Compare commits
50 Commits
| Author | SHA1 | Date |
|---|---|---|
|
|
da143b9940 | |
|
|
f1768d8f03 | |
|
|
2da64a2f8a | |
|
|
b37124d2d2 | |
|
|
eadc4184ca | |
|
|
67e3f6f601 | |
|
|
92ac1e016b | |
|
|
8e3a761189 | |
|
|
d3dce4e0a5 | |
|
|
4974bf53cf | |
|
|
908a9e5a1e | |
|
|
5126c41c1c | |
|
|
cef1d23c5a | |
|
|
c69c7ebc90 | |
|
|
e57f52334b | |
|
|
a554a1ecc7 | |
|
|
0f2e42ca1d | |
|
|
9dba9f5352 | |
|
|
bcfc8c3cec | |
|
|
18ddaea2ae | |
|
|
706e3f93a6 | |
|
|
5755e52d15 | |
|
|
f38de16341 | |
|
|
af1e8e1a6c | |
|
|
d84a6a98be | |
|
|
c6f0e832da | |
|
|
e86f3c2221 | |
|
|
169ee68ffb | |
|
|
ced765be44 | |
|
|
3ccccc83f7 | |
|
|
d0a6a31470 | |
|
|
2b2afade9f | |
|
|
f4f5019254 | |
|
|
d5574c919c | |
|
|
26831bded9 | |
|
|
be47fb9285 | |
|
|
9e10bd2eaf | |
|
|
4cd162a123 | |
|
|
13814eb370 | |
|
|
54f67b9b66 | |
|
|
33ded988ba | |
|
|
0db8109849 | |
|
|
9b8329de7a | |
|
|
9a6369bb60 | |
|
|
ecc343de63 | |
|
|
01ade96e71 | |
|
|
7bcaf815c2 | |
|
|
c8a3798041 | |
|
|
4849661d98 | |
|
|
6e0c8cbc40 |
|
|
@ -0,0 +1,95 @@
|
|||
ARG UBUNTU_VERSION=24.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=13.1.0
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
|
||||
# CUDA architecture to build for (defaults to all supported archs)
|
||||
ARG CUDA_DOCKER_ARCH=default
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
find build -name "*.so*" -exec cp -P {} /app/lib \;
|
||||
|
||||
RUN mkdir -p /app/full \
|
||||
&& cp build/bin/* /app/full \
|
||||
&& cp *.py /app/full \
|
||||
&& cp -r gguf-py /app/full \
|
||||
&& cp -r requirements /app/full \
|
||||
&& cp requirements.txt /app/full \
|
||||
&& cp .devops/tools.sh /app/full/tools.sh
|
||||
|
||||
## Base image
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS base
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y libgomp1 curl\
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||
&& find /var/cache -type f -delete
|
||||
|
||||
COPY --from=build /app/lib/ /app
|
||||
|
||||
### Full
|
||||
FROM base AS full
|
||||
|
||||
COPY --from=build /app/full /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-wheel \
|
||||
&& pip install --break-system-packages --upgrade setuptools \
|
||||
&& pip install --break-system-packages -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||
&& find /var/cache -type f -delete
|
||||
|
||||
|
||||
ENTRYPOINT ["/app/tools.sh"]
|
||||
|
||||
### Light, CLI only
|
||||
FROM base AS light
|
||||
|
||||
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
ENTRYPOINT [ "/app/llama-cli" ]
|
||||
|
||||
### Server, Server only
|
||||
FROM base AS server
|
||||
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
COPY --from=build /app/full/llama-server /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
ENTRYPOINT [ "/app/llama-server" ]
|
||||
|
|
@ -1098,6 +1098,7 @@ jobs:
|
|||
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
|
||||
|
||||
- name: Build with CMake
|
||||
# TODO: Remove GGML_CUDA_CUB_3DOT2 flag once CCCL 3.2 is bundled within CTK and that CTK version is used in this project
|
||||
run: |
|
||||
cmake -S . -B build -G Ninja \
|
||||
-DLLAMA_CURL=OFF \
|
||||
|
|
@ -1107,7 +1108,8 @@ jobs:
|
|||
-DCMAKE_CUDA_ARCHITECTURES=89-real \
|
||||
-DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CUDA=ON
|
||||
-DGGML_CUDA=ON \
|
||||
-DGGML_CUDA_CUB_3DOT2=ON
|
||||
cmake --build build
|
||||
|
||||
windows-2022-cmake-cuda:
|
||||
|
|
@ -1143,6 +1145,7 @@ jobs:
|
|||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
# TODO: Remove GGML_CUDA_CUB_3DOT2 flag once CCCL 3.2 is bundled within CTK and that CTK version is used in this project
|
||||
run: |
