
||||
}
|
||||
#endif // STRIDED_ITERATOR_AVAILABLE
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
||||
|
|
@ -31,19 +36,22 @@ void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
|||
cudaStream_t stream) {
|
||||
ggml_cuda_pool_alloc<int> temp_indices_alloc(pool, ncols * nrows);
|
||||
ggml_cuda_pool_alloc<float> temp_keys_alloc(pool, ncols * nrows);
|
||||
ggml_cuda_pool_alloc<int> offsets_alloc(pool, nrows + 1);
|
||||
|
||||
int * temp_indices = temp_indices_alloc.get();
|
||||
float * temp_keys = temp_keys_alloc.get();
|
||||
int * d_offsets = offsets_alloc.get();
|
||||
|
||||
static const int block_size = 256;
|
||||
const dim3 grid_size((ncols + block_size - 1) / block_size, nrows);
|
||||
init_indices<<<grid_size, block_size, 0, stream>>>(temp_indices, ncols, nrows);
|
||||
|
||||
const dim3 offset_grid((nrows + block_size - 1) / block_size);
|
||||
init_offsets<<<offset_grid, block_size, 0, stream>>>(d_offsets, ncols, nrows);
|
||||
|
||||
#ifdef STRIDED_ITERATOR_AVAILABLE
|
||||
auto offset_iterator = cuda::make_strided_iterator(cuda::make_counting_iterator(0), ncols);
|
||||
#else
|
||||
ggml_cuda_pool_alloc<int> offsets_alloc(pool, nrows + 1);
|
||||
int * offset_iterator = offsets_alloc.get();
|
||||
const dim3 offset_grid((nrows + block_size - 1) / block_size);
|
||||
init_offsets<<<offset_grid, block_size, 0, stream>>>(offset_iterator, ncols, nrows);
|
||||
#endif
|
||||
CUDA_CHECK(cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream));
|
||||
|
||||
size_t temp_storage_bytes = 0;
|
||||
|
|
@ -57,7 +65,7 @@ void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
|||
DeviceSegmentedSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
||||
temp_indices, dst, // values (indices)
|
||||
ncols * nrows, nrows, // num items, num segments
|
||||
d_offsets, d_offsets + 1, stream);
|
||||
offset_iterator, offset_iterator + 1, stream);
|
||||
}
|
||||
} else {
|
||||
if (nrows == 1) {
|
||||
|
|
@ -66,7 +74,8 @@ void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
|||
ncols, 0, sizeof(float) * 8, stream);
|
||||
} else {
|
||||
DeviceSegmentedSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
|
||||
dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, stream);
|
||||
dst, ncols * nrows, nrows, offset_iterator, offset_iterator + 1,
|
||||
stream);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -80,7 +89,7 @@ void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
|||
ncols, 0, sizeof(float) * 8, stream);
|
||||
} else {
|
||||
DeviceSegmentedSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
|
||||
ncols * nrows, nrows, d_offsets, d_offsets + 1, stream);
|
||||
ncols * nrows, nrows, offset_iterator, offset_iterator + 1, stream);
|
||||
}
|
||||
} else {
|
||||
if (nrows == 1) {
|
||||
|
|
@ -89,8 +98,8 @@ void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
|||
ncols, 0, sizeof(float) * 8, stream);
|
||||
} else {
|
||||
DeviceSegmentedSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
|
||||
temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
|
||||
stream);
|
||||
temp_indices, dst, ncols * nrows, nrows, offset_iterator,
|
||||
offset_iterator + 1, stream);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1123,6 +1123,7 @@ struct ggml_tensor_extra_gpu {
|
|||
struct ggml_cuda_graph_node_properties {
|
||||
void * node_address;
|
||||
ggml_op node_op;
|
||||
int32_t flags;
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
void * src_address[GGML_MAX_SRC];
|
||||
|
|
|
|||
|
|
@ -2918,6 +2918,7 @@ static bool ggml_cuda_graph_check_compability(ggml_cgraph * cgraph) {
|
|||
static void ggml_cuda_graph_node_set_properties(ggml_cuda_graph_node_properties * props, ggml_tensor * node) {
|
||||
props->node_address = node->data;
|
||||
props->node_op = node->op;
|
||||
props->flags = node->flags;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
props->ne[i] = node->ne[i];
|
||||
props->nb[i] = node->nb[i];
|
||||
|
|
@ -2961,6 +2962,10 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_
|
|||
return false;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) != (props->flags & GGML_TENSOR_FLAG_COMPUTE)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
@ -3378,6 +3383,9 @@ static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cud
|
|||
continue;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// start of fusion operations
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@
|
|||
#ifdef GGML_CUDA_USE_CUB
|
||||
# include <cub/cub.cuh>
|
||||
# if (CCCL_MAJOR_VERSION >= 3 && CCCL_MINOR_VERSION >= 2)
|
||||
# include <cuda/iterator>
|
||||
# define CUB_TOP_K_AVAILABLE
|
||||
using namespace cub;
|
||||
# endif // CCCL_MAJOR_VERSION >= 3 && CCCL_MINOR_VERSION >= 2
|
||||
|
|
|
|||
|
|
@ -2497,6 +2497,10 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
|
|||
continue;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t flags = 0;
|
||||
|
||||
// skip quantizer if src1 is reused
|
||||
|
|
|
|||
|
|
@ -611,6 +611,9 @@ static inline bool ggml_can_fuse_ext(const struct ggml_cgraph * cgraph, const in
|
|||
if (node->op != ops[i]) {
|
||||
return false;
|
||||
}
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
return false;
|
||||
}
|
||||
if (i < num_ops - 1 && !ggml_node_has_n_uses(cgraph, node_idxs[i], 1)) {
|
||||
return false;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1078,12 +1078,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
|||
op->src[0]->ne[0] != 112 &&
|
||||
op->src[0]->ne[0] != 128 &&
|
||||
op->src[0]->ne[0] != 192 &&
|
||||
op->src[0]->ne[0] != 256) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 576) {
|
||||
// DeepSeek sizes
|
||||
// TODO: disabled for now, until optmized
|
||||
op->src[0]->ne[0] != 256 &&
|
||||
op->src[0]->ne[0] != 576) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->type != op->src[2]->type) {
|
||||
|
|
|
|||
|
|
@ -203,6 +203,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
|
|||
GGML_ABORT("unsupported op");
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int n_fuse = 1;
|
||||
|
||||
// check if the current node can run concurrently with other nodes before it
|
||||
|
|
@ -2516,7 +2520,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
|||
|
||||
// simdgroups per threadgroup (a.k.a. warps)
|
||||
//nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
|
||||
int32_t nsg = 4;
|
||||
int32_t nsg = ne00 >= 512 ? 8 : 4;
|
||||
|
||||
const size_t smem = FATTN_SMEM(nsg);
|
||||
|
||||
|
|
|
|||
|
|
@ -5552,9 +5552,7 @@ void kernel_flash_attn_ext_impl(
|
|||
|
||||
constexpr short NC = (C/8)/NSG;
|
||||
|
||||
// note: do not unroll for large heads
|
||||
#pragma unroll (DK <= 64 ? NC : 1)
|
||||
for (short cc = 0; cc < NC; ++cc) {
|
||||
FOR_UNROLL (short cc = 0; cc < NC; ++cc) {
|
||||
qk8x8_t mqk = make_filled_simdgroup_matrix<qk_t, 8>((qk_t) 0.0f);
|
||||
|
||||
if (DK % 16 != 0) {
|
||||
|
|
@ -5575,7 +5573,9 @@ void kernel_flash_attn_ext_impl(
|
|||
k8x8_t mk[2];
|
||||
q8x8_t mq[2];
|
||||
|
||||
FOR_UNROLL (short i = 0; i < DK8/2; ++i) {
|
||||
// note: too much unroll can tank the performance for large heads
|
||||
#pragma unroll (MIN(DK8/2, 4*NSG))
|
||||
for (short i = 0; i < DK8/2; ++i) {
|
||||
simdgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
simdgroup_load(mq[0], pq + 0*8 + 16*i, DK);
|
||||
|
|
@ -5749,7 +5749,9 @@ void kernel_flash_attn_ext_impl(
|
|||
pv += 8*NS20;
|
||||
}
|
||||
} else {
|
||||
FOR_UNROLL (short cc = 0; cc < (C/8)/2; ++cc) {
|
||||
constexpr short NC = (C/8)/2;
|
||||
|
||||
FOR_UNROLL (short cc = 0; cc < NC; ++cc) {
|
||||
s8x8_t vs[2];
|
||||
|
||||
simdgroup_load(vs[0], ss + 16*cc + 0, SH, 0, false);
|
||||
|
|
@ -5952,6 +5954,7 @@ kernel void kernel_flash_attn_ext(
|
|||
//case 1: kernel_flash_attn_ext_impl<FWD_TMPL, 1>(FWD_ARGS); break;
|
||||
//case 2: kernel_flash_attn_ext_impl<FWD_TMPL, 2>(FWD_ARGS); break;
|
||||
case 4: kernel_flash_attn_ext_impl<FWD_TMPL, 4>(FWD_ARGS); break;
|
||||
case 8: kernel_flash_attn_ext_impl<FWD_TMPL, 8>(FWD_ARGS); break;
|
||||
}
|
||||
#undef FWD_TMPL
|
||||
#undef FWD_ARGS
|
||||
|
|
|
|||
|
|
@ -3058,6 +3058,10 @@ static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggm
|
|||
continue;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
|
||||
ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
|
||||
i += 2;
|
||||
|
|
|
|||
|
|
@ -111,6 +111,10 @@ kernel void kernel_mul_mv_q6_K_f32(
|
|||
|
||||
int row = N_SIMDGROUP * r0 + get_sub_group_id();
|
||||
|
||||
if (row >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
|
|
|
|||
|
|
@ -4109,6 +4109,9 @@ static void ggml_backend_sycl_graph_compute_impl(ggml_backend_sycl_context * syc
|
|||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
}
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
|
|
|
|||
|
|
@ -12191,6 +12191,9 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
if (ggml_is_empty(node) || ggml_op_is_empty(node->op) || !node->buffer) {
|
||||
return false;
|
||||
}
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")");
|
||||
ctx->semaphore_idx = 0;
|
||||
|
|
@ -13645,7 +13648,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
int last_node = cgraph->n_nodes - 1;
|
||||
|
||||
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
||||
while (last_node > 0 && ggml_vk_is_empty(cgraph->nodes[last_node])) {
|
||||
while (last_node > 0 && (ggml_vk_is_empty(cgraph->nodes[last_node]) || ((cgraph->nodes[last_node]->flags & GGML_TENSOR_FLAG_COMPUTE) == 0))) {
|
||||
last_node -= 1;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -9,12 +9,28 @@
|
|||
|
||||
#define GGML_WEBGPU_F16_SIZE_BYTES 2
|
||||
#define GGML_WEBGPU_F32_SIZE_BYTES 4
|
||||
#define GGML_WEBGPU_I32_SIZE_BYTES 4
|
||||
#define GGML_WEBGPU_FLASH_ATTN_PREFERRED_KV_SG_TILES 8u
|
||||
#define GGML_WEBGPU_FLASH_ATTN_PREFERRED_WG_SIZE 128u
|
||||
// Matches GGML_PAD(..., 256) in src/llama-context.cpp for KV cache sizing.
|
||||
#define GGML_WEBGPU_KV_SEQ_PAD 256u
|
||||
|
||||
struct ggml_webgpu_flash_attn_shader_lib_context {
|
||||
#define GGML_WEBGPU_ARGSORT_MERGE_MAX_WG_SIZE 512u
|
||||
|
||||
struct ggml_webgpu_processed_shader {
|
||||
std::string wgsl;
|
||||
std::string variant;
|
||||
void * decisions;
|
||||
};
|
||||
|
||||
// Same hash combine function as in boost
|
||||
template <typename T> inline void ggml_webgpu_hash_combine(size_t & seed, const T & value) {
|
||||
seed ^= std::hash<T>{}(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
|
||||
}
|
||||
|
||||
/** FlashAttention */
|
||||
|
||||
struct ggml_webgpu_flash_attn_pipeline_key {
|
||||
ggml_type kv_type;
|
||||
uint32_t head_dim_qk;
|
||||
uint32_t head_dim_v;
|
||||
|
|
@ -22,11 +38,35 @@ struct ggml_webgpu_flash_attn_shader_lib_context {
|
|||
bool has_mask;
|
||||
bool has_sinks;
|
||||
bool uses_logit_softcap;
|
||||
uint32_t sg_mat_m;
|
||||
uint32_t sg_mat_n;
|
||||
uint32_t sg_mat_k;
|
||||
size_t wg_mem_limit_bytes;
|
||||
uint32_t max_subgroup_size;
|
||||
|
||||
bool operator==(const ggml_webgpu_flash_attn_pipeline_key & other) const {
|
||||
return kv_type == other.kv_type && head_dim_qk == other.head_dim_qk && head_dim_v == other.head_dim_v &&
|
||||
kv_direct == other.kv_direct && has_mask == other.has_mask && has_sinks == other.has_sinks &&
|
||||
uses_logit_softcap == other.uses_logit_softcap;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_webgpu_flash_attn_pipeline_key_hash {
|
||||
size_t operator()(const ggml_webgpu_flash_attn_pipeline_key & key) const {
|
||||
size_t seed = 0;
|
||||
ggml_webgpu_hash_combine(seed, key.kv_type);
|
||||
ggml_webgpu_hash_combine(seed, key.head_dim_qk);
|
||||
ggml_webgpu_hash_combine(seed, key.head_dim_v);
|
||||
ggml_webgpu_hash_combine(seed, key.kv_direct);
|
||||
ggml_webgpu_hash_combine(seed, key.has_mask);
|
||||
ggml_webgpu_hash_combine(seed, key.has_sinks);
|
||||
ggml_webgpu_hash_combine(seed, key.uses_logit_softcap);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_webgpu_flash_attn_shader_lib_context {
|
||||
ggml_webgpu_flash_attn_pipeline_key key;
|
||||
uint32_t sg_mat_m;
|
||||
uint32_t sg_mat_n;
|
||||
uint32_t sg_mat_k;
|
||||
size_t wg_mem_limit_bytes;
|
||||
uint32_t max_subgroup_size;
|
||||
};
|
||||
|
||||
struct ggml_webgpu_flash_attn_shader_decisions {
|
||||
|
|
@ -35,12 +75,6 @@ struct ggml_webgpu_flash_attn_shader_decisions {
|
|||
uint32_t wg_size = 0;
|
||||
};
|
||||
|
||||
struct ggml_webgpu_processed_shader {
|
||||
std::string wgsl;
|
||||
std::string variant;
|
||||
ggml_webgpu_flash_attn_shader_decisions decisions;
|
||||
};
|
||||
|
||||
// This is exposed because it's necessary in supports_op
|
||||
inline size_t ggml_webgpu_flash_attn_wg_mem_bytes(uint32_t q_tile,
|
||||
uint32_t kv_tile,
|
||||
|
|
@ -66,15 +100,16 @@ inline size_t ggml_webgpu_flash_attn_wg_mem_bytes(uint32_t q_tile,
|
|||
}
|
||||
|
||||
static uint32_t ggml_webgpu_flash_attn_max_kv_tile(const ggml_webgpu_flash_attn_shader_lib_context & context) {
|
||||
const size_t limit_bytes = context.wg_mem_limit_bytes;
|
||||
const size_t q_tile = context.sg_mat_m;
|
||||
const size_t base_q_bytes = (context.head_dim_qk + context.head_dim_v) * q_tile * GGML_WEBGPU_F16_SIZE_BYTES +
|
||||
2 * q_tile * GGML_WEBGPU_F32_SIZE_BYTES;
|
||||
const size_t limit_bytes = context.wg_mem_limit_bytes;
|
||||
const size_t q_tile = context.sg_mat_m;
|
||||
const size_t base_q_bytes =
|
||||
(context.key.head_dim_qk + context.key.head_dim_v) * q_tile * GGML_WEBGPU_F16_SIZE_BYTES +
|
||||
2 * q_tile * GGML_WEBGPU_F32_SIZE_BYTES;
|
||||
size_t bytes_per_kv = 0;
|
||||
if (!context.kv_direct) {
|
||||
bytes_per_kv += std::max(context.head_dim_qk, context.head_dim_v);
|
||||
if (!context.key.kv_direct) {
|
||||
bytes_per_kv += std::max(context.key.head_dim_qk, context.key.head_dim_v);
|
||||
}
|
||||
if (context.has_mask) {
|
||||
if (context.key.has_mask) {
|
||||
bytes_per_kv += q_tile;
|
||||
}
|
||||
bytes_per_kv += q_tile;
|
||||
|
|
@ -90,7 +125,7 @@ inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_flash_attn_shader(
|
|||
std::vector<std::string> defines;
|
||||
std::string variant = "flash_attn";
|
||||
|
||||
switch (context.kv_type) {
|
||||
switch (context.key.kv_type) {
|
||||
case GGML_TYPE_F32:
|
||||
defines.push_back("KV_F32");
|
||||
break;
|
||||
|
|
@ -106,32 +141,31 @@ inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_flash_attn_shader(
|
|||
default:
|
||||
GGML_ABORT("Unsupported KV type for flash attention shader");
|
||||
}
|
||||
variant += std::string("_") + ggml_type_name(context.kv_type);
|
||||
variant += std::string("_") + ggml_type_name(context.key.kv_type);
|
||||
|
||||
if (context.has_mask) {
|
||||
if (context.key.has_mask) {
|
||||
defines.push_back("MASK");
|
||||
variant += "_mask";
|
||||
}
|
||||
if (context.has_sinks) {
|
||||
if (context.key.has_sinks) {
|
||||
defines.push_back("SINKS");
|
||||
variant += "_sinks";
|
||||
}
|
||||
if (context.uses_logit_softcap) {
|
||||
if (context.key.uses_logit_softcap) {
|
||||
defines.push_back("LOGIT_SOFTCAP");
|
||||
variant += "_lgsc";
|
||||
}
|
||||
|
||||
if (context.kv_direct) {
|
||||
if (context.key.kv_direct) {
|
||||
defines.push_back("KV_DIRECT");
|
||||
variant += "_kvdirect";
|
||||
}
|
||||
|
||||
defines.push_back(std::string("HEAD_DIM_QK=") + std::to_string(context.head_dim_qk));
|
||||
variant += std::string("_hsqk") + std::to_string(context.head_dim_qk);
|
||||
|
||||
defines.push_back(std::string("HEAD_DIM_V=") + std::to_string(context.head_dim_v));
|
||||
variant += std::string("_hsv") + std::to_string(context.head_dim_v);
|
||||
defines.push_back(std::string("HEAD_DIM_QK=") + std::to_string(context.key.head_dim_qk));
|
||||
variant += std::string("_hsqk") + std::to_string(context.key.head_dim_qk);
|
||||
|
||||
defines.push_back(std::string("HEAD_DIM_V=") + std::to_string(context.key.head_dim_v));
|
||||
variant += std::string("_hsv") + std::to_string(context.key.head_dim_v);
|
||||
// For now these are not part of the variant name
|
||||
defines.push_back(std::string("SG_MAT_M=") + std::to_string(context.sg_mat_m));
|
||||
defines.push_back(std::string("SG_MAT_N=") + std::to_string(context.sg_mat_n));
|
||||
|
|
@ -141,7 +175,7 @@ inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_flash_attn_shader(
|
|||
uint32_t q_tile = context.sg_mat_m;
|
||||
uint32_t kv_tile = std::min(ggml_webgpu_flash_attn_max_kv_tile(context),
|
||||
context.sg_mat_n * GGML_WEBGPU_FLASH_ATTN_PREFERRED_KV_SG_TILES);
|
||||
if (context.kv_direct) {
|
||||
if (context.key.kv_direct) {
|
||||
GGML_ASSERT(kv_tile <= GGML_WEBGPU_KV_SEQ_PAD);
|
||||
// Avoids having to use bounds-checks and decreasing performance for direct KV loads
|
||||
while (GGML_WEBGPU_KV_SEQ_PAD % kv_tile != 0) {
|
||||
|
|
@ -158,11 +192,276 @@ inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_flash_attn_shader(
|
|||
defines.push_back(std::string("WG_SIZE=") + std::to_string(wg_size));
|
||||
|
||||
ggml_webgpu_processed_shader result;
|
||||
result.wgsl = preprocessor.preprocess(shader_src, defines);
|
||||
result.variant = variant;
|
||||
result.decisions.q_tile = q_tile;
|
||||
result.decisions.kv_tile = kv_tile;
|
||||