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
|
|
@ -1153,7 +1156,8 @@ jobs:
|
|||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_CPU_ALL_VARIANTS=ON ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON ^
|
||||
-DGGML_CUDA_CUB_3DOT2=ON
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
|
|
@ -1750,7 +1754,7 @@ jobs:
|
|||
sudo apt-get update
|
||||
|
||||
# Install necessary packages
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache git-lfs
|
||||
|
||||
# Set gcc-14 and g++-14 as the default compilers
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
|
||||
|
|
@ -1762,6 +1766,8 @@ jobs:
|
|||
rustup install stable
|
||||
rustup default stable
|
||||
|
||||
git lfs install
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
|
@ -1847,7 +1853,7 @@ jobs:
|
|||
sudo apt-get update
|
||||
|
||||
# Install necessary packages
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache git-lfs
|
||||
|
||||
# Set gcc-14 and g++-14 as the default compilers
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
|
||||
|
|
@ -1859,6 +1865,8 @@ jobs:
|
|||
rustup install stable
|
||||
rustup default stable
|
||||
|
||||
git lfs install
|
||||
|
||||
- name: GCC version check
|
||||
run: |
|
||||
gcc --version
|
||||
|
|
@ -1939,7 +1947,7 @@ jobs:
|
|||
sudo apt-get update
|
||||
|
||||
# Install necessary packages
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache git-lfs
|
||||
|
||||
# Set gcc-14 and g++-14 as the default compilers
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
|
||||
|
|
@ -1951,6 +1959,8 @@ jobs:
|
|||
rustup install stable
|
||||
rustup default stable
|
||||
|
||||
git lfs install
|
||||
|
||||
- name: GCC version check
|
||||
run: |
|
||||
gcc --version
|
||||
|
|
@ -2011,7 +2021,7 @@ jobs:
|
|||
sudo apt-get update
|
||||
|
||||
# Install necessary packages
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache git-lfs
|
||||
|
||||
# Set gcc-14 and g++-14 as the default compilers
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
|
||||
|
|
@ -2023,6 +2033,8 @@ jobs:
|
|||
rustup install stable
|
||||
rustup default stable
|
||||
|
||||
git lfs install
|
||||
|
||||
- name: GCC version check
|
||||
run: |
|
||||
gcc --version
|
||||
|
|
|
|||
|
|
@ -40,7 +40,8 @@ jobs:
|
|||
# https://github.com/ggml-org/llama.cpp/issues/11888
|
||||
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "cuda cuda12", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04", cuda_version: "12.4.0", ubuntu_version: "22.04" }
|
||||
- { tag: "cuda13", dockerfile: ".devops/cuda-new.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04", cuda_version: "13.1.0", ubuntu_version: "24.04" }
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
|
||||
|
|
@ -80,18 +81,21 @@ jobs:
|
|||
run: |
|
||||
REPO_OWNER="${GITHUB_REPOSITORY_OWNER@L}" # to lower case
|
||||
REPO_NAME="${{ github.event.repository.name }}"
|
||||
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
|
||||
|
||||
# list all tags possible
|
||||
if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then
|
||||
TYPE=""
|
||||
else
|
||||
TYPE="-${{ matrix.config.tag }}"
|
||||
fi
|
||||
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
|
||||
CACHETAGS="${PREFIX}buildcache${TYPE}"
|
||||
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
tags="${{ matrix.config.tag }}"
|
||||
for tag in $tags; do
|
||||
if [[ "$tag" == "cpu" ]]; then
|
||||
TYPE=""
|
||||
else
|
||||
TYPE="-$tag"
|
||||
fi
|
||||
CACHETAGS="${PREFIX}buildcache${TYPE}"
|
||||
FULLTAGS="${FULLTAGS:+$FULLTAGS,}${PREFIX}full${TYPE},${PREFIX}full${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
LIGHTTAGS="${LIGHTTAGS:+$LIGHTTAGS,}${PREFIX}light${TYPE},${PREFIX}light${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
SERVERTAGS="${SERVERTAGS:+$SERVERTAGS,}${PREFIX}server${TYPE},${PREFIX}server${TYPE}-${{ steps.srctag.outputs.name }}"
|
||||
done
|
||||
echo "cache_output_tags=$CACHETAGS" >> $GITHUB_OUTPUT
|
||||
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
|
||||
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
|
||||
|
|
@ -132,6 +136,9 @@ jobs:
|
|||
file: ${{ matrix.config.dockerfile }}
|
||||
target: full
|
||||
provenance: false
|
||||
build-args: |
|
||||
${{ matrix.config.ubuntu_version && format('UBUNTU_VERSION={0}', matrix.config.ubuntu_version) || '' }}
|
||||
${{ matrix.config.cuda_version && format('CUDA_VERSION={0}', matrix.config.cuda_version) || '' }}
|
||||
# using github experimental cache
|
||||
#cache-from: type=gha
|
||||
#cache-to: type=gha,mode=max
|
||||
|
|
@ -154,6 +161,9 @@ jobs:
|
|||
file: ${{ matrix.config.dockerfile }}
|
||||
target: light
|
||||
provenance: false
|
||||
build-args: |
|
||||
${{ matrix.config.ubuntu_version && format('UBUNTU_VERSION={0}', matrix.config.ubuntu_version) || '' }}
|
||||
${{ matrix.config.cuda_version && format('CUDA_VERSION={0}', matrix.config.cuda_version) || '' }}
|
||||
# using github experimental cache
|
||||
#cache-from: type=gha
|
||||
#cache-to: type=gha,mode=max
|
||||
|
|
@ -176,6 +186,9 @@ jobs:
|
|||
file: ${{ matrix.config.dockerfile }}
|
||||
target: server
|
||||
provenance: false
|
||||
build-args: |
|
||||
${{ matrix.config.ubuntu_version && format('UBUNTU_VERSION={0}', matrix.config.ubuntu_version) || '' }}
|
||||
${{ matrix.config.cuda_version && format('CUDA_VERSION={0}', matrix.config.cuda_version) || '' }}
|
||||
# using github experimental cache
|
||||
#cache-from: type=gha
|
||||
#cache-to: type=gha,mode=max
|
||||
|
|
|
|||
|
|
@ -420,6 +420,7 @@ jobs:
|
|||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
# TODO: Remove GGML_CUDA_CUB_3DOT2 flag once CCCL 3.2 is bundled within CTK and that CTK version is used in this project
|
||||
run: |
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
|
|
@ -427,7 +428,8 @@ jobs:
|
|||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_CPU=OFF ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DLLAMA_CURL=OFF
|
||||
-DLLAMA_CURL=OFF ^
|
||||
-DGGML_CUDA_CUB_3DOT2=ON
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% --target ggml-cuda
|
||||
|
||||
|
|
|
|||
|
|
@ -41,6 +41,10 @@ jobs:
|
|||
include:
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
extra_args: ""
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
|
||||
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
|
||||
|
||||
steps:
|
||||
|
|
@ -65,6 +69,12 @@ jobs:
|
|||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF -DLLAMA_BUILD_BORINGSSL=ON
|
||||
cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
id: setup_python
|
||||
uses: actions/setup-python@v5
|
||||
|
|
@ -76,6 +86,14 @@ jobs:
|
|||
run: |
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
export ${{ matrix.extra_args }}
|
||||
pytest -v -x -m "not slow"
|
||||
|
||||
server-windows:
|
||||
runs-on: windows-2022
|
||||
|
||||
|
|
|
|||
|
|
@ -52,7 +52,8 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
|
|||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON"
|
||||
# TODO: Remove GGML_CUDA_CUB_3DOT2 flag once CCCL 3.2 is bundled within CTK and that CTK version is used in this project
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DGGML_CUDA_CUB_3DOT2=ON"
|
||||
|
||||
if command -v nvidia-smi >/dev/null 2>&1; then
|
||||
CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.')