result.decisions.wg_size = wg_size;
|
||||
result.wgsl = preprocessor.preprocess(shader_src, defines);
|
||||
result.variant = variant;
|
||||
ggml_webgpu_flash_attn_shader_decisions * decisions = new ggml_webgpu_flash_attn_shader_decisions();
|
||||
decisions->q_tile = q_tile;
|
||||
decisions->kv_tile = kv_tile;
|
||||
decisions->wg_size = wg_size;
|
||||
result.decisions = decisions;
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Generic **/
|
||||
|
||||
struct ggml_webgpu_generic_shader_lib_context {
|
||||
int vec4;
|
||||
uint32_t max_wg_size;
|
||||
};
|
||||
|
||||
struct ggml_webgpu_generic_shader_decisions {
|
||||
uint32_t wg_size;
|
||||
};
|
||||
|
||||
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_generic_shader(
|
||||
pre_wgsl::Preprocessor & preprocessor,
|
||||
const char * shader_src,
|
||||
const ggml_webgpu_generic_shader_lib_context & context,
|
||||
const std::string & base_variant) {
|
||||
std::vector<std::string> defines;
|
||||
std::string variant = base_variant;
|
||||
|
||||
if (context.vec4) {
|
||||
defines.push_back("VEC4");
|
||||
variant += "_vec";
|
||||
}
|
||||
|
||||
defines.push_back(std::string("WG_SIZE=") + std::to_string(context.max_wg_size));
|
||||
|
||||
ggml_webgpu_processed_shader result;
|
||||
result.wgsl = preprocessor.preprocess(shader_src, defines);
|
||||
result.variant = variant;
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Pad **/
|
||||
|
||||
struct ggml_webgpu_pad_pipeline_key {
|
||||
bool circular;
|
||||
|
||||
bool operator==(const ggml_webgpu_pad_pipeline_key & other) const { return circular == other.circular; }
|
||||
};
|
||||
|
||||
struct ggml_webgpu_pad_pipeline_key_hash {
|
||||
size_t operator()(const ggml_webgpu_pad_pipeline_key & key) const {
|
||||
size_t seed = 0;
|
||||
ggml_webgpu_hash_combine(seed, key.circular);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_webgpu_pad_shader_lib_context {
|
||||
ggml_webgpu_pad_pipeline_key key;
|
||||
uint32_t max_wg_size;
|
||||
};
|
||||
|
||||
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_pad_shader(
|
||||
pre_wgsl::Preprocessor & preprocessor,
|
||||
const char * shader_src,
|
||||
const ggml_webgpu_pad_shader_lib_context & context) {
|
||||
std::vector<std::string> defines;
|
||||
std::string variant = "pad";
|
||||
|
||||
if (context.key.circular) {
|
||||
defines.push_back("CIRCULAR");
|
||||
variant += "_circular";
|
||||
}
|
||||
|
||||
defines.push_back(std::string("WG_SIZE=") + std::to_string(context.max_wg_size));
|
||||
|
||||
ggml_webgpu_processed_shader result;
|
||||
result.wgsl = preprocessor.preprocess(shader_src, defines);
|
||||
result.variant = variant;
|
||||
ggml_webgpu_generic_shader_decisions * decisions = new ggml_webgpu_generic_shader_decisions();
|
||||
decisions->wg_size = context.max_wg_size;
|
||||
result.decisions = decisions;
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Argsort **/
|
||||
|
||||
struct ggml_webgpu_argsort_shader_lib_context {
|
||||
uint32_t max_wg_size;
|
||||
size_t wg_mem_limit_bytes;
|
||||
int32_t order;
|
||||
};
|
||||
|
||||
struct ggml_webgpu_argsort_shader_decisions {
|
||||
uint32_t wg_size = 0;
|
||||
};
|
||||
|
||||
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_argsort_shader(
|
||||
pre_wgsl::Preprocessor & preprocessor,
|
||||
const char * shader_src,
|
||||
const ggml_webgpu_argsort_shader_lib_context & context) {
|
||||
std::vector<std::string> defines;
|
||||
std::string variant = "argsort";
|
||||
defines.push_back(std::string("ORDER=") + std::to_string(context.order));
|
||||
variant += std::string("_order") + std::to_string(context.order);
|
||||
uint32_t wg_size = 1;
|
||||
while (wg_size * 2 <= context.max_wg_size &&
|
||||
wg_size * GGML_WEBGPU_I32_SIZE_BYTES <= context.wg_mem_limit_bytes / 2) {
|
||||
wg_size *= 2;
|
||||
}
|
||||
defines.push_back(std::string("WG_SIZE=") + std::to_string(wg_size));
|
||||
ggml_webgpu_processed_shader result;
|
||||
result.wgsl = preprocessor.preprocess(shader_src, defines);
|
||||
result.variant = variant;
|
||||
ggml_webgpu_argsort_shader_decisions * decisions = new ggml_webgpu_argsort_shader_decisions();
|
||||
decisions->wg_size = wg_size;
|
||||
result.decisions = decisions;
|
||||
return result;
|
||||
}
|
||||
|
||||
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_argsort_merge_shader(
|
||||
pre_wgsl::Preprocessor & preprocessor,
|
||||
const char * shader_src,
|
||||
const ggml_webgpu_argsort_shader_lib_context & context) {
|
||||
std::vector<std::string> defines;
|
||||
std::string variant = "argsort_merge";
|
||||
defines.push_back(std::string("ORDER=") + std::to_string(context.order));
|
||||
variant += std::string("_order") + std::to_string(context.order);
|
||||
uint32_t wg_size = std::min(GGML_WEBGPU_ARGSORT_MERGE_MAX_WG_SIZE, context.max_wg_size);
|
||||
defines.push_back(std::string("WG_SIZE=") + std::to_string(wg_size));
|
||||
ggml_webgpu_processed_shader result;
|
||||
result.wgsl = preprocessor.preprocess(shader_src, defines);
|
||||
result.variant = variant;
|
||||
ggml_webgpu_argsort_shader_decisions * decisions = new ggml_webgpu_argsort_shader_decisions();
|
||||
decisions->wg_size = wg_size;
|
||||
result.decisions = decisions;
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Set Rows **/
|
||||
|
||||
struct ggml_webgpu_set_rows_pipeline_key {
|
||||
int dst_type;
|
||||
int vec4;
|
||||
int i64_idx;
|
||||
|
||||
bool operator==(const ggml_webgpu_set_rows_pipeline_key & other) const {
|
||||
return dst_type == other.dst_type && vec4 == other.vec4 && i64_idx == other.i64_idx;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_webgpu_set_rows_pipeline_key_hash {
|
||||
size_t operator()(const ggml_webgpu_set_rows_pipeline_key & key) const {
|
||||
size_t seed = 0;
|
||||
ggml_webgpu_hash_combine(seed, key.dst_type);
|
||||
ggml_webgpu_hash_combine(seed, key.vec4);
|
||||
ggml_webgpu_hash_combine(seed, key.i64_idx);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_webgpu_set_rows_shader_lib_context {
|
||||
ggml_webgpu_set_rows_pipeline_key key;
|
||||
uint32_t max_wg_size;
|
||||
};
|
||||
|
||||
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_set_rows_shader(
|
||||
pre_wgsl::Preprocessor & preprocessor,
|
||||
const char * shader_src,
|
||||
const ggml_webgpu_set_rows_shader_lib_context & context) {
|
||||
std::vector<std::string> defines;
|
||||
std::string variant = "set_rows";
|
||||
|
||||
switch (context.key.dst_type) {
|
||||
case GGML_TYPE_F32:
|
||||
defines.push_back("DST_F32");
|
||||
variant += "_dstf32";
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
defines.push_back("DST_F16");
|
||||
variant += "_dstf16";
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported dst type for set_rows shader");
|
||||
}
|
||||
|
||||
if (context.key.vec4) {
|
||||
defines.push_back("VEC4");
|
||||
variant += "_vec";
|
||||
}
|
||||
if (context.key.i64_idx) {
|
||||
defines.push_back("I64_IDX");
|
||||
variant += "_i64idx";
|
||||
}
|
||||
|
||||
defines.push_back(std::string("WG_SIZE=") + std::to_string(context.max_wg_size));
|
||||
|
||||
ggml_webgpu_processed_shader result;
|
||||
result.wgsl = preprocessor.preprocess(shader_src, defines);
|
||||
result.variant = variant;
|
||||
ggml_webgpu_generic_shader_decisions * decisions = new ggml_webgpu_generic_shader_decisions();
|
||||
decisions->wg_size = context.max_wg_size;
|
||||
result.decisions = decisions;
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_webgpu_unary_pipeline_key {
|
||||
int type;
|
||||
int op;
|
||||
bool is_unary; // many unary operators fall under the GGML_OP_UNARY umbrella
|
||||
bool inplace;
|
||||
|
||||
bool operator==(const ggml_webgpu_unary_pipeline_key & other) const {
|
||||
return type == other.type && op == other.op && is_unary == other.is_unary && inplace == other.inplace;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_webgpu_unary_pipeline_key_hash {
|
||||
size_t operator()(const ggml_webgpu_unary_pipeline_key & key) const {
|
||||
size_t seed = 0;
|
||||
ggml_webgpu_hash_combine(seed, key.type);
|
||||
ggml_webgpu_hash_combine(seed, key.op);
|
||||
ggml_webgpu_hash_combine(seed, key.is_unary);
|
||||
ggml_webgpu_hash_combine(seed, key.inplace);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_webgpu_unary_shader_lib_context {
|
||||
ggml_webgpu_unary_pipeline_key key;
|
||||
uint32_t max_wg_size;
|
||||
};
|
||||
|
||||
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_unary_shader(
|
||||
pre_wgsl::Preprocessor & preprocessor,
|
||||
const char * shader_src,
|
||||
const ggml_webgpu_unary_shader_lib_context & context) {
|
||||
std::vector<std::string> defines;
|
||||
std::string variant = context.key.is_unary ? ggml_unary_op_name((ggml_unary_op) context.key.op) :
|
||||
ggml_op_name((ggml_op) context.key.op);
|
||||
// Operation-specific behavior
|
||||
defines.push_back(variant);
|
||||
|
||||
switch (context.key.type) {
|
||||
case GGML_TYPE_F32:
|
||||
defines.push_back("TYPE_F32");
|
||||
variant += "_f32";
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
defines.push_back("TYPE_F16");
|
||||
variant += "_f16";
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type for unary shader");
|
||||
}
|
||||
|
||||
if (context.key.inplace) {
|
||||
defines.push_back("INPLACE");
|
||||
variant += "_inplace";
|
||||
}
|
||||
|
||||
defines.push_back(std::string("WG_SIZE=") + std::to_string(context.max_wg_size));
|
||||
|
||||
ggml_webgpu_processed_shader result;
|
||||
result.wgsl = preprocessor.preprocess(shader_src, defines);
|
||||
result.variant = variant;
|
||||
ggml_webgpu_generic_shader_decisions * decisions = new ggml_webgpu_generic_shader_decisions();
|
||||
decisions->wg_size = context.max_wg_size;
|
||||
result.decisions = decisions;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,72 @@
|
|||
@group(0) @binding(0)
|
||||
#ifdef VEC4
|
||||
var<storage, read_write> src: array<vec4<f32>>;
|
||||
#define VEC_SIZE 4
|
||||
#else
|
||||
var<storage, read_write> src: array<f32>;
|
||||
#define VEC_SIZE 1
|
||||
#endif
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> dst: array<i32>;
|
||||
|
||||
struct Params {
|
||||
offset_src: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
ne0: u32,
|
||||
};
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<uniform> params: Params;
|
||||
|
||||
const FLOAT_MIN: f32 = -1.0e9;
|
||||
|
||||
struct Pair {
|
||||
value: f32,
|
||||
index: i32
|
||||
};
|
||||
|
||||
var<workgroup> shared_max: array<Pair, WG_SIZE>;
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(workgroup_id) wid: vec3<u32>,
|
||||
@builtin(local_invocation_id) lid: vec3<u32>) {
|
||||
let row_idx = params.offset_src + wid.x * params.ne0;
|
||||
var local_pair = Pair(FLOAT_MIN, -1);
|
||||
#ifdef VEC4
|
||||
for (var col = lid.x; col < params.ne0/VEC_SIZE; col += WG_SIZE) {
|
||||
let vec_val = src[row_idx / VEC_SIZE + col];
|
||||
for (var v = 0u; v < VEC_SIZE; v++) {
|
||||
let val = vec_val[v];
|
||||
if (val >= local_pair.value) {
|
||||
local_pair = Pair(val, i32(col * VEC_SIZE + v));
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (var col = lid.x; col < params.ne0; col += WG_SIZE) {
|
||||
if (src[row_idx + col] >= local_pair.value) {
|
||||
local_pair = Pair(src[row_idx + col], i32(col));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
shared_max[lid.x] = local_pair;
|
||||
workgroupBarrier();
|
||||
var offset: u32 = WG_SIZE >> 1;
|
||||
while (offset > 0) {
|
||||
if (lid.x < offset) {
|
||||
let a = shared_max[lid.x];
|
||||
let b = shared_max[lid.x + offset];
|
||||
if (b.value > a.value) {
|
||||
shared_max[lid.x] = b;
|
||||
} else if (b.value == a.value && b.index > a.index) {
|
||||
shared_max[lid.x] = b;
|
||||
}
|
||||
}
|
||||
workgroupBarrier();
|
||||
offset >>= 1;
|
||||
}
|
||||
if (lid.x == 0u) {
|
||||
dst[params.offset_dst + wid.x] = shared_max[0].index;
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,106 @@
|
|||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<f32>;
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> dst: array<i32>;
|
||||
|
||||
struct Params {
|
||||
offset_src: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
|
||||
stride_src1: u32,
|
||||
stride_src2: u32,
|
||||
stride_src3: u32,
|
||||
|
||||
stride_dst1: u32,
|
||||
stride_dst2: u32,
|
||||
stride_dst3: u32,
|
||||
|
||||
// src/dst dimensions
|
||||
src_ne0: u32,
|
||||
ne1: u32,
|
||||
ne2: u32,
|
||||
|
||||
ne0: u32,
|
||||
top_k: u32,
|
||||
|
||||
npr: u32, // tiles per row
|
||||
nrows: u32
|
||||
};
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<uniform> params: Params;
|
||||
|
||||
var<workgroup> shmem_idx: array<u32, WG_SIZE>;
|
||||
|
||||
#if ORDER == 0
|
||||
#define EXTREME_VALUE 1e30
|
||||
#define SWAP_COMPARE_UP >
|
||||
#define SWAP_COMPARE_DOWN <
|
||||
#else
|
||||
#define EXTREME_VALUE -1e30
|
||||
#define SWAP_COMPARE_UP <
|
||||
#define SWAP_COMPARE_DOWN >
|
||||
#endif
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(workgroup_id) wid: vec3<u32>,
|
||||
@builtin(num_workgroups) num_wg: vec3<u32>,
|
||||
@builtin(local_invocation_id) lid: vec3<u32>) {
|
||||
let linear = wid.x + wid.y * num_wg.x;
|
||||
// guard against overprovisioned workgroups
|
||||
if (linear >= params.npr * params.nrows) {
|
||||
return;
|
||||
}
|
||||
let tile = linear % params.npr;
|
||||
var row = linear / params.npr;
|
||||
let i3 = row / (params.ne2 * params.ne1);
|
||||
row = row % (params.ne2 * params.ne1);
|
||||
let i2 = row / params.ne1;
|
||||
let i1 = row % params.ne1;
|
||||
|
||||
let row_base = params.offset_src +
|
||||
i1 * params.stride_src1 +
|
||||
i2 * params.stride_src2 +
|
||||
i3 * params.stride_src3;
|
||||
|
||||
let tile_base = tile * WG_SIZE;
|
||||
let idx = tile_base + lid.x;
|
||||
shmem_idx[lid.x] = select(params.src_ne0, idx, idx < params.src_ne0);
|
||||
workgroupBarrier();
|
||||
|
||||
var k = 2u;
|
||||
while (k <= WG_SIZE) {
|
||||
var j = k >> 1;
|
||||
while (j > 0) {
|
||||
let ixj = lid.x ^ j;
|
||||
if (ixj > lid.x) {
|
||||
let dir_up = (lid.x & k) == 0;
|
||||
let a_idx = shmem_idx[lid.x];
|
||||
let b_idx = shmem_idx[ixj];
|
||||
let a_val = select(EXTREME_VALUE, src[row_base + a_idx], a_idx < params.src_ne0);
|
||||
let b_val = select(EXTREME_VALUE, src[row_base + b_idx], b_idx < params.src_ne0);
|
||||
let should_swap = select(
|
||||
(a_val SWAP_COMPARE_DOWN b_val),
|
||||
(a_val SWAP_COMPARE_UP b_val),
|
||||
dir_up);
|
||||
if (should_swap) {
|
||||
shmem_idx[lid.x] = b_idx;
|
||||
shmem_idx[ixj] = a_idx;
|
||||
}
|
||||
}
|
||||
workgroupBarrier();
|
||||
j >>= 1;
|
||||
}
|
||||
k <<= 1;
|
||||
}
|
||||
|
||||
let out_idx = tile * params.top_k + lid.x;
|
||||
if (out_idx < params.ne0 && lid.x < params.top_k) {
|
||||
let row_dst = params.offset_dst +
|
||||
i1 * params.stride_dst1 +
|
||||
i2 * params.stride_dst2 +
|
||||
i3 * params.stride_dst3;
|
||||
dst[row_dst + out_idx] = i32(shmem_idx[lid.x]);
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,134 @@
|
|||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<f32>;
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> idx_in: array<i32>;
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<storage, read_write> idx_out: array<i32>;
|
||||
|
||||
struct Params {
|
||||
offset_src: u32, // in elements
|
||||
offset_in: u32, // in elements
|
||||
offset_out: u32, // in elements
|
||||
|
||||
stride_src1: u32,
|
||||
stride_src2: u32,
|
||||
stride_src3: u32,
|
||||
|
||||
stride_idx1: u32,
|
||||
stride_idx2: u32,
|
||||
stride_idx3: u32,
|
||||
|
||||
stride_out1: u32,
|
||||
stride_out2: u32,
|
||||
stride_out3: u32,
|
||||
|
||||
ne0: u32,
|
||||
ne1: u32,
|
||||
ne2: u32,
|
||||
|
||||
top_k: u32,
|
||||
|
||||
len: u32,
|
||||
nm: u32,
|
||||
nrows: u32
|
||||
};
|
||||
|
||||
@group(0) @binding(3)
|
||||
var<uniform> params: Params;
|
||||
|
||||
fn take_left(a_idx: i32, b_idx: i32, row_base: u32) -> bool {
|
||||
let a_val = src[row_base + u32(a_idx)];
|
||||
let b_val = src[row_base + u32(b_idx)];
|
||||
#if ORDER == 0
|
||||
return a_val <= b_val;
|
||||
#else
|
||||
return a_val >= b_val;
|
||||
#endif
|
||||
}
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(workgroup_id) wid: vec3<u32>,
|
||||
@builtin(num_workgroups) num_wg: vec3<u32>,
|
||||
@builtin(local_invocation_id) lid: vec3<u32>) {
|
||||
let linear = wid.x + wid.y * num_wg.x;
|
||||
// guard against overprovisioned workgroups
|
||||
if (linear >= params.nm * params.nrows) {
|
||||
return;
|
||||
}
|
||||
|
||||
let start = (linear % params.nm) * params.len * 2;
|
||||
let len0 = min(params.len, params.ne0 - start);
|
||||
let rem1 = select(0, params.ne0 - (start + params.len), params.ne0 > (start + params.len));
|
||||
let len1 = min(params.len, rem1);
|
||||
let total = len0 + len1;
|
||||
let chunk = (total + WG_SIZE - 1u) / WG_SIZE;
|
||||
let k0 = lid.x * chunk;
|
||||
let k1 = min(min(k0 + chunk, total), params.top_k);
|
||||
// guard against overprovisioned threads
|
||||
if (k0 >= params.top_k || k0 >= total) {
|
||||
return;
|
||||
}
|
||||
|
||||
var row = linear / params.nm;
|
||||
let i3 = row / (params.ne2 * params.ne1);
|
||||
row = row % (params.ne2 * params.ne1);
|
||||
let i2 = row / params.ne1;
|
||||
let i1 = row % params.ne1;
|
||||
|
||||
let row_src = params.offset_src +
|
||||
i1 * params.stride_src1 +
|
||||
i2 * params.stride_src2 +
|
||||
i3 * params.stride_src3;
|
||||
|
||||
let row_in = params.offset_in +
|
||||
i1 * params.stride_idx1 +
|
||||
i2 * params.stride_idx2 +
|
||||
i3 * params.stride_idx3;
|
||||
|
||||
let row_out = params.offset_out +
|
||||
i1 * params.stride_out1 +
|
||||
i2 * params.stride_out2 +
|
||||
i3 * params.stride_out3;
|
||||
|
||||
|
||||
var low: u32 = select(0, k0 - len1, k0 > len1);
|
||||
var high: u32 = min(k0, len0);
|
||||
|
||||
while (low < high) {
|
||||
let mid = (low + high) >> 1;
|
||||
let idx0 = idx_in[row_in + start + mid];
|
||||
let idx1 = idx_in[row_in + start + params.len + (k0 - mid - 1)];
|
||||
if (take_left(idx0, idx1, row_src)) {
|
||||
low = mid + 1;
|
||||
} else {
|
||||
high = mid;
|
||||
}
|
||||
}
|
||||
|
||||
var i = low;
|
||||
var j = k0 - i;
|
||||
var k = k0;
|
||||
while (k < k1) {
|
||||
var take_l = false;
|
||||
if (i >= len0) {
|
||||
take_l = false;
|
||||
} else if (j >= len1) {
|
||||
take_l = true;
|
||||
} else {
|
||||
let idx0 = idx_in[row_in + start + i];
|
||||
let idx1 = idx_in[row_in + start + params.len + j];
|
||||
take_l = take_left(idx0, idx1, row_src);
|
||||
}
|
||||
|
||||
let out_idx = select(
|
||||
idx_in[row_in + start + params.len + j],
|
||||
idx_in[row_in + start + i],
|
||||
take_l);
|
||||
idx_out[row_out + start + k] = out_idx;
|
||||
i = select(i, i + 1, take_l);
|
||||
j = select(j + 1, j, take_l);
|
||||
k += 1;
|
||||
}
|
||||
}
|
||||
|
|
@ -7,6 +7,12 @@
|
|||
"DST_TYPE": "f32"
|
||||
}
|
||||
},
|
||||
{
|
||||
"REPLS": {
|
||||
"SRC_TYPE": "f32",
|
||||
"DST_TYPE": "i32"
|
||||
}
|
||||
},
|
||||
{
|
||||
"REPLS": {
|
||||
"SRC_TYPE": "f32",
|
||||
|
|
|
|||
|
|
@ -0,0 +1,66 @@
|
|||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<f32>;
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> dst: array<f32>;
|
||||
|
||||
struct Params {
|
||||
offset_src: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
ne0: u32,
|
||||
};
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<uniform> params: Params;
|
||||
|
||||
var<workgroup> shared_sum: array<f32, WG_SIZE>;
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(workgroup_id) wid: vec3<u32>,
|
||||
@builtin(local_invocation_id) lid: vec3<u32>) {
|
||||
let row_idx = params.offset_src + wid.x * params.ne0;
|
||||
let elems = (params.ne0 + WG_SIZE - 1) / WG_SIZE;
|
||||
var local_sum: f32 = 0.0;
|
||||
for (var col = lid.x * elems; col < (lid.x + 1) * elems && col < params.ne0; col ++) {
|
||||
local_sum += src[row_idx + col];
|
||||
}
|
||||
shared_sum[lid.x] = local_sum;
|
||||
workgroupBarrier();
|
||||
|
||||
// upsweep
|
||||
var offset = 1u;
|
||||
while (offset < WG_SIZE) {
|
||||
let idx = (lid.x + 1) * offset * 2 - 1;
|
||||
if (idx < WG_SIZE) {
|
||||
shared_sum[idx] = shared_sum[idx] + shared_sum[idx - offset];
|
||||
}
|
||||
workgroupBarrier();
|
||||
offset <<= 1;
|
||||
}
|
||||
|
||||
// set last to 0 for exclusive sum
|
||||
if (lid.x == 0) {
|
||||
shared_sum[WG_SIZE - 1] = 0.0;
|
||||
}
|
||||
workgroupBarrier();
|
||||
|
||||
// downsweep
|
||||
offset = WG_SIZE >> 1;
|
||||
while (offset > 0) {
|
||||
let idx = (lid.x + 1) * offset * 2 - 1;
|
||||
if (idx < WG_SIZE) {
|
||||
let t = shared_sum[idx - offset];
|
||||
shared_sum[idx - offset] = shared_sum[idx];
|
||||
shared_sum[idx] = shared_sum[idx] + t;
|
||||
}
|
||||
workgroupBarrier();
|
||||
offset = offset >> 1;
|
||||
}
|
||||
|
||||
// shared_sum[lid] is exclusive prefix sum up to this thread.
|
||||
var running_sum = shared_sum[lid.x];
|
||||
for (var col = lid.x * elems; col < (lid.x + 1) * elems && col < params.ne0; col ++) {
|
||||
running_sum += src[row_idx + col];
|
||||
dst[params.offset_dst + wid.x * params.ne0 + col] = running_sum;
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,86 @@
|
|||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<f32>;
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> dst: array<f32>;
|
||||
|
||||
struct Params {
|
||||
ne: u32, // total number of elements
|
||||
offset_src: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
|
||||
// Strides (in elements)
|
||||
stride_src0: u32,
|
||||
stride_src1: u32,
|
||||
stride_src2: u32,
|
||||
stride_src3: u32,
|
||||
|
||||
// Logical shapes
|
||||
src_ne0: u32,
|
||||
src_ne1: u32,
|
||||
src_ne2: u32,
|
||||
src_ne3: u32,
|
||||
|
||||
dst_ne0: u32,
|
||||
dst_ne1: u32,
|
||||
dst_ne2: u32,
|
||||
dst_ne3: u32,
|
||||
|
||||
// Pad sizes (in elements)
|
||||
lp0: u32,
|
||||
rp0: u32,
|
||||
lp1: u32,
|
||||
rp1: u32,
|
||||
lp2: u32,
|
||||
rp2: u32,
|
||||
lp3: u32,
|
||||
rp3: u32,
|
||||
};
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<uniform> params: Params;
|
||||
|
||||
fn wrap_around(idx: i32, n: u32) -> u32 {
|
||||
return u32(idx + i32(n)) % n;
|
||||
}
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
||||
if (gid.x >= params.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
var i = gid.x;
|
||||
let dst_plane = params.dst_ne2 * params.dst_ne1 * params.dst_ne0;
|
||||
let i3 = i / dst_plane;
|
||||
i = i % dst_plane;
|
||||
let i2 = i / (params.dst_ne1 * params.dst_ne0);
|
||||
i = i % (params.dst_ne1 * params.dst_ne0);
|
||||
let i1 = i / params.dst_ne0;
|
||||
let i0 = i % params.dst_ne0;
|
||||
|
||||
var value: f32 = 0.0;
|
||||
|
||||
#ifdef CIRCULAR
|
||||
let ci0 = wrap_around(i32(i0) - i32(params.lp0), params.src_ne0);
|
||||
let ci1 = wrap_around(i32(i1) - i32(params.lp1), params.src_ne1);
|
||||
let ci2 = wrap_around(i32(i2) - i32(params.lp2), params.src_ne2);
|
||||
let ci3 = wrap_around(i32(i3) - i32(params.lp3), params.src_ne3);
|
||||
let circular_src_idx = ci0 * params.stride_src0 + ci1 * params.stride_src1 +
|
||||
ci2 * params.stride_src2 + ci3 * params.stride_src3;
|
||||
value = src[params.offset_src + circular_src_idx];
|
||||
#else
|
||||
let is_src =
|
||||
(i0 >= params.lp0 && i0 < params.dst_ne0 - params.rp0) &&
|
||||
(i1 >= params.lp1 && i1 < params.dst_ne1 - params.rp1) &&
|
||||
(i2 >= params.lp2 && i2 < params.dst_ne2 - params.rp2) &&
|
||||
(i3 >= params.lp3 && i3 < params.dst_ne3 - params.rp3);
|
||||
if (is_src) {
|
||||
let src_idx = (i0 - params.lp0) * params.stride_src0 + (i1 - params.lp1) * params.stride_src1 +
|
||||
(i2 - params.lp2) * params.stride_src2 + (i3 - params.lp3) * params.stride_src3;
|
||||
value = src[params.offset_src + src_idx];
|
||||
}
|
||||
#endif
|
||||
|
||||
dst[params.offset_dst + gid.x] = value;
|
||||
}
|
||||
|
|
@ -1,41 +1,37 @@
|
|||
#define(VARIANTS)
|
||||
|
||||
[
|
||||
{
|
||||
"SHADER_SUFFIX": "f16_vec",
|
||||
"REPLS": {
|
||||
"TYPE" : "vec4<f32>",
|
||||
"DST_TYPE": "vec4<f16>",
|
||||
"VEC_SIZE": 4
|
||||
}
|
||||
},
|
||||
{
|
||||
"SHADER_SUFFIX": "f16",
|
||||
"REPLS": {
|
||||
"TYPE" : "f32",
|
||||
"DST_TYPE": "f16",
|
||||
"VEC_SIZE": 1
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
#end(VARIANTS)
|
||||
|
||||
#define(SHADER)
|
||||
|
||||
enable f16;
|
||||
|
||||
#ifdef DST_F32
|
||||
#define DST_INNER_TYPE f32
|
||||
#else
|
||||
#define DST_INNER_TYPE f16
|
||||
#endif
|
||||
|
||||
#ifdef VEC4
|
||||
#define SRC_TYPE vec4<f32>
|
||||
#define DST_TYPE vec4<DST_INNER_TYPE>
|
||||
#define VEC_SIZE 4
|
||||
#else
|
||||
#define SRC_TYPE f32
|
||||
#define DST_TYPE DST_INNER_TYPE
|
||||
#define VEC_SIZE 1
|
||||
#endif
|
||||
|
||||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<{{TYPE}}>;
|
||||
var<storage, read_write> src: array<SRC_TYPE>;
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> idx: array<u32>;
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<storage, read_write> dst: array<{{DST_TYPE}}>;
|
||||
var<storage, read_write> dst: array<DST_TYPE>;
|
||||
|
||||
#ifdef I64_IDX
|
||||
@group(0) @binding(3)
|
||||
var<storage, read_write> error: atomic<u32>;
|
||||
#define PARAMS_BINDING 4
|
||||
#else
|
||||
#define PARAMS_BINDING 3
|
||||
#endif
|
||||
|
||||
struct Params {
|
||||
offset_src: u32, // in elements
|
||||
|
|
@ -66,18 +62,17 @@ struct Params {
|
|||
idx2: u32,
|
||||
};
|
||||
|
||||
@group(0) @binding(4)
|
||||
@group(0) @binding(PARAMS_BINDING)
|
||||
var<uniform> params: Params;
|
||||
|
||||
override wg_size: u32;
|
||||
@compute @workgroup_size(wg_size)
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
||||
if (gid.x >= (params.ne3 * params.ne2 * params.n_rows * params.ne0) / {{VEC_SIZE}}) {
|
||||
if (gid.x >= (params.ne3 * params.ne2 * params.n_rows * params.ne0) / VEC_SIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
// getting the row from gid
|
||||
let elems_per_row = params.ne0 / {{VEC_SIZE}};
|
||||
let elems_per_row = params.ne0 / VEC_SIZE;
|
||||
var i = gid.x / elems_per_row;
|
||||
|
||||
let i_src3 = i / (params.ne2 * params.n_rows);
|
||||
|
|
@ -90,9 +85,10 @@ fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
|||
let i_idx1 = i_src2 % params.idx1;
|
||||
let i_idx0 = i_src1;
|
||||
|
||||
#ifdef I64_IDX
|
||||
let idx_high = (params.offset_idx + i_idx0 * params.stride_idx0 + i_idx1 * params.stride_idx1 + i_idx2 * params.stride_idx2) * 2;
|
||||
|
||||
let idx_high_val = idx[idx_high];
|
||||
let idx_val = idx[idx_high];
|
||||
let idx_low_val = idx[idx_high + 1];
|
||||
|
||||
if (idx_low_val != 0) {
|
||||
|
|
@ -100,13 +96,14 @@ fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
|||
atomicStore(&error, 1);
|
||||
return;
|
||||
}
|
||||
#else
|
||||
let idx_i = params.offset_idx + i_idx0 * params.stride_idx0 + i_idx1 * params.stride_idx1 + i_idx2 * params.stride_idx2;
|
||||
let idx_val = idx[idx_i];
|
||||
#endif
|
||||
|
||||
let i_dst_row = params.offset_dst + idx_high_val * params.stride_dst1 + i_src2 * params.stride_dst2 + i_src3 * params.stride_dst3;
|
||||
let i_dst_row = params.offset_dst + idx_val * params.stride_dst1 + i_src2 * params.stride_dst2 + i_src3 * params.stride_dst3;
|
||||
let i_src_row = params.offset_src + i_src1 * params.stride_src1 + i_src2 * params.stride_src2 + i_src3 * params.stride_src3;
|
||||
|
||||
let col_idx = (gid.x % elems_per_row);
|
||||
dst[i_dst_row/{{VEC_SIZE}} + col_idx] = {{DST_TYPE}}(src[i_src_row/{{VEC_SIZE}} + col_idx]);
|
||||
dst[i_dst_row/VEC_SIZE + col_idx] = DST_TYPE(src[i_src_row/VEC_SIZE + col_idx]);
|
||||
}
|
||||
|
||||
#end(SHADER)
|
||||
|
||||
|
|
@ -0,0 +1,55 @@
|
|||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<f32>;
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> dst: array<f32>;
|
||||
|
||||
struct Params {
|
||||
offset_src: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
|
||||
// Strides (in elements)
|
||||
stride_src1: u32,
|
||||
stride_src2: u32,
|
||||
stride_src3: u32,
|
||||
|
||||
ne0: u32,
|
||||
ne1: u32,
|
||||
ne2: u32
|
||||
};
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<uniform> params: Params;
|
||||
|
||||
var<workgroup> shared_sum: array<f32, WG_SIZE>;
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(workgroup_id) wid: vec3<u32>,
|
||||
@builtin(local_invocation_id) lid: vec3<u32>) {
|
||||
|
||||
var i = wid.x;
|
||||
let i3 = i / (params.ne2 * params.ne1);
|
||||
i = i % (params.ne2 * params.ne1);
|
||||
let i2 = i / params.ne1;
|
||||
let i1 = i % params.ne1;
|
||||
let i_src_row = params.offset_src + i3 * params.stride_src3 + i2 * params.stride_src2 + i1 * params.stride_src1;
|
||||
var local_sum: f32 = 0.0;
|
||||
for (var col = lid.x; col < params.ne0; col += WG_SIZE) {
|
||||
local_sum += src[i_src_row + col];
|
||||
}
|
||||
shared_sum[lid.x] = local_sum;
|
||||
workgroupBarrier();
|
||||
// reduce within workgroup
|
||||
var offset: u32 = WG_SIZE >> 1;
|
||||
while (offset > 0) {
|
||||
if (lid.x < offset) {
|
||||
shared_sum[lid.x] = shared_sum[lid.x] + shared_sum[lid.x + offset];
|
||||
}
|
||||
workgroupBarrier();
|
||||
offset >>= 1;
|
||||
}
|
||||
|
||||
if (lid.x == 0) {
|
||||
dst[params.offset_dst + wid.x] = shared_sum[0];
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,179 @@
|
|||
#ifdef TYPE_F16
|
||||
enable f16;
|
||||
#define TYPE f16
|
||||
#else
|
||||
#define TYPE f32
|
||||
#endif
|
||||
|
||||
|
||||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<TYPE>;
|
||||
|
||||
#ifndef INPLACE
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> dst: array<TYPE>;
|
||||
#define PARAMS_BINDING 2
|
||||
#else
|
||||
#define PARAMS_BINDING 1
|
||||
#endif
|
||||
|
||||
struct Params {
|
||||
ne: u32, // total number of elements
|
||||
offset_src: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
|
||||
// Strides (in elements)
|
||||
stride_src0: u32,
|
||||
stride_src1: u32,
|
||||
stride_src2: u32,
|
||||
stride_src3: u32,
|
||||
|
||||
// Logical shapes
|
||||
ne0: u32,
|
||||
ne1: u32,
|
||||
ne2: u32,
|
||||
#ifdef CLAMP
|
||||
clamp_min: f32,
|
||||
clamp_max: f32,
|
||||
#endif
|
||||
#ifdef FILL
|
||||
fill_val: f32,
|
||||
#endif
|
||||
#ifdef XIELU
|
||||
alpha_n: f32,
|
||||
alpha_p: f32,
|
||||
beta: f32,
|
||||
eps: f32,
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
@group(0) @binding(PARAMS_BINDING)
|
||||
var<uniform> params: Params;
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
||||
if (gid.x >= params.ne) {
|
||||
return;
|
||||
}
|
||||
var i = gid.x;
|
||||
let i3 = i / (params.ne2 * params.ne1 * params.ne0);
|
||||
i = i % (params.ne2 * params.ne1 * params.ne0);
|
||||
let i2 = i / (params.ne1 * params.ne0);
|
||||
i = i % (params.ne1 * params.ne0);
|
||||
let i1 = i / params.ne0;
|
||||
let i0 = i % params.ne0;
|
||||
|
||||
let src_idx = i0 * params.stride_src0 + i1 * params.stride_src1 +
|
||||
i2 * params.stride_src2 + i3 * params.stride_src3;
|
||||
|
||||
#ifdef ABS
|
||||
let res = abs(src[params.offset_src + src_idx]);
|
||||
#endif
|
||||
#ifdef SGN
|
||||
let res = select(TYPE(select(0.0, -1.0, src[params.offset_src + src_idx] < 0.0)), TYPE(1.0),
|
||||
src[params.offset_src + src_idx] > 0.0);
|
||||
#endif
|
||||
#ifdef NEG
|
||||
let res = -src[params.offset_src + src_idx];
|
||||
#endif
|
||||
#ifdef STEP
|
||||
let res = TYPE(select(0.0, 1.0, src[params.offset_src + src_idx] > 0.0));
|
||||
#endif
|
||||
#ifdef TANH
|
||||
let res = tanh(clamp(src[params.offset_src + src_idx], -9.010913, 9.010913));
|
||||
#endif
|
||||
#ifdef RELU
|
||||
let res = select(0.0, src[params.offset_src + src_idx], src[params.offset_src + src_idx] > 0.0);
|
||||
#endif
|
||||
#ifdef ELU
|
||||
let res = select(exp(src[params.offset_src + src_idx]) - 1.0, src[params.offset_src + src_idx],
|
||||
src[params.offset_src + src_idx] > 0.0);
|
||||
#endif
|
||||
#ifdef HARDSIGMOID
|
||||
let res = min(1.0, max(0.0, (src[params.offset_src + src_idx] + 3.0) / 6.0));
|
||||
#endif
|
||||
#ifdef SIGMOID
|
||||
let res = 1.0 / (1.0 + exp(-src[params.offset_src + src_idx]));
|
||||
#endif
|
||||
#ifdef SILU
|
||||
let res = src[params.offset_src + src_idx] / (1.0 + exp(-src[params.offset_src + src_idx]));
|
||||
#endif
|
||||
#ifdef EXP
|
||||
let res = exp(src[params.offset_src + src_idx]);
|
||||
#endif
|
||||
#ifdef LOG
|
||||
let res = TYPE(log(f32(src[params.offset_src + src_idx])));
|
||||
#endif
|
||||
#ifdef CLAMP
|
||||
let res = clamp(src[params.offset_src + src_idx], TYPE(params.clamp_min), TYPE(params.clamp_max));
|
||||
#endif
|
||||
#ifdef FILL
|
||||
let res = TYPE(params.fill_val);
|
||||
#endif
|
||||
#ifdef HARDSWISH
|
||||
let res = src[params.offset_src + src_idx] *
|
||||
min(1.0, max(0.0, (src[params.offset_src + src_idx] + 3.0) / 6.0));
|
||||
#endif
|
||||
#ifdef GELU
|
||||
let res = 0.5 * src[params.offset_src + src_idx] *
|
||||
(1.0 + tanh(clamp(sqrt(2.0 / 3.14159265) *
|
||||
(src[params.offset_src + src_idx] +
|
||||
0.044715 * pow(src[params.offset_src + src_idx], 3.0)),
|
||||
-9.010913, 9.010913)));
|
||||
#endif
|
||||
#ifdef GELU_QUICK
|
||||
let res = src[params.offset_src + src_idx] * 0.5 *
|
||||
(1.0 + tanh(clamp(0.79788456 *
|
||||
(src[params.offset_src + src_idx] +
|
||||
0.044715 * src[params.offset_src + src_idx] *
|
||||
src[params.offset_src + src_idx] * src[params.offset_src + src_idx]),
|
||||
-9.010913, 9.010913)));
|
||||
#endif
|
||||
#ifdef GELU_ERF
|
||||
let res = 0.5 * src[params.offset_src + src_idx] *
|
||||
(1.0 + tanh(clamp(0.79788456 *
|
||||
(src[params.offset_src + src_idx] +
|
||||
0.044715 * src[params.offset_src + src_idx] *
|
||||
src[params.offset_src + src_idx] * src[params.offset_src + src_idx]),
|
||||
-9.010913, 9.010913)));
|
||||
#endif
|
||||
#ifdef XIELU
|
||||
let res =
|
||||
select(((exp(min(src[params.offset_src + src_idx], TYPE(params.eps))) - 1.0) -
|
||||
src[params.offset_src + src_idx]) *
|
||||
TYPE(params.alpha_n) +
|
||||
TYPE(params.beta) * src[params.offset_src + src_idx],
|
||||
TYPE(params.alpha_p) * src[params.offset_src + src_idx] *
|
||||
src[params.offset_src + src_idx] +
|
||||
TYPE(params.beta) * src[params.offset_src + src_idx],
|
||||
src[params.offset_src + src_idx] > 0.0);
|
||||
#endif
|
||||
#ifdef SOFTPLUS
|
||||
let src_f32 = f32(src[params.offset_src + src_idx]);
|
||||