|
||||
|
|
|
|||
|
|
@ -1695,6 +1695,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"-bs", "--backend-sampling"},
|
||||
"enable backend sampling (experimental) (default: disabled)",
|
||||
[](common_params & params) {
|
||||
params.sampling.backend_sampling = true;
|
||||
}
|
||||
).set_sparam().set_env("LLAMA_ARG_BACKEND_SAMPLING"));
|
||||
add_opt(common_arg(
|
||||
{"--pooling"}, "{none,mean,cls,last,rank}",
|
||||
"pooling type for embeddings, use model default if unspecified",
|
||||
|
|
|
|||
|
|
@ -1395,6 +1395,14 @@ static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
|
|||
builder.consume_reasoning_with_xml_tool_calls(form, "<seed:think>", "</seed:think>");
|
||||
}
|
||||
|
||||
static void common_chat_parse_solar_open(common_chat_msg_parser & builder) {
|
||||
builder.try_parse_reasoning("<|think|>", "<|end|><|begin|>assistant<|content|>");
|
||||
|
||||
// TODO: Tool calling
|
||||
|
||||
builder.add_content(builder.consume_rest());
|
||||
}
|
||||
|
||||
static void common_chat_parse_content_only(common_chat_msg_parser & builder) {
|
||||
builder.try_parse_reasoning("<think>", "</think>");
|
||||
builder.add_content(builder.consume_rest());
|
||||
|
|
@ -1479,6 +1487,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
|
|||
case COMMON_CHAT_FORMAT_XIAOMI_MIMO:
|
||||
common_chat_parse_xiaomi_mimo(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_SOLAR_OPEN:
|
||||
common_chat_parse_solar_open(builder);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -380,8 +380,8 @@ std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & too
|
|||
const auto & function = tool.at("function");
|
||||
result.push_back({
|
||||
/* .name = */ function.at("name"),
|
||||
/* .description = */ function.at("description"),
|
||||
/* .parameters = */ function.at("parameters").dump(),
|
||||
/* .description = */ function.value("description", ""),
|
||||
/* .parameters = */ function.value("parameters", json::object()).dump(),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
@ -669,6 +669,7 @@ const char * common_chat_format_name(common_chat_format format) {
|
|||
case COMMON_CHAT_FORMAT_QWEN3_CODER_XML: return "Qwen3 Coder";
|
||||
case COMMON_CHAT_FORMAT_APRIEL_1_5: return "Apriel 1.5";
|
||||
case COMMON_CHAT_FORMAT_XIAOMI_MIMO: return "Xiaomi MiMo";
|
||||
case COMMON_CHAT_FORMAT_SOLAR_OPEN: return "Solar Open";
|
||||
case COMMON_CHAT_FORMAT_PEG_SIMPLE: return "peg-simple";
|
||||
case COMMON_CHAT_FORMAT_PEG_NATIVE: return "peg-native";
|
||||
case COMMON_CHAT_FORMAT_PEG_CONSTRUCTED: return "peg-constructed";
|
||||
|
|
@ -2064,7 +2065,7 @@ static common_chat_params common_chat_params_init_gpt_oss(const common_chat_temp
|
|||
// Trigger on tool calls that appear in the commentary channel
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
"<\\|channel\\|>(commentary|analysis) to"
|
||||
"<\\|channel\\|>(?:commentary|analysis) to"
|
||||
});
|
||||
|
||||
// Trigger tool calls that appear in the role section, either at the
|
||||
|
|
@ -2397,17 +2398,17 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
|
|||
(inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call));
|
||||
// Trigger on some common known "good bad" outputs (only from the start and with a json that's about a specific argument name to avoid false positives)
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||||
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") + (
|
||||
std::string(data.thinking_forced_open ? "(</think>\\s*)" : "") + (
|
||||
"\\s*("
|
||||
"(?:<tool_call>"
|
||||
"|<function"
|
||||
"|(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?"
|
||||
"\\s*\\{\\s*\"name\"\\s*:\\s*\"(?:" + string_join(escaped_names, "|") + ")\""
|
||||
")"
|
||||
")[\\s\\S]*"
|
||||
")"
|
||||
),
|
||||
});
|
||||
data.preserved_tokens = {
|
||||
|
|
@ -2517,6 +2518,27 @@ static common_chat_params common_chat_params_init_granite(const common_chat_temp
|
|||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_solar_open(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
// TODO: Reasoning effort
|
||||
json additional_context = {};
|
||||
|
||||
data.prompt = apply(tmpl, inputs, std::nullopt, std::nullopt, additional_context);
|
||||
data.format = COMMON_CHAT_FORMAT_SOLAR_OPEN;
|
||||
|
||||
data.preserved_tokens = {
|
||||
"<|think|>",
|
||||
"<|content|>",
|
||||
"<|begin|>",
|
||||
"<|end|>",
|
||||
};
|
||||
|
||||
// TODO: Tool calling
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
|
|
@ -2780,6 +2802,13 @@ static common_chat_params common_chat_templates_apply_jinja(
|
|||
return common_chat_params_init_magistral(tmpl, params);
|
||||
}
|
||||
|
||||
// Solar Open
|
||||
if (src.find("<|tool_response:begin|>") != std::string::npos &&
|
||||
src.find("<|tool_response:name|>") != std::string::npos &&
|
||||
src.find("<|tool_response:result|>") != std::string::npos) {
|
||||
return common_chat_params_init_solar_open(tmpl, params);
|
||||