let res = TYPE(select(log(1.0 + exp(src_f32)), src_f32, src_f32 > 20.0));
|
||||
#endif
|
||||
#ifdef EXPM1
|
||||
let res = exp(src[params.offset_src + src_idx]) - 1.0;
|
||||
#endif
|
||||
#ifdef FLOOR
|
||||
let res = floor(src[params.offset_src + src_idx]);
|
||||
#endif
|
||||
#ifdef CEIL
|
||||
let res = ceil(src[params.offset_src + src_idx]);
|
||||
#endif
|
||||
#ifdef ROUND
|
||||
let src_f32 = f32(src[params.offset_src + src_idx]);
|
||||
let result = select(ceil(src_f32 - 0.5), floor(src_f32 + 0.5), src_f32 >= 0.0);
|
||||
let res = TYPE(result);
|
||||
#endif
|
||||
#ifdef TRUNC
|
||||
let res = trunc(src[params.offset_src + src_idx]);
|
||||
#endif
|
||||
|
||||
#ifdef INPLACE
|
||||
src[params.offset_src + src_idx] = res;
|
||||
#else
|
||||
dst[params.offset_dst + gid.x] = res;
|
||||
#endif
|
||||
}
|
||||
|
|
@ -1,483 +0,0 @@
|
|||
#define(REPL_TEMPLATES)
|
||||
|
||||
{
|
||||
"XIELU_FUNC": "{{MUTATE}}[dst_i] = select(((exp(min(src[src_i], {{TYPE}}(params.eps))) - 1.0) - src[src_i]) * {{TYPE}}(params.alpha_n) + {{TYPE}}(params.beta) * src[src_i], {{TYPE}}(params.alpha_p) * src[src_i] * src[src_i] + {{TYPE}}(params.beta) * src[src_i], src[src_i] > 0.0);",
|
||||
"ABS_FUNC": "{{MUTATE}}[dst_i] = abs(src[src_i]);",
|
||||
"SGN_FUNC": "{{MUTATE}}[dst_i] = select({{TYPE}}(select(0.0, -1.0, src[src_i] < 0.0)), {{TYPE}}(1.0), src[src_i] > 0.0);",
|
||||
"NEG_FUNC": "{{MUTATE}}[dst_i] = -src[src_i];",
|
||||
"STEP_FUNC": "{{MUTATE}}[dst_i] = {{TYPE}}(select(0.0, 1.0, src[src_i] > 0.0));",
|
||||
"TANH_FUNC": "{{MUTATE}}[dst_i] = tanh(clamp(src[src_i], -9.010913, 9.010913)); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
|
||||
"RELU_FUNC": "{{MUTATE}}[dst_i] = select(0.0, src[src_i], src[src_i] > 0.0);",
|
||||
"ELU_FUNC": "{{MUTATE}}[dst_i] = select(exp(src[src_i]) - 1.0, src[src_i], src[src_i] > 0.0);",
|
||||
"HARDSIGMOID_FUNC": "{{MUTATE}}[dst_i] = min(1.0, max(0.0, (src[src_i] + 3.0) / 6.0));",
|
||||
"SIGMOID_FUNC": "{{MUTATE}}[dst_i] = 1.0 / (1.0 + exp(-src[src_i]));",
|
||||
"SILU_FUNC": "{{MUTATE}}[dst_i] = src[src_i] / (1.0 + exp(-src[src_i]));",
|
||||
"EXP_FUNC": "{{MUTATE}}[dst_i] = exp(src[src_i]);",
|
||||
"HARDSWISH_FUNC": "{{MUTATE}}[dst_i] = src[src_i] * min(1.0, max(0.0, (src[src_i] + 3.0) / 6.0));",
|
||||
"GELU_FUNC": "{{MUTATE}}[dst_i] = 0.5 * src[src_i] * (1.0 + tanh(clamp(sqrt(2.0 / 3.14159265) * (src[src_i] + 0.044715 * pow(src[src_i], 3.0)), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
|
||||
"GELU_QUICK_FUNC": "{{MUTATE}}[dst_i] = src[src_i] * 0.5 * (1.0 + tanh(clamp(0.79788456 * (src[src_i] + 0.044715 * src[src_i] * src[src_i] * src[src_i]), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
|
||||
"GELU_ERF_FUNC": "{{MUTATE}}[dst_i] = 0.5 * src[src_i] * (1.0 + tanh(clamp(0.79788456 * (src[src_i] + 0.044715 * src[src_i] * src[src_i] * src[src_i]), -9.010913, 9.010913))); // Regarding tanh() domain restrictions in wgsl https://github.com/gpuweb/gpuweb/issues/4458",
|
||||
"CEIL_FUNC": "{{MUTATE}}[dst_i] = ceil(src[src_i]);"
|
||||
}
|
||||
|
||||
#end(REPL_TEMPLATES)
|
||||
|
||||
#define(VARIANTS)
|
||||
|
||||
[
|
||||
{
|
||||
"SHADER_NAME": "abs_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "ABS_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "abs_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "ABS_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "abs_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "ABS_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "abs_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "ABS_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "sgn_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "SGN_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "sgn_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "SGN_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "sgn_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "SGN_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "sgn_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "SGN_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "neg_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "NEG_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "neg_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "NEG_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "neg_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "NEG_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "neg_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "NEG_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "step_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "STEP_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "step_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "STEP_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "step_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "STEP_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "step_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "STEP_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "tanh_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "TANH_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "tanh_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "TANH_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "tanh_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "TANH_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "tanh_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "TANH_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "elu_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "ELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "elu_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "ELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "elu_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "ELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "elu_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "ELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "relu_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "RELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "relu_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "RELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "relu_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "RELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "relu_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "RELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "sigmoid_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "SIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "sigmoid_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "SIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "sigmoid_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "SIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "sigmoid_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "SIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "silu_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "SILU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "silu_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "SILU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "silu_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "SILU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "silu_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "SILU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "exp_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "EXP_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "exp_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "EXP_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "exp_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "EXP_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "exp_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "EXP_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "hardsigmoid_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "HARDSIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "hardsigmoid_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "HARDSIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "hardsigmoid_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "HARDSIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "hardsigmoid_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "HARDSIGMOID_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "hardswish_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "HARDSWISH_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "hardswish_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "HARDSWISH_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "hardswish_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "HARDSWISH_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "hardswish_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "HARDSWISH_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "gelu_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "GELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "GELU_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "GELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "GELU_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "gelu_quick_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "GELU_QUICK_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_quick_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "GELU_QUICK_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_quick_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "GELU_QUICK_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_quick_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "GELU_QUICK_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "xielu_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "XIELU_FUNC", "EXT_PARAMS": "alpha_n: f32, alpha_p: f32, beta: f32, eps: f32", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "xielu_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "XIELU_FUNC", "EXT_PARAMS": "alpha_n: f32, alpha_p: f32, beta: f32, eps: f32", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "xielu_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "XIELU_FUNC", "EXT_PARAMS": "alpha_n: f32, alpha_p: f32, beta: f32, eps: f32", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "xielu_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "XIELU_FUNC", "EXT_PARAMS": "alpha_n: f32, alpha_p: f32, beta: f32, eps: f32", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_erf_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_erf_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_erf_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "gelu_erf_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "GELU_ERF_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
|
||||
{
|
||||
"SHADER_NAME": "ceil_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "CEIL_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "ceil_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "CEIL_FUNC", "EXT_PARAMS": "", "MUTATE": "dst" },
|
||||
"DECLS": ["NOT_INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "ceil_inplace_f32",
|
||||
"REPLS": { "TYPE": "f32", "FUNC": "CEIL_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
},
|
||||
{
|
||||
"SHADER_NAME": "ceil_inplace_f16",
|
||||
"REPLS": { "TYPE": "f16", "FUNC": "CEIL_FUNC", "EXT_PARAMS": "", "MUTATE": "src" },
|
||||
"DECLS": ["INPLACE"]
|
||||
}
|
||||
]
|
||||
|
||||
#end(VARIANTS)
|
||||
|
||||
#define(DECLS)
|
||||
|
||||
#decl(INPLACE)
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<uniform> params: Params;
|
||||
|
||||
#enddecl(INPLACE)
|
||||
|
||||
#decl(NOT_INPLACE)
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> dst: array<{{TYPE}}>;
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<uniform> params: Params;
|
||||
|
||||
#enddecl(NOT_INPLACE)
|
||||
|
||||
#end(DECLS)
|
||||
|
||||
#define(SHADER)
|
||||
|
||||
enable f16;
|
||||
|
||||
fn update(dst_i: u32, src_i: u32) {
|
||||
{{FUNC}}
|
||||
}
|
||||
|
||||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<{{TYPE}}>;
|
||||
|
||||
DECLS
|
||||
|
||||
struct Params {
|
||||
ne: u32, // total number of elements
|
||||
offset_src: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
|
||||
// Strides (in elements) — may be permuted
|
||||
stride_src0: u32,
|
||||
stride_src1: u32,
|
||||
stride_src2: u32,
|
||||
stride_src3: u32,
|
||||
|
||||
stride_dst0: u32,
|
||||
stride_dst1: u32,
|
||||
stride_dst2: u32,
|
||||
stride_dst3: u32,
|
||||
|
||||
// Logical shapes
|
||||
src_ne0: u32,
|
||||
src_ne1: u32,
|
||||
src_ne2: u32,
|
||||
|
||||
dst_ne0: u32,
|
||||
dst_ne1: u32,
|
||||
dst_ne2: u32,
|
||||
|
||||
{{EXT_PARAMS}}
|
||||
};
|
||||
|
||||
override wg_size: u32;
|
||||
@compute @workgroup_size(wg_size)
|
||||
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
||||
if (gid.x >= params.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
var i = gid.x;
|
||||
let i3 = i / (params.src_ne2 * params.src_ne1 * params.src_ne0);
|
||||
i = i % (params.src_ne2 * params.src_ne1 * params.src_ne0);
|
||||
let i2 = i / (params.src_ne1 * params.src_ne0);
|
||||
i = i % (params.src_ne1 * params.src_ne0);
|
||||
let i1 = i / params.src_ne0;
|
||||
let i0 = i % params.src_ne0;
|
||||
|
||||
var j = gid.x;
|
||||
let j3 = j / (params.dst_ne2 * params.dst_ne1 * params.dst_ne0);
|
||||
j = j % (params.dst_ne2 * params.dst_ne1 * params.dst_ne0);
|
||||
let j2 = j / (params.dst_ne1 * params.dst_ne0);
|
||||
j = j % (params.dst_ne1 * params.dst_ne0);
|
||||
let j1 = j / params.dst_ne0;
|
||||
let j0 = j % params.dst_ne0;
|
||||
|
||||
let src_idx = i0 * params.stride_src0 + i1 * params.stride_src1 +
|
||||
i2 * params.stride_src2 + i3 * params.stride_src3;
|
||||
|
||||
let dst_idx = j0 * params.stride_dst0 + j1 * params.stride_dst1 +
|
||||
j2 * params.stride_dst2 + j3 * params.stride_dst3;
|
||||
|
||||
|
||||
update(params.offset_dst + dst_idx, params.offset_src + src_idx);
|
||||
}
|
||||
|
||||
#end(SHADER)
|
||||
|
||||
|
|
@ -58,6 +58,10 @@ static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgr
|
|||
continue;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
bool ok = ggml_zdnn_compute_forward(ctx, node);
|
||||
if (!ok) {
|
||||
GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
|
||||
|
|
|
|||
|
|
@ -211,6 +211,10 @@ static ggml_status ggml_backend_zendnn_graph_compute(ggml_backend_t backend, ggm
|
|||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_zendnn_compute_forward_mul_mat(ctx, node);
|
||||
|
|
|
|||
|
|
@ -3441,7 +3441,8 @@ struct ggml_tensor * ggml_cast(
|
|||
|
||||
result->op = GGML_OP_CPY;
|
||||
result->src[0] = a;
|
||||
result->src[1] = result;
|
||||
result->src[1] = result; // note: this self-reference might seem redundant, but it's actually needed by some
|
||||
// backends for consistency with ggml_cpy_impl() above
|
||||
|
||||
return result;
|
||||
}
|
||||
|
|
@ -6725,20 +6726,35 @@ static void ggml_compute_backward(
|
|||
GGML_ASSERT(!src2_needs_grads || ggml_are_same_shape(src2, cgraph->grads[isrc2]));
|
||||
}
|
||||
|
||||
static size_t ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
|
||||
// check if already visited
|
||||
size_t node_hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
|
||||
static size_t ggml_visit_parents_graph(struct ggml_cgraph * cgraph, struct ggml_tensor * node, bool compute) {
|
||||
if (node->op != GGML_OP_NONE && compute) {
|
||||
node->flags |= GGML_TENSOR_FLAG_COMPUTE;
|
||||
}
|
||||
|
||||
const size_t node_hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
|
||||
GGML_ASSERT(node_hash_pos != GGML_HASHSET_FULL);
|
||||
if (!ggml_bitset_get(cgraph->visited_hash_set.used, node_hash_pos)) {
|
||||
// This is the first time we see this node in the current graph.
|
||||
cgraph->visited_hash_set.keys[node_hash_pos] = node;
|
||||
ggml_bitset_set(cgraph->visited_hash_set.used, node_hash_pos);
|
||||
cgraph->use_counts[node_hash_pos] = 0;
|
||||
} else {
|
||||
|
||||
if (ggml_bitset_get(cgraph->visited_hash_set.used, node_hash_pos)) {
|
||||
// already visited
|
||||
|
||||
if (compute) {
|
||||
// update the compute flag regardless
|
||||
for (int i = 0; i < GGML_MAX_SRC; ++i) {
|
||||
struct ggml_tensor * src = node->src[i];
|
||||
if (src && ((src->flags & GGML_TENSOR_FLAG_COMPUTE) == 0)) {
|
||||
ggml_visit_parents_graph(cgraph, src, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return node_hash_pos;
|
||||
}
|
||||
|
||||
// This is the first time we see this node in the current graph.
|
||||
cgraph->visited_hash_set.keys[node_hash_pos] = node;
|
||||
ggml_bitset_set(cgraph->visited_hash_set.used, node_hash_pos);
|
||||
cgraph->use_counts[node_hash_pos] = 0;
|
||||
|
||||
for (int i = 0; i < GGML_MAX_SRC; ++i) {
|
||||
const int k =
|
||||
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
|
||||
|
|
@ -6747,7 +6763,7 @@ static size_t ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor
|
|||
|
||||
struct ggml_tensor * src = node->src[k];
|
||||
if (src) {
|
||||
size_t src_hash_pos = ggml_visit_parents(cgraph, src);
|
||||
const size_t src_hash_pos = ggml_visit_parents_graph(cgraph, src, compute);
|
||||
|
||||
// Update the use count for this operand.
|
||||
cgraph->use_counts[src_hash_pos]++;
|
||||
|
|
@ -6778,17 +6794,17 @@ static size_t ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor
|
|||
return node_hash_pos;
|
||||
}
|
||||
|
||||
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
|
||||
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand, bool compute) {
|
||||
if (!expand) {
|
||||
// TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
|
||||
ggml_graph_clear(cgraph);
|
||||
}
|
||||
|
||||
const int n0 = cgraph->n_nodes;
|
||||
const int n_old = cgraph->n_nodes;
|
||||
|
||||
ggml_visit_parents(cgraph, tensor);
|
||||
ggml_visit_parents_graph(cgraph, tensor, compute);
|
||||
|
||||
const int n_new = cgraph->n_nodes - n0;
|
||||
const int n_new = cgraph->n_nodes - n_old;
|
||||
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
|
||||
|
||||
if (n_new > 0) {
|
||||
|
|
@ -6797,8 +6813,22 @@ static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_ten
|
|||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_build_forward_select(
|
||||
struct ggml_cgraph * cgraph,
|
||||
struct ggml_tensor ** tensors,
|
||||
int n_tensors,
|
||||
int idx) {
|
||||
GGML_ASSERT(idx >= 0 && idx < n_tensors);
|
||||
|
||||
for (int i = 0; i < n_tensors; i++) {
|
||||
ggml_build_forward_impl(cgraph, tensors[i], true, i == idx ? true : false);
|
||||
}
|
||||
|
||||
return tensors[idx];
|
||||
}
|
||||
|
||||
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
|
||||
ggml_build_forward_impl(cgraph, tensor, true);
|
||||
ggml_build_forward_impl(cgraph, tensor, true, true);
|
||||
}
|
||||
|
||||
void ggml_build_backward_expand(
|
||||
|
|
@ -7229,6 +7259,10 @@ bool ggml_can_fuse_subgraph_ext(const struct ggml_cgraph * cgraph,
|
|||
return false;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ggml_node_list_find_tensor(cgraph, outputs, num_outputs, node) != -1) {
|
||||
continue;
|
||||
}
|
||||
|
|
@ -7310,7 +7344,7 @@ static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node,
|
|||
label);
|
||||
}
|
||||
|
||||
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
|
||||
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * cgraph, const char * filename) {
|
||||
char color[16];
|
||||
|
||||
FILE * fp = ggml_fopen(filename, "w");
|
||||
|
|
@ -7331,7 +7365,7 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph
|
|||
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
||||
snprintf(color, sizeof(color), "yellow");
|
||||
} else if (grad) {
|
||||
if (ggml_graph_find(gf, node)) {
|
||||
if (ggml_graph_find(cgraph, node)) {
|
||||
snprintf(color, sizeof(color), "green");
|
||||
} else {
|
||||
snprintf(color, sizeof(color), "lightblue");
|
||||
|
|
|
|||
|
|
@ -734,7 +734,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
FILE * file = ggml_fopen(fname, "rb");
|
||||
|
||||
if (!file) {
|
||||
GGML_LOG_ERROR("%s: failed to open GGUF file '%s'\n", __func__, fname);
|
||||
GGML_LOG_ERROR("%s: failed to open GGUF file '%s' (%s)\n", __func__, fname, strerror(errno));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -214,42 +214,6 @@ uint32_t llama_hparams::n_layer_kv() const {
|
|||
return res;
|
||||
}
|
||||
|
||||
bool llama_hparams::is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1) {
|
||||
assert(p0 >= 0 && p1 >= 0);
|
||||
|
||||
switch (swa_type) {
|
||||
case LLAMA_SWA_TYPE_NONE:
|
||||
{
|
||||
} break;
|
||||
case LLAMA_SWA_TYPE_STANDARD:
|
||||
{
|
||||
if (p1 - p0 >= (int32_t) n_swa) {
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
case LLAMA_SWA_TYPE_CHUNKED:
|
||||
{
|
||||
const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
|
||||
|
||||
if (p0 < pos_chunk_start) {
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
case LLAMA_SWA_TYPE_SYMMETRIC:
|
||||
{
|
||||
const int32_t half_n_swa = (int32_t) n_swa / 2;
|
||||
const int32_t pos_diff = p1 - p0;
|
||||
|
||||
// Mask if outside the symmetric window
|
||||
if (pos_diff < -half_n_swa || pos_diff > half_n_swa) {
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool llama_hparams::use_mrope() const {
|
||||
return rope_sections[0] > 0 && rope_sections[1] > 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@
|
|||
#include "llama.h"
|
||||
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
|
||||
// bump if necessary
|
||||
#define LLAMA_MAX_LAYERS 512
|
||||
|
|
@ -277,9 +278,45 @@ struct llama_hparams {
|
|||
uint32_t n_layer_kv() const;
|
||||
|
||||
// note that this function uses different SWA parameters from those in the hparams
|
||||
// note: inlined on purpose for performance reasons
|
||||
// TODO: think of a better place for this function
|
||||
// TODO: pack the SWA params in a struct?
|
||||
static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1);
|
||||
static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1) {
|
||||
assert(p0 >= 0 && p1 >= 0);
|
||||
|
||||
switch (swa_type) {
|
||||
case LLAMA_SWA_TYPE_NONE:
|
||||
{
|
||||
} break;
|
||||
case LLAMA_SWA_TYPE_STANDARD:
|
||||
{
|
||||
if (p1 - p0 >= (int32_t) n_swa) {
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
case LLAMA_SWA_TYPE_CHUNKED:
|
||||
{
|
||||
const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
|
||||
|
||||
if (p0 < pos_chunk_start) {
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
case LLAMA_SWA_TYPE_SYMMETRIC:
|
||||
{
|
||||
const int32_t half_n_swa = (int32_t) n_swa / 2;
|
||||
const int32_t pos_diff = p1 - p0;
|
||||
|
||||
// Mask if outside the symmetric window
|
||||
if (pos_diff < -half_n_swa || pos_diff > half_n_swa) {
|
||||
return true;
|
||||
}
|
||||
} break;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool use_mrope() const;
|
||||
};
|
||||
|
|
|
|||
|
|
@ -852,7 +852,7 @@ llama_kv_cache::slot_info llama_kv_cache::find_slot(const llama_ubatch & ubatch,
|
|||
const llama_seq_id seq_id_cell = cells.seq_get(idx);
|
||||
|
||||
// SWA mask
|
||||
if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
|
||||
if (llama_hparams::is_masked_swa(n_swa, swa_type, pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
|
||||
can_use = true;
|
||||
}
|
||||
}
|
||||
|
|
@ -1237,6 +1237,197 @@ void llama_kv_cache::set_input_k_shift(ggml_tensor * dst) const {
|
|||
}
|
||||
}
|
||||
|
||||
struct args_set_input_kq_mask {
|
||||
const llama_hparams & hparams;
|
||||
const llama_ubatch * ubatch;
|
||||
|
||||
const std::vector<llama_kv_cells> & v_cells;
|
||||
const std::vector<uint32_t> & seq_to_stream;
|
||||
|
||||
uint32_t n_swa;
|
||||
llama_swa_type swa_type;
|
||||
|
||||
int64_t n_kv;
|
||||
int64_t n_stream;
|
||||
int64_t n_tps;
|
||||
};
|
||||
|
||||
template<bool causal, bool swa, bool is_2d, bool alibi>
|
||||
static void set_input_kq_mask_impl(const args_set_input_kq_mask & args, float * data) {
|
||||
//const auto & hparams = args.hparams;
|
||||
const auto & ubatch = args.ubatch;
|
||||
|
||||
const auto & v_cells = args.v_cells;
|
||||
const auto & seq_to_stream = args.seq_to_stream;
|
||||
|
||||
const uint32_t n_swa = args.n_swa;
|
||||
const llama_swa_type swa_type = args.swa_type;
|
||||
|
||||
const int64_t n_kv = args.n_kv;
|
||||
const int64_t n_stream = args.n_stream;
|
||||
const int64_t n_tps = args.n_tps;
|
||||
|
||||
// the min position in the batch for each sequence
|
||||
llama_pos seq_pos_min[LLAMA_MAX_SEQ];
|
||||
std::fill(seq_pos_min, seq_pos_min + LLAMA_MAX_SEQ, INT32_MAX);
|
||||
|
||||
for (uint32_t i = 0; i < ubatch->n_tokens; ++i) {
|
||||
const llama_seq_id seq_id = ubatch->seq_id[i][0];
|
||||
|
||||
seq_pos_min[seq_id] = std::min(seq_pos_min[seq_id], ubatch->pos[i]);
|
||||
}
|
||||
|
||||
for (uint32_t s = 0; s < n_stream; ++s) {
|
||||
// bookeeping of the KQ mask cells that could change for other tokens of the same sequence
|
||||
std::unordered_map<llama_seq_id, uint32_t> seq_srct;
|
||||
std::unordered_map<llama_seq_id, std::vector<uint32_t>> seq_idxs;
|
||||
|
||||
for (uint32_t ii = 0; ii < n_tps; ++ii) {
|
||||
const uint32_t i = s*n_tps + ii;
|
||||
|
||||
const llama_seq_id seq_id = ubatch->seq_id[i][0];
|
||||
|
||||
const auto & cells = v_cells.at(seq_to_stream[seq_id]);
|
||||
|
||||
llama_pos p0 = -1;
|
||||
const llama_pos p1 = ubatch->pos[i];
|
||||
|
||||
// for M-RoPE
|
||||
const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
|
||||
const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens] : 0;
|
||||
|
||||
const uint64_t idst = n_kv*i;
|
||||
|
||||
// for tokens of the same sequence, the mask is mostly the same, so we can reuse it
|
||||
// the only cells that could change are the ones that are with similar positions as the
|
||||
// ones in the batch (i.e. due to causal masking, SWA, etc.)
|
||||
// keep track of those cells and shortcut the loop to save time
|
||||
// note: this optimization is not compatible with Alibi position encoding
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/18842
|
||||
bool prev = false;
|
||||
|
||||
auto & idxs = seq_idxs[seq_id];
|
||||
|
||||
if (!alibi) {
|
||||
if (seq_srct.find(seq_id) != seq_srct.end()) {
|
||||
const uint32_t srct = seq_srct[seq_id];
|
||||
|
||||
const uint64_t idst_prev = n_kv*srct;
|
||||
|
||||
std::copy(data + idst_prev, data + idst_prev + n_kv, data + idst);
|
||||
|
||||
prev = true;
|
||||
} else {
|
||||
idxs.clear();
|
||||
idxs.reserve(ubatch->n_tokens + n_swa + 32);
|
||||
|
||||
seq_srct[seq_id] = i;
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t jj = 0; jj < n_kv; ++jj) {
|
||||
uint32_t j = jj;
|
||||
|
||||
// we have an exiting mask for this sequence -> update just seq_idxs
|
||||
if (!alibi) {
|
||||
if (prev) {
|
||||
if (jj >= idxs.size()) {
|
||||
break;
|
||||
}
|
||||
|
||||
j = idxs[jj];
|
||||
}
|
||||
}
|
||||
|
||||
if (cells.is_empty(j)) {
|
||||
goto skip;
|
||||
}
|
||||
|
||||
// mask the token if not the same sequence
|
||||
if (!cells.seq_has(j, seq_id)) {
|
||||
goto skip;
|
||||
}
|
||||
|
||||
p0 = cells.pos_get(j);
|
||||
|
||||
if (!alibi) {
|
||||
if (!prev) {
|
||||
// record all cells for which: p0 >= seq_pos_min[seq_id] - n_swa - 32
|
||||
if (p0 + (int32_t) (n_swa + 32) >= seq_pos_min[seq_id]) {
|
||||
idxs.push_back(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (causal) {
|
||||
// mask future tokens
|
||||
if (p0 > p1) {
|
||||
goto skip;
|
||||
}
|
||||
|
||||
// M-RoPE causal mask
|
||||
if (is_2d) {
|
||||
if (p0 == p1) {
|
||||
const auto & p0_ext = cells.ext_get(j);
|
||||
|
||||
if (p0_ext.is_2d_gt(p1_x, p1_y)) {
|
||||
goto skip;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// apply SWA if any
|
||||
if (swa) {
|
||||
if (llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1)) {
|
||||
goto skip;
|
||||
}
|
||||
}
|
||||
|
||||
if (alibi) {
|
||||
data[idst + j] = -std::abs(p0 - p1);
|
||||
} else {
|
||||
data[idst + j] = 0.0f;
|
||||
}
|
||||
|
||||
continue;
|
||||
skip:
|
||||
data[idst + j] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<bool causal, bool swa, bool is_2d>
|
||||
static void set_input_kq_mask_impl(const args_set_input_kq_mask & args, float * data) {
|
||||
const bool alibi = args.hparams.use_alibi;
|
||||
if (alibi) {
|
||||
set_input_kq_mask_impl<causal, swa, is_2d, true> (args, data);
|
||||
} else {
|
||||
set_input_kq_mask_impl<causal, swa, is_2d, false>(args, data);
|
||||
}
|
||||
}
|
||||
|
||||
template<bool causal, bool swa>
|
||||
static void set_input_kq_mask_impl(const args_set_input_kq_mask & args, float * data) {
|
||||
const bool is_2d = args.ubatch->is_pos_2d();
|
||||
if (is_2d) {
|
||||
set_input_kq_mask_impl<causal, swa, true> (args, data);
|
||||
} else {
|
||||
set_input_kq_mask_impl<causal, swa, false>(args, data);
|
||||
}
|
||||
}
|
||||
|
||||
template<bool causal>
|
||||
static void set_input_kq_mask_impl(const args_set_input_kq_mask & args, float * data) {
|
||||
const bool swa = args.swa_type != LLAMA_SWA_TYPE_NONE;
|
||||
if (swa) {
|
||||
set_input_kq_mask_impl<causal, true> (args, data);
|
||||
} else {
|
||||
set_input_kq_mask_impl<causal, false>(args, data);
|
||||
}
|
||||
}
|
||||
|
||||
void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
|
||||
const uint32_t n_tokens = ubatch->n_tokens;
|
||||
|
||||
|
|
@ -1251,74 +1442,29 @@ void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * u
|
|||
// n_tps == n_tokens_per_stream
|
||||
const int64_t n_tps = n_tokens/n_stream;
|
||||
|
||||
std::fill(data, data + ggml_nelements(dst), -INFINITY);
|
||||
//const int64_t t_start = ggml_time_us();
|
||||
|
||||
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
|
||||
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
|
||||
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
|
||||
// Causal mask:
|
||||
// xxx-------
|
||||
// xxxx------
|
||||
// xxxxx-----
|
||||
// Non-causal mask:
|
||||
// xxxxx-----
|
||||
// xxxxx-----
|
||||
// xxxxx-----
|
||||
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
|
||||
// TODO: optimize this section
|
||||
for (uint32_t h = 0; h < 1; ++h) {
|
||||
for (uint32_t s = 0; s < n_stream; ++s) {
|
||||
for (uint32_t ii = 0; ii < n_tps; ++ii) {
|
||||
const uint32_t i = s*n_tps + ii;
|
||||
const args_set_input_kq_mask args = {
|
||||
/*.hparams =*/ hparams,
|
||||
/*.ubatch =*/ ubatch,
|
||||
/*.v_cells =*/ v_cells,
|
||||
/*.seq_to_stream =*/ seq_to_stream,
|
||||
/*.n_swa =*/ n_swa,
|
||||
/*.swa_type =*/ swa_type,
|
||||
/*.n_kv =*/ n_kv,
|
||||
/*.n_stream =*/ n_stream,
|
||||
/*.n_tps =*/ n_tps,
|
||||
};
|
||||
|
||||
const llama_seq_id seq_id = ubatch->seq_id[i][0];
|
||||
|
||||
const auto & cells = v_cells[seq_to_stream[seq_id]];
|
||||
|
||||
const llama_pos p1 = ubatch->pos[i];
|
||||
|
||||
// for M-RoPE
|
||||
const bool is_2d = ubatch->is_pos_2d();
|
||||
const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
|
||||
const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens] : 0;
|
||||
|
||||
const uint64_t idst = n_kv*(h*n_stream*n_tps + s*n_tps + ii);
|
||||
|
||||
for (uint32_t j = 0; j < n_kv; ++j) {
|
||||
if (cells.is_empty(j)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// mask the token if not the same sequence
|
||||
if (!cells.seq_has(j, seq_id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const llama_pos p0 = cells.pos_get(j);
|
||||
|
||||
// mask future tokens
|
||||
if (causal_attn && p0 > p1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// M-RoPE causal mask
|
||||
if (causal_attn && is_2d && p0 == p1) {
|
||||
const auto & p0_ext = cells.ext_get(j);
|
||||
if (p0_ext.is_2d_gt(p1_x, p1_y)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// apply SWA if any
|
||||
if (is_masked_swa(p0, p1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (causal_attn) {
|
||||
set_input_kq_mask_impl<true> (args, data);
|
||||
} else {
|
||||
set_input_kq_mask_impl<false>(args, data);
|
||||
}
|
||||
|
||||
//const int64_t t_end = ggml_time_us();
|
||||
|
||||
//LLAMA_LOG_ERROR("%s: kq mask time: %0.3f ms\n", __func__, (t_end - t_start)/1000.0);
|
||||
}
|
||||
|
||||
void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
|
||||
|
|
@ -1483,10 +1629,6 @@ ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_co
|
|||
return gf;
|
||||
}
|
||||
|
||||
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
|
||||
return llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1);
|
||||
}
|
||||
|
||||
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
|
||||
GGML_UNUSED(flags);
|
||||
|
||||
|
|
|
|||
|
|
@ -257,8 +257,6 @@ private:
|
|||
size_t size_k_bytes() const;
|
||||
size_t size_v_bytes() const;
|
||||
|
||||
bool is_masked_swa(llama_pos p0, llama_pos p1) const;
|
||||
|
||||
ggml_tensor * build_rope_shift(
|
||||
const llama_cparams & cparams,
|
||||
ggml_context * ctx,
|
||||
|
|
|
|||
|
|
@ -265,7 +265,8 @@ struct llama_file::impl {
|
|||
continue; // Interrupted by signal, retry
|
||||
}
|
||||
// Fallback to std::fread in case the DMA controller cannot access the buffer
|
||||
if (errno == EFAULT) {
|
||||
if (errno == EFAULT || errno == EINVAL) {
|
||||
LLAMA_LOG_WARN("%s: Falling back to buffered IO due to %s\n", __func__, strerror(errno));
|
||||
auto curr_off = tell();
|
||||
close(fd);
|
||||
fd = -1;
|
||||
|
|
@ -384,6 +385,9 @@ int llama_file::file_id() const {
|
|||
#ifdef _WIN32
|
||||
return _fileno(pimpl->fp);
|
||||
#else
|
||||
if (pimpl->fd != -1) {
|
||||
return pimpl->fd;
|
||||
}
|
||||
#if defined(fileno)
|
||||
return fileno(pimpl->fp);
|
||||
#else
|
||||
|
|
|
|||
|
|
@ -539,12 +539,18 @@ llama_model_loader::llama_model_loader(
|
|||
files.emplace_back(new llama_file(fname.c_str(), "rb", use_direct_io));
|
||||
contexts.emplace_back(ctx);
|
||||
|
||||
use_direct_io = use_direct_io && files.back()->has_direct_io();
|
||||
|
||||
// Disable mmap in case Direct I/O is enabled and available
|
||||
if (use_direct_io && use_mmap) {
|
||||
use_mmap = false;
|
||||
LLAMA_LOG_WARN("%s: direct I/O is enabled, disabling mmap\n", __func__);
|
||||
if (use_mmap && use_direct_io) {
|
||||
if (files.back()->has_direct_io()) {
|
||||
// Disable mmap, as DirectIO is available
|
||||
use_mmap = false;
|
||||
LLAMA_LOG_WARN("%s: direct I/O is enabled, disabling mmap\n", __func__);
|
||||
} else {
|
||||
// Disable DirectIO and reopen file using std::fopen for mmap
|
||||
use_direct_io = false;
|
||||
files.pop_back();
|
||||
files.emplace_back(new llama_file(fname.c_str(), "rb", false));
|
||||
LLAMA_LOG_WARN("%s: direct I/O is not available, using mmap\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
// Save tensors data offset of the main file.