}
|
||||
|
||||
// Plain handler (no tools)
|
||||
if (params.tools.is_null() || inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_NONE) {
|
||||
return common_chat_params_init_without_tools(tmpl, params);
|
||||
|
|
|
|||
|
|
@ -124,6 +124,7 @@ enum common_chat_format {
|
|||
COMMON_CHAT_FORMAT_QWEN3_CODER_XML,
|
||||
COMMON_CHAT_FORMAT_APRIEL_1_5,
|
||||
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
|
||||
COMMON_CHAT_FORMAT_SOLAR_OPEN,
|
||||
|
||||
// These are intended to be parsed by the PEG parser
|
||||
COMMON_CHAT_FORMAT_PEG_SIMPLE,
|
||||
|
|
|
|||
|
|
@ -1086,6 +1086,7 @@ struct common_init_result::impl {
|
|||
std::vector<llama_adapter_lora_ptr> lora;
|
||||
|
||||
std::vector<common_sampler_ptr> samplers;
|
||||
std::vector<llama_sampler_seq_config> samplers_seq_config;
|
||||
};
|
||||
|
||||
common_init_result::common_init_result(common_params & params) :
|
||||
|
|
@ -1162,10 +1163,19 @@ common_init_result::common_init_result(common_params & params) :
|
|||
// params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
|
||||
//}
|
||||
|
||||
// init the backend samplers as part of the context creation
|
||||
pimpl->samplers.resize(cparams.n_seq_max);
|
||||
pimpl->samplers_seq_config.resize(cparams.n_seq_max);
|
||||
|
||||
for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
|
||||
pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
|
||||
pimpl->samplers_seq_config[i] = { i, common_sampler_get(pimpl->samplers[i].get()) };
|
||||
}
|
||||
|
||||
// TODO: temporarily gated behind a flag
|
||||
if (params.sampling.backend_sampling) {
|
||||
cparams.samplers = pimpl->samplers_seq_config.data();
|
||||
cparams.n_samplers = pimpl->samplers_seq_config.size();
|
||||
}
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
|
|
@ -1189,6 +1199,12 @@ common_sampler * common_init_result::sampler(llama_seq_id seq_id) {
|
|||
return pimpl->samplers[seq_id].get();
|
||||
}
|
||||
|
||||
void common_init_result::reset_samplers() {
|
||||
for (int i = 0; i < (int) pimpl->samplers.size(); ++i) {
|
||||
llama_sampler_reset(common_sampler_get(pimpl->samplers[i].get()));
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
|
||||
return pimpl->lora;
|
||||
}
|
||||
|
|
@ -1304,6 +1320,9 @@ common_init_result_ptr common_init_from_params(common_params & params) {
|
|||
llama_synchronize(lctx);
|
||||
llama_perf_context_reset(lctx);
|
||||
llama_set_warmup(lctx, false);
|
||||
|
||||
// reset samplers to reset RNG state after warmup to the seeded state
|
||||
res->reset_samplers();
|
||||
}
|
||||
|
||||
return res;
|
||||
|
|
|
|||
|
|
@ -216,6 +216,8 @@ struct common_params_sampling {
|
|||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
|
||||
|
||||
bool backend_sampling = false;
|
||||
|
||||
bool has_logit_bias() const {
|
||||
return !logit_bias.empty();
|
||||
}
|
||||
|
|
@ -689,7 +691,9 @@ struct common_init_result {
|
|||
|
||||
llama_model * model();
|
||||
llama_context * context();
|
||||
|
||||
common_sampler * sampler(llama_seq_id seq_id);
|
||||
void reset_samplers();
|
||||
|
||||
std::vector<llama_adapter_lora_ptr> & lora();
|
||||
|
||||
|
|
|
|||
|
|
@ -106,12 +106,16 @@ static void llama_sampler_llg_free(llama_sampler * smpl) {
|
|||
}
|
||||
|
||||
static llama_sampler_i llama_sampler_llg_i = {
|
||||
/* .name = */ llama_sampler_llg_name,
|
||||
/* .accept = */ llama_sampler_llg_accept_impl,
|
||||
/* .apply = */ llama_sampler_llg_apply,
|
||||
/* .reset = */ llama_sampler_llg_reset,
|
||||
/* .clone = */ llama_sampler_llg_clone,
|
||||
/* .free = */ llama_sampler_llg_free,
|
||||
/* .name = */ llama_sampler_llg_name,
|
||||
/* .accept = */ llama_sampler_llg_accept_impl,
|
||||
/* .apply = */ llama_sampler_llg_apply,
|
||||
/* .reset = */ llama_sampler_llg_reset,
|
||||
/* .clone = */ llama_sampler_llg_clone,
|
||||
/* .free = */ llama_sampler_llg_free,
|
||||
/* .backend_init = */ NULL,
|
||||
/* .backend_accept = */ NULL,
|
||||
/* .backend_apply = */ NULL,
|
||||
/* .backend_set_input = */ NULL,
|
||||
};
|
||||
|
||||
static size_t llama_sampler_llg_tokenize_fn(const void * user_data, const uint8_t * bytes, size_t bytes_len,
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ common_regex_match common_regex::search(const std::string & input, size_t pos, b
|
|||
return res;
|
||||
}
|
||||
std::match_results<std::string::const_reverse_iterator> srmatch;
|
||||
if (std::regex_match(input.rbegin(), input.rend() - pos, srmatch, rx_reversed_partial)) {
|
||||
if (std::regex_search(input.rbegin(), input.rend() - pos, srmatch, rx_reversed_partial, std::regex_constants::match_continuous)) {
|
||||
auto group = srmatch[1].str();
|
||||
if (group.length() != 0) {
|
||||
auto it = srmatch[1].second.base();
|
||||
|
|
@ -55,18 +55,18 @@ common_regex_match common_regex::search(const std::string & input, size_t pos, b
|
|||
to see if a string ends with a partial regex match, but but it's not in std::regex yet.