|
||||
|
|
|
|||
|
|
@ -1714,7 +1714,12 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
|
||||
// for compatibility with existing DeepSeek V2 and V2.5 GGUFs
|
||||
// that have no expert_gating_func model parameter set
|
||||
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
|
||||
if ((hparams.n_layer == 47 || hparams.n_layer == 48) && n_vocab == 154880) {
|
||||
// GLM 4.7 Lite
|
||||
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
|
||||
} else {
|
||||
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
|
||||
}
|
||||
}
|
||||
|
||||
if (ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, 0.0f)) {
|
||||
|
|
|
|||
|
|
@ -187,6 +187,7 @@ llama_build_and_test(test-chat-parser.cpp)
|
|||
llama_build_and_test(test-chat-peg-parser.cpp peg-parser/simple-tokenize.cpp)
|
||||
llama_build_and_test(test-chat-template.cpp)
|
||||
llama_build_and_test(test-jinja.cpp)
|
||||
llama_test(test-jinja NAME test-jinja-py ARGS -py LABEL python)
|
||||
llama_build_and_test(test-json-partial.cpp)
|
||||
llama_build_and_test(test-log.cpp)
|
||||
llama_build_and_test(
|
||||
|
|
|
|||
|
|
@ -54,113 +54,109 @@ static void assert_throws(const std::function<void()> & fn, const std::string &
|
|||
static void test_reasoning() {
|
||||
//common_log_set_verbosity_thold(LOG_DEFAULT_DEBUG);
|
||||
{
|
||||
common_chat_msg_parser builder("<tnk>Cogito</tnk>Ergo sum", /* is_partial= */ false, {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_NONE,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
});
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
common_chat_msg_parser builder("<tnk>Cogito</tnk>Ergo sum", /* is_partial= */ false, params);
|
||||
assert_equals(false, builder.try_parse_reasoning("<tnk>", "</tnk>"));
|
||||
assert_equals("<tnk>Cogito</tnk>Ergo sum", builder.consume_rest());
|
||||
}
|
||||
{
|
||||
common_chat_msg_parser builder("<tnk>Cogito</tnk>Ergo sum", /* is_partial= */ false, {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
});
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
common_chat_msg_parser builder("<tnk>Cogito</tnk>Ergo sum", /* is_partial= */ false, params);
|
||||
assert_equals(true, builder.try_parse_reasoning("<tnk>", "</tnk>"));
|
||||
assert_equals(std::string("Cogito"), builder.result().reasoning_content);
|
||||
assert_equals("Ergo sum", builder.consume_rest());
|
||||
}
|
||||
{
|
||||
common_chat_msg_parser builder("Cogito</tnk>Ergo sum", /* is_partial= */ false, {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_NONE,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
});
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
common_chat_msg_parser builder("Cogito</tnk>Ergo sum", /* is_partial= */ false, params);
|
||||
assert_equals(false, builder.try_parse_reasoning("<tnk>", "</tnk>"));
|
||||
assert_equals("Cogito</tnk>Ergo sum", builder.consume_rest());
|
||||
}
|
||||
{
|
||||
common_chat_msg_parser builder("Cogito</tnk>Ergo sum", /* is_partial= */ false, {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ true,
|
||||
});
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = true;
|
||||
common_chat_msg_parser builder("Cogito</tnk>Ergo sum", /* is_partial= */ false, params);
|
||||
assert_equals(true, builder.try_parse_reasoning("<tnk>", "</tnk>"));
|
||||
assert_equals(std::string("Cogito"), builder.result().reasoning_content);
|
||||
assert_equals("Ergo sum", builder.consume_rest());
|
||||
}
|
||||
{
|
||||
common_chat_msg_parser builder("Cogito</tnk>Ergo sum", /* is_partial= */ false, {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ true,
|
||||
/* .thinking_forced_open = */ true,
|
||||
});
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = true;
|
||||
params.thinking_forced_open = true;
|
||||
common_chat_msg_parser builder("Cogito</tnk>Ergo sum", /* is_partial= */ false, params);
|
||||
assert_equals(true, builder.try_parse_reasoning("<tnk>", "</tnk>"));
|
||||
assert_equals("<think>Cogito</think>", builder.result().content);
|
||||
assert_equals("Ergo sum", builder.consume_rest());
|
||||
}
|
||||
{
|
||||
const std::string variant("content_only_inline_think");
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
/* .parse_tool_calls = */ false,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
params.parse_tool_calls = false;
|
||||
const std::string input = "<think>Pense</think>Bonjour";
|
||||
auto msg = common_chat_parse(input, false, syntax);
|
||||
auto msg = common_chat_parse(input, false, params);
|
||||
assert_equals(variant, std::string("Pense"), msg.reasoning_content);
|
||||
assert_equals(variant, std::string("Bonjour"), msg.content);
|
||||
}
|
||||
{
|
||||
const std::string variant("llama_3_inline_think");
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_LLAMA_3_X,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
/* .parse_tool_calls = */ false,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_LLAMA_3_X;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
params.parse_tool_calls = false;
|
||||
const std::string input = "<think>Plan</think>Réponse";
|
||||
auto msg = common_chat_parse(input, false, syntax);
|
||||
auto msg = common_chat_parse(input, false, params);
|
||||
assert_equals(variant, std::string("Plan"), msg.reasoning_content);
|
||||
assert_equals(variant, std::string("Réponse"), msg.content);
|
||||
}
|
||||
// Test DeepSeek V3.1 parsing - reasoning content followed by "</think>" and then regular content
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ true,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = true;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("deepseek_v3_1_reasoning_format_deepseek");
|
||||
common_chat_msg_parser builder("REASONING</think>ok", /* is_partial= */ false, syntax);
|
||||
common_chat_msg_parser builder("REASONING</think>ok", /* is_partial= */ false, params);
|
||||
assert_equals(variant, true, builder.try_parse_reasoning("<think>", "</think>"));
|
||||
assert_equals(variant, std::string("REASONING"), builder.result().reasoning_content);
|
||||
assert_equals(variant, std::string("ok"), builder.consume_rest());
|
||||
}
|
||||
// Test DeepSeek V3.1 parsing - reasoning_format none - reasoning content followed by "</think>" and then regular content
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_NONE,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ true,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = true;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("deepseek_v3_1_reasoning_format_none");
|
||||
const std::string input = "REASONING</think>ok";
|
||||
auto msg = common_chat_parse(input, false, syntax);
|
||||
auto msg = common_chat_parse(input, false, params);
|
||||
assert_equals(variant, std::string("REASONING</think>ok"), msg.content);
|
||||
assert_equals(variant, std::string(""), msg.reasoning_content);
|
||||
}
|
||||
|
|
@ -256,15 +252,14 @@ static void test_deepseek_v3_1_tool_calls() {
|
|||
//common_log_set_verbosity_thold(LOG_DEFAULT_DEBUG);
|
||||
// variant: happy path for when it works as the model card says it should
|
||||
const std::string variant("simple");
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string input = "<|tool▁calls▁begin|><|tool▁call▁begin|>get_time<|tool▁sep|>{\"city\": \"Tokyo\"}<|tool▁call▁end|><|tool▁calls▁end|>";
|
||||
auto msg = common_chat_parse(input, false, syntax);
|
||||
auto msg = common_chat_parse(input, false, params);
|
||||
assert_equals<std::size_t>(variant, 1, msg.tool_calls.size());
|
||||
assert_equals(variant, std::string("get_time"), msg.tool_calls[0].name);
|
||||
// JSON arguments are dumped without spaces
|
||||
|
|
@ -274,16 +269,15 @@ static void test_deepseek_v3_1_tool_calls() {
|
|||
|
||||
// variant: simple + thinking open
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ true,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = true;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("simple_thinking");
|
||||
const std::string in = "REASONING</think><|tool▁calls▁begin|><|tool▁call▁begin|>get_time<|tool▁sep|>{\"city\": \"Tokyo\"}<|tool▁call▁end|><|tool▁calls▁end|>";
|
||||
auto m = common_chat_parse(in, false, syntax);
|
||||
auto m = common_chat_parse(in, false, params);
|
||||
assert_equals<std::size_t>(variant, 1, m.tool_calls.size());
|
||||
assert_equals(variant, std::string("get_time"), m.tool_calls[0].name);
|
||||
assert_equals(variant, std::string("{\"city\":\"Tokyo\"}"), m.tool_calls[0].arguments);
|
||||
|
|
@ -292,16 +286,15 @@ static void test_deepseek_v3_1_tool_calls() {
|
|||
}
|
||||
// variant: simple + multiple tool calls
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("simple_multiple_tool_calls");
|
||||
const std::string in = "CONTENT<|tool▁calls▁begin|><|tool▁call▁begin|>get_time<|tool▁sep|>{\"city\": \"Paris\"}<|tool▁call▁end|><|tool▁call▁begin|>get_weather<|tool▁sep|>{\"city\": \"Paris\"}<|tool▁call▁end|><|tool▁calls▁end|>";
|
||||
auto m = common_chat_parse(in, false, syntax);
|
||||
auto m = common_chat_parse(in, false, params);
|
||||
assert_equals<std::size_t>(variant, 2, m.tool_calls.size());
|
||||
assert_equals(variant, std::string("get_time"), m.tool_calls[0].name);
|
||||
assert_equals(variant, std::string("{\"city\":\"Paris\"}"), m.tool_calls[0].arguments);
|
||||
|
|
@ -314,16 +307,15 @@ static void test_deepseek_v3_1_tool_calls() {
|
|||
|
||||
// variant: thinking forced open + tool call in reasoning content
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ true,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = true;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("thinking_forced_open_tool_call_in_reasoning");
|
||||
const std::string in = "REASONING<|tool▁calls▁begin|><|tool▁call▁begin|>get_time2<|tool▁sep|>{\"city\": \"Tokyo2\"}<|tool▁call▁end|><|tool▁calls▁end|>REASONING</think><|tool▁calls▁begin|><|tool▁call▁begin|>get_time<|tool▁sep|>{\"city\": \"Tokyo\"}<|tool▁call▁end|><|tool▁calls▁end|>";
|
||||
auto m = common_chat_parse(in, false, syntax);
|
||||
auto m = common_chat_parse(in, false, params);
|
||||
assert_equals<std::size_t>(variant, 1, m.tool_calls.size());
|
||||
assert_equals(variant, std::string("get_time"), m.tool_calls[0].name);
|
||||
assert_equals(variant, std::string("{\"city\":\"Tokyo\"}"), m.tool_calls[0].arguments);
|
||||
|
|
@ -336,16 +328,15 @@ static void test_deepseek_v3_1_tool_calls() {
|
|||
// to make tool calls in reasoning content according to the model card, but it does sometimes, so
|
||||
// add the reasoning content as regular content and parse the tool calls.
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ true,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = true;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("thinking_forced_open_tool_call_in_reasoning_no_closing_think_not_partial");
|
||||
const std::string in = "REASONING<|tool▁calls▁begin|><|tool▁call▁begin|>get_time<|tool▁sep|>{\"city\": \"Tokyo\"}<|tool▁call▁end|><|tool▁calls▁end|>";
|
||||
auto m = common_chat_parse(in, false, syntax);
|
||||
auto m = common_chat_parse(in, false, params);
|
||||
assert_equals(variant, std::string("REASONING"), m.content);
|
||||
assert_equals(variant, std::string(""), m.reasoning_content);
|
||||
assert_equals<std::size_t>(variant, 1, m.tool_calls.size());
|
||||
|
|
@ -355,16 +346,15 @@ static void test_deepseek_v3_1_tool_calls() {
|
|||
|
||||
// variant: thinking forced open + tool call in reasoning content + no closing think + partial
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ true,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = true;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("thinking_forced_open_tool_call_in_reasoning_no_closing_think_partial");
|
||||
const std::string in = "REASONING<|tool▁calls▁begin|><|tool▁call▁begin|>get_time<|tool▁sep|>{\"city\": \"Tokyo\"}<|tool▁call▁end|><|tool▁calls▁end|>";
|
||||
auto m = common_chat_parse(in, /* is_partial= */ true, syntax);
|
||||
auto m = common_chat_parse(in, /* is_partial= */ true, params);
|
||||
assert_equals(variant, std::string("REASONING<|tool▁calls▁begin|><|tool▁call▁begin|>get_time<|tool▁sep|>{\"city\": \"Tokyo\"}<|tool▁call▁end|><|tool▁calls▁end|>"), m.reasoning_content);
|
||||
assert_equals(variant, std::string(""), m.content);
|
||||
assert_equals<std::size_t>(variant, 0, m.tool_calls.size());
|
||||
|
|
@ -372,32 +362,30 @@ static void test_deepseek_v3_1_tool_calls() {
|
|||
|
||||
// variant: thinking not forced open + reasoning + regular content + no tool calls
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ true,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = true;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("thinking_forced_open_reasoning_regular_content_no_tool_calls");
|
||||
const std::string in = "REASONING</think>CONTENT";
|
||||
auto m = common_chat_parse(in, false, syntax);
|
||||
auto m = common_chat_parse(in, false, params);
|
||||
assert_equals<std::size_t>(variant, 0, m.tool_calls.size());
|
||||
assert_equals(variant, std::string("CONTENT"), m.content);
|
||||
assert_equals(variant, std::string("REASONING"), m.reasoning_content);
|
||||
}
|
||||
// variant: thinking not forced open + missing reasoning + no tool calls
|
||||
{
|
||||
common_chat_syntax syntax = {
|
||||
/* .format = */ COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
/* .parse_tool_calls = */ true,
|
||||
};
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
params.parse_tool_calls = true;
|
||||
const std::string variant("thinking_not_forced_open_missing_reasoning_no_tool_calls");
|
||||
const std::string in = "CONTENT";
|
||||
auto m = common_chat_parse(in, false, syntax);
|
||||
auto m = common_chat_parse(in, false, params);
|
||||
assert_equals<std::size_t>(variant, 0, m.tool_calls.size());
|
||||
assert_equals(variant, std::string("CONTENT"), m.content);
|
||||
assert_equals(variant, std::string(""), m.reasoning_content);
|
||||
|
|
|
|||
|
|
@ -616,15 +616,15 @@ void test_command7_parser_compare(testing & t) {
|
|||
|
||||
auto test_legacy = [&](const std::string & input, bool need_more_input, bool print_results) {
|
||||
// Original common_chat_combinator_parser taken from chat.cpp
|
||||
common_chat_parser_params params;
|
||||
params.format = COMMON_CHAT_FORMAT_GENERIC;
|
||||
params.reasoning_format = COMMON_REASONING_FORMAT_AUTO;
|
||||
params.reasoning_in_content = false;
|
||||
params.thinking_forced_open = false;
|
||||
common_chat_msg_parser builder(
|
||||
input,
|
||||
/* .is_partial = */ need_more_input,
|
||||
{
|
||||
/* .format = */ COMMON_CHAT_FORMAT_GENERIC,
|
||||
/* .reasoning_format = */ COMMON_REASONING_FORMAT_AUTO,
|
||||
/* .reasoning_in_content = */ false,
|
||||
/* .thinking_forced_open = */ false,
|
||||
}
|
||||
params
|
||||
);
|
||||
|
||||
builder.try_parse_reasoning("<|START_THINKING|>", "<|END_THINKING|>");
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -4,6 +4,7 @@
|
|||
#include <cstdlib>
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <sheredom/subprocess.h>
|
||||
|
||||
#include "jinja/runtime.h"
|
||||
#include "jinja/parser.h"
|
||||
|
|
@ -31,12 +32,24 @@ static void test_array_methods(testing & t);
|
|||
static void test_object_methods(testing & t);
|
||||
static void test_fuzzing(testing & t);
|
||||
|
||||
static bool g_python_mode = false;
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
testing t(std::cout);
|
||||
t.verbose = true;
|
||||
|
||||
if (argc >= 2) {
|
||||
t.set_filter(argv[1]);
|
||||
// usage: test-jinja [-py] [filter_regex]
|
||||
// -py : enable python mode (use python jinja2 for rendering expected output)
|
||||
// only use this for cross-checking, not for correctness
|
||||
// note: the implementation of this flag is basic, only intented to be used by maintainers
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
if (arg == "-py") {
|
||||
g_python_mode = true;
|
||||
} else {
|
||||
t.set_filter(arg);
|
||||
}
|
||||
}
|
||||
|
||||
t.test("whitespace control", test_whitespace_control);
|
||||
|
|
@ -53,7 +66,9 @@ int main(int argc, char *argv[]) {
|
|||
t.test("string methods", test_string_methods);
|
||||
t.test("array methods", test_array_methods);
|
||||
t.test("object methods", test_object_methods);
|
||||
t.test("fuzzing", test_fuzzing);
|
||||
if (!g_python_mode) {
|
||||
t.test("fuzzing", test_fuzzing);
|
||||
}
|
||||
|
||||
return t.summary();
|
||||
}
|
||||
|
|
@ -176,6 +191,84 @@ static void test_conditionals(testing & t) {
|
|||
json::object(),
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is undefined falsy",
|
||||
"{{ 'yes' if not y else 'no' }}",
|
||||
json::object(),
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is undefined attribute falsy",
|
||||
"{{ 'yes' if not y.x else 'no' }}",
|
||||
{{"y", true}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is undefined key falsy",
|
||||
"{{ 'yes' if not y['x'] else 'no' }}",
|
||||
{{"y", {{}}}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is empty array falsy",
|
||||
"{{ 'yes' if not y else 'no' }}",
|
||||
{{"y", json::array()}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is empty object falsy",
|
||||
"{{ 'yes' if not y else 'no' }}",
|
||||
{{"y", json::object()}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is empty string falsy",
|
||||
"{{ 'yes' if not y else 'no' }}",
|
||||
{{"y", ""}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is 0 falsy",
|
||||
"{{ 'yes' if not y else 'no' }}",
|
||||
{{"y", 0}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is 0.0 falsy",
|
||||
"{{ 'yes' if not y else 'no' }}",
|
||||
{{"y", 0.0}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is non-empty array truthy",
|
||||
"{{ 'yes' if y else 'no' }}",
|
||||
{{"y", json::array({""})}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is non-empty object truthy",
|
||||
"{{ 'yes' if y else 'no' }}",
|
||||
{{"y", {"x", false}}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is non-empty string truthy",
|
||||
"{{ 'yes' if y else 'no' }}",
|
||||
{{"y", "0"}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is 1 truthy",
|
||||
"{{ 'yes' if y else 'no' }}",
|
||||
{{"y", 1}},
|
||||
"yes"
|
||||
);
|
||||
|
||||
test_template(t, "is 1.0 truthy",
|
||||
"{{ 'yes' if y else 'no' }}",
|
||||
{{"y", 1.0}},
|
||||
"yes"
|
||||
);
|
||||
}
|
||||
|
||||
static void test_loops(testing & t) {
|
||||
|
|
@ -247,6 +340,12 @@ static void test_expressions(testing & t) {
|
|||
"Bob"
|
||||
);
|
||||
|
||||
test_template(t, "negative float (not dot notation)",
|
||||
"{{ -1.0 }}",
|
||||
json::object(),
|
||||
"-1.0"
|
||||
);
|
||||
|
||||
test_template(t, "bracket notation",
|
||||
"{{ user['name'] }}",
|
||||
{{"user", {{"name", "Bob"}}}},
|
||||
|
|
@ -383,6 +482,32 @@ static void test_filters(testing & t) {
|
|||
"123"
|
||||
);
|
||||
|
||||
test_template(t, "sort reverse",
|
||||
"{% for i in items|sort(true) %}{{ i }}{% endfor %}",
|
||||
{{"items", json::array({3, 1, 2})}},
|
||||
"321"
|
||||
);
|
||||
|
||||
test_template(t, "sort with attribute",
|
||||
"{{ items|sort(attribute='name')|join(attribute='age') }}",
|
||||
{{"items", json::array({
|
||||
json({{"name", "c"}, {"age", 3}}),
|
||||
json({{"name", "a"}, {"age", 1}}),
|
||||
json({{"name", "b"}, {"age", 2}}),
|
||||
})}},
|
||||
"123"
|
||||
);
|
||||
|
||||
test_template(t, "sort with numeric attribute",
|
||||
"{{ items|sort(attribute=0)|join(attribute=1) }}",
|
||||
{{"items", json::array({
|
||||
json::array({3, "z"}),
|
||||
json::array({1, "x"}),
|
||||
json::array({2, "y"}),
|
||||
})}},
|
||||
"xyz"
|
||||
);
|
||||
|
||||
test_template(t, "join",
|
||||
"{{ items|join(', ') }}",
|
||||
{{"items", json::array({"a", "b", "c"})}},
|
||||
|
|
@ -534,6 +659,66 @@ static void test_literals(testing & t) {
|
|||
json::object(),
|
||||
"1"
|
||||
);
|
||||
|
||||
test_template(t, "integer|abs",
|
||||
"{{ -42 | abs }}",
|
||||
json::object(),
|
||||
"42"
|
||||
);
|
||||
|
||||
test_template(t, "integer|float",
|
||||
"{{ 42 | float }}",
|
||||
json::object(),
|
||||
"42.0"
|
||||
);
|
||||
|
||||
test_template(t, "integer|tojson",
|
||||
"{{ 42 | tojson }}",
|
||||
json::object(),
|
||||
"42"
|
||||
);
|
||||
|
||||
test_template(t, "float|abs",
|
||||
"{{ -3.14 | abs }}",
|
||||
json::object(),
|
||||
"3.14"
|
||||
);
|
||||
|
||||
test_template(t, "float|int",
|
||||
"{{ 3.14 | int }}",
|
||||
json::object(),
|
||||
"3"
|
||||
);
|
||||
|
||||
test_template(t, "float|tojson",
|
||||
"{{ 3.14 | tojson }}",
|
||||
json::object(),
|
||||
"3.14"
|
||||
);
|
||||
|
||||
test_template(t, "string|tojson",
|
||||
"{{ 'hello' | tojson }}",
|
||||
json::object(),
|
||||
"\"hello\""
|
||||
);
|
||||
|
||||
test_template(t, "boolean|int",
|
||||
"{{ true | int }}",
|
||||
json::object(),
|
||||
"1"
|
||||
);
|
||||
|
||||
test_template(t, "boolean|float",
|
||||
"{{ true | float }}",
|
||||
json::object(),
|
||||
"1.0"
|
||||
);
|
||||
|
||||
test_template(t, "boolean|tojson",
|
||||
"{{ true | tojson }}",
|
||||
json::object(),
|
||||
"true"
|
||||
);
|
||||
}
|
||||
|
||||
static void test_comments(testing & t) {
|
||||
|
|
@ -934,7 +1119,17 @@ static void test_array_methods(testing & t) {
|
|||
);
|
||||
|
||||
test_template(t, "array|join attribute",
|
||||
"{{ arr|join(attribute=0) }}",
|
||||
"{{ arr|join(attribute='age') }}",
|
||||
{{"arr", json::array({
|
||||
json({{"name", "a"}, {"age", 1}}),
|
||||
json({{"name", "b"}, {"age", 2}}),
|
||||
json({{"name", "c"}, {"age", 3}}),
|
||||
})}},
|
||||
"123"
|
||||
);
|
||||
|
||||
test_template(t, "array|join numeric attribute",
|
||||
"{{ arr|join(attribute=-1) }}",
|
||||
{{"arr", json::array({json::array({1}), json::array({2}), json::array({3})})}},
|
||||
"123"
|
||||
);
|
||||
|
|
@ -957,8 +1152,8 @@ static void test_array_methods(testing & t) {
|
|||
"a,b,c,d"
|
||||
);
|
||||
|
||||
test_template(t, "array.map() with attribute",
|
||||
"{% for v in arr.map('age') %}{{ v }} {% endfor %}",
|
||||
test_template(t, "array|map with attribute",
|
||||
"{% for v in arr|map(attribute='age') %}{{ v }} {% endfor %}",
|
||||
{{"arr", json::array({
|
||||
json({{"name", "a"}, {"age", 1}}),
|
||||
json({{"name", "b"}, {"age", 2}}),
|
||||
|
|
@ -967,8 +1162,28 @@ static void test_array_methods(testing & t) {
|
|||
"1 2 3 "
|
||||
);
|
||||
|
||||
test_template(t, "array.map() with numeric attribute",
|
||||
"{% for v in arr.map(0) %}{{ v }} {% endfor %}",
|
||||
test_template(t, "array|map with attribute default",
|
||||
"{% for v in arr|map(attribute='age', default=3) %}{{ v }} {% endfor %}",
|
||||
{{"arr", json::array({
|
||||
json({{"name", "a"}, {"age", 1}}),
|
||||
json({{"name", "b"}, {"age", 2}}),
|
||||
json({{"name", "c"}}),
|
||||
})}},
|
||||
"1 2 3 "
|
||||
);
|
||||
|
||||
test_template(t, "array|map without attribute default",
|
||||
"{% for v in arr|map(attribute='age') %}{{ v }} {% endfor %}",
|
||||
{{"arr", json::array({
|
||||
json({{"name", "a"}, {"age", 1}}),
|
||||
json({{"name", "b"}, {"age", 2}}),
|
||||
json({{"name", "c"}}),
|
||||
})}},
|
||||
"1 2 "
|
||||
);
|
||||
|
||||
test_template(t, "array|map with numeric attribute",
|
||||
"{% for v in arr|map(attribute=0) %}{{ v }} {% endfor %}",
|
||||
{{"arr", json::array({
|
||||
json::array({10, "x"}),
|
||||
json::array({20, "y"}),
|
||||
|
|
@ -977,6 +1192,22 @@ static void test_array_methods(testing & t) {
|
|||
"10 20 30 "
|
||||
);
|
||||
|
||||
test_template(t, "array|map with negative attribute",
|
||||
"{% for v in arr|map(attribute=-1) %}{{ v }} {% endfor %}",
|
||||
{{"arr", json::array({
|
||||
json::array({10, "x"}),
|
||||
json::array({20, "y"}),
|
||||
json::array({30, "z"}),
|
||||
})}},
|
||||
"x y z "
|
||||
);
|
||||
|
||||
test_template(t, "array|map with filter",
|
||||
"{{ arr|map('int')|sum }}",
|
||||
{{"arr", json::array({"1", "2", "3"})}},
|
||||
"6"
|
||||
);
|
||||
|
||||
// not used by any chat templates
|
||||
// test_template(t, "array.insert()",
|
||||
// "{% set _ = arr.insert(1, 'x') %}{{ arr|join(',') }}",
|
||||
|
|
@ -1063,9 +1294,21 @@ static void test_object_methods(testing & t) {
|
|||
{{"obj", {{"items", json::array({1, 2, 3})}}}},
|
||||
"{\"items\": [1, 2, 3]}"
|
||||
);
|
||||
|
||||
test_template(t, "object attribute and key access",
|
||||
"{{ obj.keys()|join(',') }} vs {{ obj['keys'] }} vs {{ obj.test }}",
|
||||
{{"obj", {{"keys", "value"}, {"test", "attr_value"}}}},
|
||||
"keys,test vs value vs attr_value"
|
||||
);
|
||||
|
||||
test_template(t, "env should not have object methods",
|
||||
"{{ keys is undefined }} {{ obj.keys is defined }}",
|
||||
{{"obj", {{"a", "b"}}}},
|
||||
"True True"
|
||||
);
|
||||
}
|
||||
|
||||
static void test_template(testing & t, const std::string & name, const std::string & tmpl, const json & vars, const std::string & expect) {
|
||||
static void test_template_cpp(testing & t, const std::string & name, const std::string & tmpl, const json & vars, const std::string & expect) {
|
||||
t.test(name, [&tmpl, &vars, &expect](testing & t) {
|
||||
jinja::lexer lexer;
|
||||
auto lexer_res = lexer.tokenize(tmpl);
|
||||
|
|
@ -1098,6 +1341,99 @@ static void test_template(testing & t, const std::string & name, const std::stri
|
|||
});
|
||||
}
|
||||
|
||||
// keep this in-sync with https://github.com/huggingface/transformers/blob/main/src/transformers/utils/chat_template_utils.py
|
||||
// note: we use SandboxedEnvironment instead of ImmutableSandboxedEnvironment to allow usage of in-place array methods like append() and pop()
|
||||
static std::string py_script = R"(
|
||||
import jinja2
|
||||
import jinja2.ext as jinja2_ext
|
||||
import json
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from jinja2.sandbox import SandboxedEnvironment
|
||||
|
||||
tmpl = json.loads(sys.argv[1])
|
||||
vars_json = json.loads(sys.argv[2])
|
||||
|
||||
env = SandboxedEnvironment(
|
||||
trim_blocks=True,
|
||||
lstrip_blocks=True,
|
||||
extensions=[jinja2_ext.loopcontrols],
|
||||
)
|
||||
|
||||
def raise_exception(message):
|
||||
raise jinja2.exceptions.TemplateError(message)
|
||||
|
||||
env.filters["tojson"] = lambda x, ensure_ascii=False, indent=None, separators=None, sort_keys=False: json.dumps(x, ensure_ascii=ensure_ascii, indent=indent, separators=separators, sort_keys=sort_keys)
|
||||
env.globals["strftime_now"] = lambda format: datetime.now().strftime(format)
|
||||
env.globals["raise_exception"] = raise_exception
|
||||
|
||||
template = env.from_string(tmpl)
|
||||
result = template.render(**vars_json)
|
||||
print(result, end='')
|
||||
)";
|
||||
|
||||
static void test_template_py(testing & t, const std::string & name, const std::string & tmpl, const json & vars, const std::string & expect) {
|
||||
t.test(name, [&tmpl, &vars, &expect](testing & t) {
|
||||
// Prepare arguments
|
||||
std::string tmpl_json = json(tmpl).dump();
|
||||
std::string vars_json = vars.dump();
|
||||
|
||||
#ifdef _WIN32
|
||||
const char * python_executable = "python.exe";
|
||||
#else
|
||||
const char * python_executable = "python3";
|
||||
#endif
|
||||
|
||||
const char * command_line[] = {python_executable, "-c", py_script.c_str(), tmpl_json.c_str(), vars_json.c_str(), NULL};
|
||||
|
||||
struct subprocess_s subprocess;
|
||||
int options = subprocess_option_combined_stdout_stderr
|
||||
| subprocess_option_no_window
|
||||
| subprocess_option_inherit_environment
|
||||
| subprocess_option_search_user_path;
|
||||
int result = subprocess_create(command_line, options, &subprocess);
|
||||
|
||||
if (result != 0) {
|
||||
t.log("Failed to create subprocess, error code: " + std::to_string(result));
|
||||
t.assert_true("subprocess creation", false);
|
||||
return;
|
||||
}
|
||||
|
||||
// Read output
|
||||
std::string output;
|
||||
char buffer[1024];
|
||||
FILE * p_stdout = subprocess_stdout(&subprocess);
|
||||
while (fgets(buffer, sizeof(buffer), p_stdout)) {
|
||||
output += buffer;
|
||||
}
|
||||
|
||||
int process_return;
|
||||
subprocess_join(&subprocess, &process_return);
|
||||
subprocess_destroy(&subprocess);
|
||||
|
||||
if (process_return != 0) {
|
||||
t.log("Python script failed with exit code: " + std::to_string(process_return));
|
||||
t.log("Output: " + output);
|
||||
t.assert_true("python execution", false);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!t.assert_true("Template render mismatch", expect == output)) {
|
||||
t.log("Template: " + json(tmpl).dump());
|
||||
t.log("Expected: " + json(expect).dump());
|
||||
t.log("Python : " + json(output).dump());
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
static void test_template(testing & t, const std::string & name, const std::string & tmpl, const json & vars, const std::string & expect) {
|
||||
if (g_python_mode) {
|
||||
test_template_py(t, name, tmpl, vars, expect);
|
||||
} else {
|
||||
test_template_cpp(t, name, tmpl, vars, expect);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// fuzz tests to ensure no crashes occur on malformed inputs
|
||||
//
|
||||
|
|
|
|||
|
|
@ -66,19 +66,25 @@ struct cli_context {
|
|||
defaults.stream = true; // make sure we always use streaming mode
|
||||
defaults.timings_per_token = true; // in order to get timings even when we cancel mid-way
|
||||
// defaults.return_progress = true; // TODO: show progress
|
||||
defaults.oaicompat_chat_syntax.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
}
|
||||
|
||||
std::string generate_completion(result_timings & out_timings) {
|
||||
server_response_reader rd = ctx_server.get_response_reader();
|
||||
auto chat_params = format_chat();
|
||||
{
|
||||
// TODO: reduce some copies here in the future
|
||||
server_task task = server_task(SERVER_TASK_TYPE_COMPLETION);
|
||||
task.id = rd.get_new_id();
|
||||
task.index = 0;
|
||||
task.params = defaults; // copy
|
||||
task.cli_input = messages; // copy
|
||||
task.cli_files = input_files; // copy
|
||||
task.id = rd.get_new_id();
|
||||
task.index = 0;
|
||||
task.params = defaults; // copy
|
||||
task.cli_prompt = chat_params.prompt; // copy
|
||||
task.cli_files = input_files; // copy
|
||||
task.cli = true;
|
||||
|
||||
// chat template settings
|
||||
task.params.chat_parser_params = common_chat_parser_params(chat_params);
|
||||
task.params.chat_parser_params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
|
||||
rd.post_task({std::move(task)});
|
||||
}
|
||||
|
||||
|
|
@ -156,6 +162,25 @@ struct cli_context {
|
|||
return content;
|
||||
}
|
||||
}
|
||||
|
||||
common_chat_params format_chat() {
|
||||
auto meta = ctx_server.get_meta();
|
||||
auto & chat_params = meta.chat_params;
|
||||
|
||||
common_chat_templates_inputs inputs;
|
||||
inputs.messages = common_chat_msgs_parse_oaicompat(messages);
|
||||
inputs.tools = {}; // TODO
|
||||
inputs.tool_choice = COMMON_CHAT_TOOL_CHOICE_NONE;
|
||||
inputs.json_schema = ""; // TODO
|
||||
inputs.grammar = ""; // TODO
|
||||
inputs.use_jinja = chat_params.use_jinja;
|
||||
inputs.parallel_tool_calls = false;
|
||||
inputs.add_generation_prompt = true;
|
||||
inputs.enable_thinking = chat_params.enable_thinking;
|
||||
|
||||
// Apply chat template to the list of messages
|
||||
return common_chat_templates_apply(chat_params.tmpls.get(), inputs);
|
||||
}
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
|
|
|
|||
|
|
@ -779,7 +779,6 @@ static void handle_media(
|
|||
// download remote image
|
||||
// TODO @ngxson : maybe make these params configurable
|
||||
common_remote_params params;
|
||||
params.headers.push_back({"User-Agent", "llama.cpp/" + build_info});
|
||||
params.max_size = 1024 * 1024 * 10; // 10MB
|
||||
params.timeout = 10; // seconds
|
||||
SRV_INF("downloading image from '%s'\n", url.c_str());
|
||||
|
|
@ -831,7 +830,7 @@ static void handle_media(
|
|||
// used by /chat/completions endpoint
|
||||
json oaicompat_chat_params_parse(
|
||||
json & body, /* openai api json semantics */
|
||||
const oaicompat_parser_options & opt,
|
||||
const server_chat_params & opt,
|
||||
std::vector<raw_buffer> & out_files)
|
||||
{
|
||||
json llama_params;
|
||||
|
|
@ -1012,7 +1011,7 @@ json oaicompat_chat_params_parse(
|
|||
}
|
||||
|
||||
// Apply chat template to the list of messages
|
||||
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
|
||||
auto chat_params = common_chat_templates_apply(opt.tmpls.get(), inputs);
|
||||
|
||||
/* Append assistant prefilled message */
|
||||
if (prefill_assistant_message) {
|
||||
|
|
|
|||
|
|
@ -13,8 +13,6 @@
|
|||
#include <vector>
|
||||
#include <cinttypes>
|
||||
|
||||
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
|
||||
|
|
@ -274,25 +272,26 @@ std::vector<server_tokens> tokenize_input_prompts(
|
|||
// OAI utils
|
||||
//
|
||||
|
||||
// used by /completions endpoint
|
||||
json oaicompat_completion_params_parse(const json & body);
|
||||
|
||||
struct oaicompat_parser_options {
|
||||
// global server parameters for chat formatting / parsing
|
||||
struct server_chat_params {
|
||||
bool use_jinja;
|
||||
bool prefill_assistant;
|
||||
common_reasoning_format reasoning_format;
|
||||
std::map<std::string,std::string> chat_template_kwargs;
|
||||
common_chat_templates * tmpls;
|
||||
std::map<std::string, std::string> chat_template_kwargs; // mapping key --> json value
|
||||
common_chat_templates_ptr tmpls;
|
||||
bool allow_image;
|
||||
bool allow_audio;
|
||||
bool enable_thinking = true;
|
||||
std::string media_path;
|
||||
};
|
||||
|
||||
// used by /completions endpoint
|
||||
json oaicompat_completion_params_parse(const json & body);
|
||||
|
||||
// used by /chat/completions endpoint
|
||||
json oaicompat_chat_params_parse(
|
||||
json & body, /* openai api json semantics */
|
||||
const oaicompat_parser_options & opt,
|
||||
const server_chat_params & opt,
|
||||
std::vector<raw_buffer> & out_files);
|
||||
|
||||
// convert Anthropic Messages API format to OpenAI Chat Completions API format
|
||||
|
|
|
|||
|
|
@ -534,8 +534,8 @@ public:
|
|||
server_queue queue_tasks;
|
||||
server_response queue_results;
|
||||
|
||||
common_chat_templates_ptr chat_templates;
|
||||
oaicompat_parser_options oai_parser_opt;
|
||||
// note: chat_params must not be refreshed upon existing sleeping state
|
||||
server_chat_params chat_params;
|
||||
|
||||
~server_context_impl() {
|
||||
if (!sleeping) {
|
||||
|
|
@ -688,15 +688,6 @@ private:
|
|||
llama_init_dft->free_context();
|
||||
}
|
||||
|
||||
chat_templates = common_chat_templates_init(model, params_base.chat_template);
|
||||
try {
|
||||
common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
|
||||
} catch (const std::exception & e) {
|
||||
SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
|
||||
SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
|
||||
chat_templates = common_chat_templates_init(model, "chatml");
|
||||
}
|
||||
|
||||
std::string & mmproj_path = params_base.mmproj.path;
|
||||
if (!mmproj_path.empty()) {
|
||||
if (!is_resume) {
|
||||
|
|
@ -845,30 +836,6 @@ private:
|
|||
model_name = model_path.filename().string();
|
||||
}
|
||||
|
||||
// thinking is enabled if:
|
||||
// 1. It's not explicitly disabled (reasoning_budget == 0)
|
||||
// 2. The chat template supports it
|
||||
const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
|
||||
SRV_INF("thinking = %d\n", enable_thinking);
|
||||
|
||||
oai_parser_opt = {
|
||||
/* use_jinja */ params_base.use_jinja,
|
||||
/* prefill_assistant */ params_base.prefill_assistant,
|
||||
/* reasoning_format */ params_base.reasoning_format,
|
||||
/* chat_template_kwargs */ params_base.default_template_kwargs,
|
||||
/* common_chat_templates */ chat_templates.get(),
|
||||
/* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
|
||||
/* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
|
||||
/* enable_thinking */ enable_thinking,
|
||||
/* media_path */ params_base.media_path,
|
||||
};
|
||||
|
||||
// print sample chat example to make it clear which template is used
|
||||
// @ngxson modern templates are too long, spam the logs; printing the example is enough
|
||||
LOG_INF("%s: chat template, example_format: '%s'\n", __func__,
|
||||
// common_chat_templates_source(chat_templates.get()),
|
||||
common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str());