|
||||
Instead, we'll the regex into a partial match regex operating as a full match on the reverse iterators of the input.
|
||||
|
||||
- /abcd/ -> (dcba|cba|ba|a).* -> ((?:(?:(?:(?:d)?c)?b)?a).*
|
||||
- /a|b/ -> (a|b).*
|
||||
- /abcd/ -> ^(dcba|cba|ba|a) -> ^((?:(?:(?:(?:d)?c)?b)?a)
|
||||
- /a|b/ -> ^(a|b)
|
||||
- /a*?/ -> error, could match ""
|
||||
- /a*b/ -> ((?:b)?a*+).* (final repetitions become eager)
|
||||
- /.*?ab/ -> ((?:b)?a).* (merge .*)
|
||||
- /a.*?b/ -> ((?:b)?.*?a).* (keep reluctant matches)
|
||||
- /a(bc)d/ -> ((?:(?:d)?(?:(?:c)?b))?a).*
|
||||
- /a(bc|de)/ -> ((?:(?:(?:e)?d)?|(?:(?:c)?b)?)?a).*
|
||||
- /ab{2,4}c/ -> abbb?b?c -> ((?:(?:(?:(?:(?:c)?b)?b)?b?)?b?)?a).*
|
||||
- /a*b/ -> ^((?:b)?a*+) (final repetitions become eager)
|
||||
- /.*?ab/ -> ^((?:b)?a) (omit .*)
|
||||
- /a.*?b/ -> ^((?:b)?.*?a) (keep reluctant matches)
|
||||
- /a(bc)d/ -> ^((?:(?:d)?(?:(?:c)?b))?a)
|
||||
- /a(bc|de)/ -> ^((?:(?:(?:e)?d)?|(?:(?:c)?b)?)?a)
|
||||
- /ab{2,4}c/ -> ^cbbb?b?a -> ^((?:(?:(?:(?:(?:c)?b)?b)?b?)?b?)?a)
|
||||
|
||||
The regex will match a reversed string fully, and the end of the first (And only) capturing group will indicate the reversed start of the original partial pattern
|
||||
(i.e. just where the final .* starts in the inverted pattern; all other groups are turned into non-capturing groups, and reluctant quantifiers are ignored)
|
||||
The regex will match a reversed string fully, and the end of the first (And only) capturing group will indicate the reversed start of the original partial pattern.
|
||||
All other groups are turned into non-capturing groups, and reluctant quantifiers are ignored.
|
||||
*/
|
||||
std::string regex_to_reversed_partial_regex(const std::string & pattern) {
|
||||
auto it = pattern.begin();
|
||||
|
|
@ -177,7 +177,7 @@ std::string regex_to_reversed_partial_regex(const std::string & pattern) {
|
|||
}
|
||||
}
|
||||
|
||||
// /abcd/ -> (dcba|cba|ba|a).* -> ((?:(?:(?:d)?c)?b)?a).*
|
||||
// /abcd/ -> ^(dcba|cba|ba|a) -> ^((?:(?:(?:d)?c)?b)?a)
|
||||
// if n(=4) parts, opening n-1(=3) non-capturing groups after the 1 capturing group
|
||||
// We'll do the outermost capturing group and final .* in the enclosing function.
|
||||
std::vector<std::string> res_alts;
|
||||
|
|
@ -200,5 +200,5 @@ std::string regex_to_reversed_partial_regex(const std::string & pattern) {
|
|||
throw std::runtime_error("Unmatched '(' in pattern");
|
||||
}
|
||||
|
||||
return "(" + res + ")[\\s\\S]*";
|
||||
return "^(" + res + ")";
|
||||
}
|
||||
|
|
|
|||
|
|
@ -120,17 +120,34 @@ struct common_sampler {
|
|||
}
|
||||
|
||||
void set_logits(struct llama_context * ctx, int idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
const float * sampled_probs = llama_get_sampled_probs_ith (ctx, idx);
|
||||
const float * sampled_logits = llama_get_sampled_logits_ith (ctx, idx);
|
||||
const llama_token * sampled_ids = llama_get_sampled_candidates_ith(ctx, idx);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
|
||||
cur.resize(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
||||
if (sampled_probs) {
|
||||
const uint32_t sampled_probs_count = llama_get_sampled_probs_count_ith(ctx, idx);
|
||||
cur.resize(sampled_probs_count);
|
||||
for (uint32_t i = 0; i < sampled_probs_count; ++i) {
|
||||
cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], sampled_probs[i]};
|
||||
}
|
||||
} else if (sampled_logits) {
|
||||
const uint32_t sampled_logits_count = llama_get_sampled_logits_count_ith(ctx, idx);
|
||||
cur.resize(sampled_logits_count);
|
||||
for (uint32_t i = 0; i < sampled_logits_count; i++) {
|
||||
cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], 0.0f};
|
||||
}
|
||||
} else {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
GGML_ASSERT(logits != nullptr);
|
||||
cur.resize(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
||||
}
|
||||
}
|
||||
|
||||
cur_p = { cur.data(), cur.size(), -1, false };
|
||||
|
|
@ -159,7 +176,7 @@ std::string common_params_sampling::print() const {
|
|||
return std::string(result);
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, struct common_params_sampling & params) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
|
@ -179,24 +196,30 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
|||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
} else {
|
||||
std::vector<std::string> trigger_patterns;
|
||||
std::vector<std::string> patterns_anywhere;
|
||||
std::vector<llama_token> trigger_tokens;
|
||||
for (const auto & trigger : params.grammar_triggers) {
|
||||
switch (trigger.type) {
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
|
||||
{
|
||||
const auto & word = trigger.value;
|
||||
patterns_anywhere.push_back(regex_escape(word));
|
||||
trigger_patterns.push_back(regex_escape(word));
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
|
||||
{
|
||||
patterns_anywhere.push_back(trigger.value);
|
||||
trigger_patterns.push_back(trigger.value);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
|
||||
{
|
||||
trigger_patterns.push_back(trigger.value);
|
||||
const auto & pattern = trigger.value;
|
||||
std::string anchored = "^$";
|
||||
if (!pattern.empty()) {
|
||||
anchored = (pattern.front() != '^' ? "^" : "")
|
||||
+ pattern
|
||||
+ (pattern.back() != '$' ? "$" : "");
|
||||
}
|
||||
trigger_patterns.push_back(anchored);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
|
||||
|
|
@ -210,10 +233,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
|||
}
|
||||
}
|
||||
|
||||
if (!patterns_anywhere.empty()) {
|
||||
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
|
||||
std::vector<const char *> trigger_patterns_c;
|
||||
trigger_patterns_c.reserve(trigger_patterns.size());
|
||||
for (const auto & regex : trigger_patterns) {
|
||||
|
|
@ -296,6 +315,12 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
|||
llama_sampler_chain_add(chain, smpl);
|
||||
}
|
||||
|
||||
if (grmr && params.backend_sampling) {
|
||||
LOG_WRN("%s: backend sampling is not compatible with grammar, disabling\n", __func__);
|
||||
|
||||
params.backend_sampling = false;
|
||||
}
|
||||
|
||||
auto * result = new common_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ grmr,
|
||||
|
|
@ -405,6 +430,25 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
|
|||
auto & chain = gsmpl->chain;
|
||||
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
|
||||
|
||||
// Check if a backend sampler has already sampled a token in which case we
|
||||
// return that token id directly.