|
||||
|
||||
if (!is_resume) {
|
||||
return init();
|
||||
}
|
||||
|
|
@ -907,6 +874,42 @@ private:
|
|||
}
|
||||
}
|
||||
|
||||
// populate chat template params
|
||||
{
|
||||
common_chat_templates_ptr chat_templates;
|
||||
|
||||
try {
|
||||
chat_templates = common_chat_templates_init(model, params_base.chat_template);
|
||||
|
||||
LOG_INF("%s: chat template, example_format: '%s'\n", __func__,
|
||||
common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str());
|
||||
|
||||
} catch (const std::exception & e) {
|
||||
SRV_ERR("%s: chat template parsing error: %s\n", __func__, e.what());
|
||||
SRV_ERR("%s: please consider disabling jinja via --no-jinja, or use a custom chat template via --chat-template\n", __func__);
|
||||
SRV_ERR("%s: for example: --no-jinja --chat-template chatml\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
// thinking is enabled if:
|
||||
// 1. It's not explicitly disabled (reasoning_budget == 0)
|
||||
// 2. The chat template supports it
|
||||
const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
|
||||
SRV_INF("%s: chat template, thinking = %d\n", __func__, enable_thinking);
|
||||
|
||||
chat_params = {
|
||||
/* use_jinja */ params_base.use_jinja,
|
||||
/* prefill_assistant */ params_base.prefill_assistant,
|
||||
/* reasoning_format */ params_base.reasoning_format,
|
||||
/* chat_template_kwargs */ params_base.default_template_kwargs,
|
||||
/* tmpls */ std::move(chat_templates),
|
||||
/* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
|
||||
/* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
|
||||
/* enable_thinking */ enable_thinking,
|
||||
/* media_path */ params_base.media_path,
|
||||
};
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
@ -1326,11 +1329,12 @@ private:
|
|||
}
|
||||
|
||||
void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
|
||||
const size_t n_probs = slot.task->params.sampling.n_probs;
|
||||
const size_t n_probs_request = slot.task->params.sampling.n_probs;
|
||||
|
||||
if (post_sampling) {
|
||||
const auto * cur_p = common_sampler_get_candidates(slot.smpl.get(), true);
|
||||
const size_t max_probs = cur_p->size;
|
||||
const size_t n_probs = std::min(max_probs, n_probs_request);
|
||||
|
||||
// set probability for sampled token
|
||||
for (size_t i = 0; i < max_probs; i++) {
|
||||
|
|
@ -1341,8 +1345,8 @@ private:
|
|||
}
|
||||
|
||||
// set probability for top n_probs tokens
|
||||
result.probs.reserve(max_probs);
|
||||
for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
|
||||
result.probs.reserve(n_probs);
|
||||
for (size_t i = 0; i < n_probs; i++) {
|
||||
result.probs.push_back({
|
||||
cur_p->data[i].id,
|
||||
common_token_to_piece(ctx, cur_p->data[i].id, special),
|
||||
|
|
@ -1352,9 +1356,11 @@ private:
|
|||
} else {
|
||||
// TODO: optimize this with min-p optimization
|
||||
std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
|
||||
const size_t max_probs = cur.size();
|
||||
const size_t n_probs = std::min(max_probs, n_probs_request);
|
||||
|
||||
// set probability for sampled token
|
||||
for (size_t i = 0; i < cur.size(); i++) {
|
||||
for (size_t i = 0; i < max_probs; i++) {
|
||||
// set probability for sampled token
|
||||
if (cur[i].id == result.tok) {
|
||||
result.prob = cur[i].p;
|
||||
|
|
@ -1364,7 +1370,7 @@ private:
|
|||
|
||||
// set probability for top n_probs tokens
|
||||
result.probs.reserve(n_probs);
|
||||
for (size_t i = 0; i < std::min(cur.size(), n_probs); i++) {
|
||||
for (size_t i = 0; i < n_probs; i++) {
|
||||
result.probs.push_back({
|
||||
cur[i].id,
|
||||
common_token_to_piece(ctx, cur[i].id, special),
|
||||
|
|
@ -1585,32 +1591,14 @@ private:
|
|||
|
||||
// tokenize the input if it's set by CLI, return false on error
|
||||
bool tokenize_cli_input(server_task & task) {
|
||||
GGML_ASSERT(task.cli_input != nullptr);
|
||||
try {
|
||||
auto & opt = oai_parser_opt;
|
||||
common_chat_templates_inputs inputs;
|
||||
inputs.messages = common_chat_msgs_parse_oaicompat(task.cli_input);
|
||||
inputs.tools = {}; // TODO
|
||||
inputs.tool_choice = COMMON_CHAT_TOOL_CHOICE_NONE;
|
||||
inputs.json_schema = ""; // TODO
|
||||
inputs.grammar = ""; // TODO
|
||||
inputs.use_jinja = opt.use_jinja;
|
||||
inputs.parallel_tool_calls = false;
|
||||
inputs.add_generation_prompt = true;
|
||||
inputs.reasoning_format = opt.reasoning_format;
|
||||
inputs.enable_thinking = opt.enable_thinking;
|
||||
|
||||
// Apply chat template to the list of messages
|
||||
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
|
||||
|
||||
// tokenize the resulting prompt
|
||||
auto & prompt = chat_params.prompt;
|
||||
auto & prompt = task.cli_prompt;
|
||||
if (mctx != nullptr) {
|
||||
task.tokens = process_mtmd_prompt(mctx, prompt, task.cli_files);
|
||||
} else {
|
||||
task.tokens = std::move(tokenize_input_prompts(vocab, mctx, prompt, true, true)[0]);
|
||||
}
|
||||
task.cli_input.clear();
|
||||
task.cli_prompt.clear();
|
||||
task.cli_files.clear();
|
||||
} catch (const std::exception & e) {
|
||||
send_error(task, std::string("Failed to format input: ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
|
||||
|
|
@ -1686,7 +1674,7 @@ private:
|
|||
{
|
||||
// special case: if input is provided via CLI, tokenize it first
|
||||
// otherwise, no need to tokenize as it's already done inside the HTTP thread
|
||||
if (task.cli_input != nullptr) {
|
||||
if (task.cli) {
|
||||
if (!tokenize_cli_input(task)) {
|
||||
break;
|
||||
}
|
||||
|
|
@ -2898,8 +2886,6 @@ server_response_reader server_context::get_response_reader() {
|
|||
}
|
||||
|
||||
server_context_meta server_context::get_meta() const {
|
||||
auto tool_use_src = common_chat_templates_source(impl->chat_templates.get(), "tool_use");
|
||||
|
||||
auto bos_id = llama_vocab_bos(impl->vocab);
|
||||
auto eos_id = llama_vocab_eos(impl->vocab);
|
||||
auto bos_token_str = bos_id != LLAMA_TOKEN_NULL ? common_token_to_piece(impl->ctx, bos_id, true) : "";
|
||||
|
|
@ -2910,14 +2896,13 @@ server_context_meta server_context::get_meta() const {
|
|||
/* model_name */ impl->model_name,
|
||||
/* model_path */ impl->params_base.model.path,
|
||||
/* has_mtmd */ impl->mctx != nullptr,
|
||||
/* has_inp_image */ impl->oai_parser_opt.allow_image,
|
||||
/* has_inp_audio */ impl->oai_parser_opt.allow_audio,
|
||||
/* has_inp_image */ impl->chat_params.allow_image,
|
||||
/* has_inp_audio */ impl->chat_params.allow_audio,
|
||||
/* json_webui_settings */ impl->json_webui_settings,
|
||||
/* slot_n_ctx */ impl->get_slot_n_ctx(),
|
||||
/* pooling_type */ llama_pooling_type(impl->ctx),
|
||||
|
||||
/* chat_template */ common_chat_templates_source(impl->chat_templates.get()),
|
||||
/* chat_template_tool_use */ tool_use_src ? tool_use_src : "",
|
||||
/* chat_params */ impl->chat_params,
|
||||
|
||||
/* bos_token_str */ bos_token_str,
|
||||
/* eos_token_str */ eos_token_str,
|
||||
|
|
@ -3199,8 +3184,8 @@ void server_routes::init_routes() {
|
|||
|
||||
// this endpoint can be accessed during sleeping
|
||||
// the next LOC is to avoid someone accidentally use ctx_server
|
||||
bool server_ctx; // do NOT delete this line
|
||||
GGML_UNUSED(server_ctx);
|
||||
bool ctx_server; // do NOT delete this line
|
||||
GGML_UNUSED(ctx_server);
|
||||
|
||||
res->ok({{"status", "ok"}});
|
||||
return res;
|
||||
|
|
@ -3390,8 +3375,8 @@ void server_routes::init_routes() {
|
|||
|
||||
// this endpoint can be accessed during sleeping
|
||||
// the next LOC is to avoid someone accidentally use ctx_server
|
||||
bool server_ctx; // do NOT delete this line
|
||||
GGML_UNUSED(server_ctx);
|
||||
bool ctx_server; // do NOT delete this line
|
||||
GGML_UNUSED(ctx_server);
|
||||
|
||||
task_params tparams;
|
||||
tparams.sampling = params.sampling;
|
||||
|
|
@ -3400,6 +3385,9 @@ void server_routes::init_routes() {
|
|||
{ "n_ctx", meta->slot_n_ctx },
|
||||
};
|
||||
|
||||
std::string tmpl_default = common_chat_templates_source(meta->chat_params.tmpls.get(), "");
|
||||
std::string tmpl_tools = common_chat_templates_source(meta->chat_params.tmpls.get(), "tool_use");
|
||||
|
||||
json props = {
|
||||
{ "default_generation_settings", default_generation_settings_for_props },
|
||||
{ "total_slots", params.n_parallel },
|
||||
|
|
@ -3414,15 +3402,15 @@ void server_routes::init_routes() {
|
|||
{ "endpoint_metrics", params.endpoint_metrics },
|
||||
{ "webui", params.webui },
|
||||
{ "webui_settings", meta->json_webui_settings },
|
||||
{ "chat_template", meta->chat_template },
|
||||
{ "chat_template", tmpl_default },
|
||||
{ "bos_token", meta->bos_token_str },
|
||||
{ "eos_token", meta->eos_token_str },
|
||||
{ "build_info", meta->build_info },
|
||||
{ "is_sleeping", queue_tasks.is_sleeping() },
|
||||
};
|
||||
if (params.use_jinja) {
|
||||
if (!meta->chat_template_tool_use.empty()) {
|
||||
props["chat_template_tool_use"] = meta->chat_template_tool_use;
|
||||
if (!tmpl_tools.empty()) {
|
||||
props["chat_template_tool_use"] = tmpl_tools;
|
||||
}
|
||||
}
|
||||
res->ok(props);
|
||||
|
|
@ -3443,6 +3431,7 @@ void server_routes::init_routes() {
|
|||
|
||||
this->get_api_show = [this](const server_http_req &) {
|
||||
auto res = create_response();
|
||||
std::string tmpl_default = common_chat_templates_source(meta->chat_params.tmpls.get(), "");
|
||||
json data = {
|
||||
{
|
||||
"model_info", {
|
||||
|
|
@ -3451,7 +3440,7 @@ void server_routes::init_routes() {
|
|||
},
|
||||
{"modelfile", ""},
|
||||
{"parameters", ""},
|
||||
{"template", meta->chat_template},
|
||||
{"template", tmpl_default},
|
||||
{"details", {
|
||||
{"parent_model", ""},
|
||||
{"format", "gguf"},
|
||||
|
|
@ -3576,7 +3565,7 @@ void server_routes::init_routes() {
|
|||
json body = json::parse(req.body);
|
||||
json body_parsed = oaicompat_chat_params_parse(
|
||||
body,
|
||||
ctx_server.oai_parser_opt,
|
||||
meta->chat_params,
|
||||
files);
|
||||
return handle_completions_impl(
|
||||
req,
|
||||
|
|
@ -3592,7 +3581,7 @@ void server_routes::init_routes() {
|
|||
json body = convert_anthropic_to_oai(json::parse(req.body));
|
||||
json body_parsed = oaicompat_chat_params_parse(
|
||||
body,
|
||||
ctx_server.oai_parser_opt,
|
||||
meta->chat_params,
|
||||
files);
|
||||
return handle_completions_impl(
|
||||
req,
|
||||
|
|
@ -3608,7 +3597,7 @@ void server_routes::init_routes() {
|
|||
json body = convert_anthropic_to_oai(json::parse(req.body));
|
||||
json body_parsed = oaicompat_chat_params_parse(
|
||||
body,
|
||||
ctx_server.oai_parser_opt,
|
||||
meta->chat_params,
|
||||
files);
|
||||
|
||||
json prompt = body_parsed.at("prompt");
|
||||
|
|
@ -3624,7 +3613,7 @@ void server_routes::init_routes() {
|
|||
json body = json::parse(req.body);
|
||||
json data = oaicompat_chat_params_parse(
|
||||
body,
|
||||
ctx_server.oai_parser_opt,
|
||||
meta->chat_params,
|
||||
files);
|
||||
res->ok({{ "prompt", std::move(data.at("prompt")) }});
|
||||
return res;
|
||||
|
|
@ -3635,8 +3624,8 @@ void server_routes::init_routes() {
|
|||
|
||||
// this endpoint can be accessed during sleeping
|
||||
// the next LOC is to avoid someone accidentally use ctx_server
|
||||
bool server_ctx; // do NOT delete this line
|
||||
GGML_UNUSED(server_ctx);
|
||||
bool ctx_server; // do NOT delete this line
|
||||
GGML_UNUSED(ctx_server);
|
||||
|
||||
json models = {
|
||||
{"models", {
|
||||
|
|
|
|||
|
|
@ -20,9 +20,8 @@ struct server_context_meta {
|
|||
int slot_n_ctx;
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
// chat template
|
||||
std::string chat_template;
|
||||
std::string chat_template_tool_use;
|
||||
// chat params
|
||||
server_chat_params & chat_params;
|
||||
|
||||
// tokens
|
||||
std::string bos_token_str;
|
||||
|
|
|
|||
|
|
@ -68,10 +68,10 @@ json task_params::to_json(bool only_metrics) const {
|
|||
{"stream", stream},
|
||||
{"n_probs", sampling.n_probs},
|
||||
{"min_keep", sampling.min_keep},
|
||||
{"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
|
||||
{"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
|
||||
{"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
|
||||
{"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
|
||||
{"chat_format", common_chat_format_name(chat_parser_params.format)},
|
||||
{"reasoning_format", common_reasoning_format_name(chat_parser_params.reasoning_format)},
|
||||
{"reasoning_in_content", chat_parser_params.reasoning_in_content},
|
||||
{"thinking_forced_open", chat_parser_params.thinking_forced_open},
|
||||
{"samplers", samplers},
|
||||
{"speculative.n_max", speculative.n_max},
|
||||
{"speculative.n_min", speculative.n_min},
|
||||
|
|
@ -127,10 +127,10 @@ json task_params::to_json(bool only_metrics) const {
|
|||
{"grammar_lazy", sampling.grammar_lazy},
|
||||
{"grammar_triggers", grammar_triggers},
|
||||
{"preserved_tokens", sampling.preserved_tokens},
|
||||
{"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
|
||||
{"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
|
||||
{"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
|
||||
{"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
|
||||
{"chat_format", common_chat_format_name(chat_parser_params.format)},
|
||||
{"reasoning_format", common_reasoning_format_name(chat_parser_params.reasoning_format)},
|
||||
{"reasoning_in_content", chat_parser_params.reasoning_in_content},
|
||||
{"thinking_forced_open", chat_parser_params.thinking_forced_open},
|
||||
{"samplers", samplers},
|
||||
{"speculative.n_max", speculative.n_max},
|
||||
{"speculative.n_min", speculative.n_min},
|
||||
|
|
@ -291,21 +291,21 @@ task_params server_task::params_from_json_cmpl(
|
|||
{
|
||||
auto it = data.find("chat_format");
|
||||
if (it != data.end()) {
|
||||
params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
|
||||
SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
|
||||
params.chat_parser_params.format = static_cast<common_chat_format>(it->get<int>());
|
||||
SRV_INF("Chat format: %s\n", common_chat_format_name(params.chat_parser_params.format));
|
||||
} else {
|
||||
params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
|
||||
params.chat_parser_params.format = defaults.chat_parser_params.format;
|
||||
}
|
||||
common_reasoning_format reasoning_format = params_base.reasoning_format;
|
||||
if (data.contains("reasoning_format")) {
|
||||
reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
|
||||
}
|
||||
params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
|
||||
params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
|
||||
params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
|
||||
params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
|
||||
params.chat_parser_params.reasoning_format = reasoning_format;
|
||||
params.chat_parser_params.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
|
||||
params.chat_parser_params.thinking_forced_open = json_value(data, "thinking_forced_open", false);
|
||||
params.chat_parser_params.parse_tool_calls = json_value(data, "parse_tool_calls", false);
|
||||
if (data.contains("chat_parser")) {
|
||||
params.oaicompat_chat_syntax.parser.load(data.at("chat_parser").get<std::string>());
|
||||
params.chat_parser_params.parser.load(data.at("chat_parser").get<std::string>());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -722,7 +722,7 @@ common_chat_msg task_result_state::update_chat_msg(
|
|||
auto new_msg = common_chat_parse(
|
||||
generated_text,
|
||||
is_partial,
|
||||
oaicompat_chat_syntax);
|
||||
chat_parser_params);
|
||||
if (!new_msg.empty()) {
|
||||
new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
|
||||
chat_msg = new_msg;
|
||||
|
|
|
|||
|
|
@ -78,7 +78,9 @@ struct task_params {
|
|||
task_response_type res_type = TASK_RESPONSE_TYPE_NONE;
|
||||
std::string oaicompat_model;
|
||||
std::string oaicompat_cmpl_id;
|
||||
common_chat_syntax oaicompat_chat_syntax;
|
||||
|
||||
// per-request parameters for chat parsing
|
||||
common_chat_parser_params chat_parser_params;
|
||||
|
||||
// Embeddings
|
||||
int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
|
||||
|
|
@ -91,7 +93,7 @@ struct task_params {
|
|||
struct task_result_state {
|
||||
// tracking diffs for partial tool calls
|
||||
std::vector<common_chat_msg_diff> diffs;
|
||||
common_chat_syntax oaicompat_chat_syntax;
|
||||
common_chat_parser_params chat_parser_params;
|
||||
common_chat_msg chat_msg;
|
||||
std::string generated_text; // append new chunks of generated text here
|
||||
std::vector<std::string> generated_tool_call_ids;
|
||||
|
|
@ -100,8 +102,8 @@ struct task_result_state {
|
|||
bool anthropic_thinking_block_started = false;
|
||||
bool anthropic_text_block_started = false;
|
||||
|
||||
task_result_state(const common_chat_syntax & oaicompat_chat_syntax)
|
||||
: oaicompat_chat_syntax(oaicompat_chat_syntax) {}
|
||||
task_result_state(const common_chat_parser_params & chat_parser_params)
|
||||
: chat_parser_params(chat_parser_params) {}
|
||||
|
||||
// parse partial tool calls and update the internal state
|
||||
common_chat_msg update_chat_msg(
|
||||
|
|
@ -130,8 +132,10 @@ struct server_task {
|
|||
task_params params;
|
||||
server_tokens tokens;
|
||||
|
||||
// only used by CLI, this delegates the tokenization to the server
|
||||
json cli_input = nullptr;
|
||||
// only used by CLI, this allow tokenizing CLI inputs on server side
|
||||
// we need this because mtmd_context and vocab are not accessible outside of server_context
|
||||
bool cli = false;
|
||||
std::string cli_prompt;
|
||||
std::vector<raw_buffer> cli_files;
|
||||
|
||||
server_task_type type;
|
||||
|
|
@ -228,7 +232,7 @@ struct server_task {
|
|||
// the task will be moved into queue, then onto slots
|
||||
// however, the state must be kept by caller (e.g., HTTP thread)
|
||||
task_result_state create_state() const {
|
||||
return task_result_state(params.oaicompat_chat_syntax);
|
||||
return task_result_state(params.chat_parser_params);
|
||||
}
|
||||
|
||||
bool is_parent() const {
|
||||
|
|
|
|||
Loading…
Reference in New Issue