|
||||
{
|
||||
id = llama_get_sampled_token_ith(ctx, idx);
|
||||
|
||||
if (id != LLAMA_TOKEN_NULL) {
|
||||
LOG_DBG("%s: Backend sampler selected token: '%d'. Will not run any CPU samplers\n", __func__, id);
|
||||
|
||||
GGML_ASSERT(!gsmpl->grmr && "using grammar in combination with backend sampling is not supported");
|
||||
|
||||
// TODO: simplify
|
||||
gsmpl->cur.resize(1);
|
||||
gsmpl->cur[0] = { id, 0.0f, 1.0f };
|
||||
cur_p = { gsmpl->cur.data(), gsmpl->cur.size(), 0, true };
|
||||
|
||||
return id;
|
||||
}
|
||||
}
|
||||
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
if (grammar_first) {
|
||||
|
|
|
|||
|
|
@ -36,7 +36,8 @@ struct common_sampler;
|
|||
|
||||
// llama_sampler API overloads
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params);
|
||||
// note: can mutate params in some cases
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, struct common_params_sampling & params);
|
||||
|
||||
void common_sampler_free(struct common_sampler * gsmpl);
|
||||
|
||||
|
|
@ -48,6 +49,7 @@ struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
|
|||
// arguments can be nullptr to skip printing
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
|
||||
|
||||
// get the underlying llama_sampler_chain
|
||||
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
|
||||
|
||||
// extended sampling implementation:
|
||||
|
|
|
|||
|
|
@ -771,9 +771,14 @@ class TextModel(ModelBase):
|
|||
|
||||
self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
|
||||
|
||||
rope_theta = self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)
|
||||
local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "swa_rope_theta", "rope_local_base_freq"], optional=True)
|
||||
|
||||
# Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
|
||||
if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
|
||||
if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
|
||||
if local_rope_theta is not None:
|
||||
self.rope_parameters["sliding_attention"] = {"rope_theta": local_rope_theta}
|
||||
if "rope_theta" not in self.rope_parameters and rope_theta is not None:
|
||||
self.rope_parameters["rope_theta"] = rope_theta
|
||||
if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
|
||||
self.rope_parameters["rope_type"] = rope_type
|
||||
|
|
@ -839,6 +844,7 @@ class TextModel(ModelBase):
|
|||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
logger.info(f"gguf: key-value head count = {n_head_kv}")
|
||||
|
||||
# TODO: Handle "sliding_attention" similarly when models start implementing it
|
||||
rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
|
||||
if (rope_type := rope_params.get("rope_type")) is not None:
|
||||
rope_factor = rope_params.get("factor")
|
||||
|
|
@ -885,6 +891,9 @@ class TextModel(ModelBase):
|
|||
if (rope_theta := rope_params.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
logger.info(f"gguf: rope theta = {rope_theta}")
|
||||
if (local_rope_theta := self.rope_parameters.get("sliding_attention", {}).get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base_swa(local_rope_theta)
|
||||
logger.info(f"gguf: rope theta swa = {local_rope_theta}")
|
||||
if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
|
|
@ -1062,6 +1071,9 @@ class TextModel(ModelBase):
|
|||
if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
|
||||
# ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
|
||||
res = "grok-2"
|
||||
if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
|
||||
# ref: https://huggingface.co/aari1995/German_Semantic_V3
|
||||
res = "jina-v2-de"
|
||||
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
|
||||
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
|
||||
res = "llama-bpe"
|
||||
|
|
@ -1230,6 +1242,12 @@ class TextModel(ModelBase):
|
|||
if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
|
||||
# ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
|
||||
res = "kormo"
|
||||
if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
|
||||
# ref: https://huggingface.co/tencent/Youtu-LLM-2B
|
||||
res = "youtu"
|
||||
if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
|
||||
# ref: https://huggingface.co/upstage/Solar-Open-100B
|
||||
res = "solar-open"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
|
|
@ -2486,6 +2504,7 @@ class StableLMModel(TextModel):
|
|||
"VLlama3ForCausalLM",
|
||||
"LlavaForConditionalGeneration",
|
||||
"VoxtralForConditionalGeneration",
|
||||
"IQuestCoderForCausalLM",
|
||||
"LlamaModel")
|
||||
class LlamaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
|
@ -3503,7 +3522,7 @@ class QwenModel(TextModel):
|
|||
self._set_vocab_qwen()
|
||||
|
||||
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM")
|
||||
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
|
||||
class Qwen2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
|
|
@ -4994,7 +5013,6 @@ class Plamo3Model(TextModel):
|
|||
if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
|
||||
self.gguf_writer.add_sliding_window(sliding_window)
|
||||
self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
|
||||
self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("rope_local_theta")})["rope_theta"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
|
||||
|
|
@ -5284,13 +5302,14 @@ class BertModel(TextModel):
|
|||
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
|
||||
|
||||
# convert to phantom space vocab
|
||||
def phantom(tok):
|
||||
if tok.startswith("[") and tok.endswith("]"):
|
||||
def phantom(tok, toktype):
|
||||
if toktype == gguf.TokenType.CONTROL:
|
||||
return tok
|
||||
if tok.startswith("##"):
|
||||
return tok[2:]
|
||||
return "\u2581" + tok
|
||||
tokens = list(map(phantom, tokens))
|
||||
assert len(tokens) == len(toktypes)
|
||||
tokens = list(map(phantom, tokens, toktypes))
|
||||
|
||||
# add vocab to gguf
|
||||
self.gguf_writer.add_tokenizer_model("bert")
|
||||
|
|
@ -6404,6 +6423,17 @@ class ARwkv7Model(Rwkv7Model):
|
|||
self.gguf_writer.add_head_count(0)
|
||||
|
||||
|
||||
@ModelBase.register("MaincoderForCausalLM")
|
||||
class MaincoderModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.MAINCODER
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
if (head_dim := self.hparams.get("head_dim")) is not None:
|
||||
self.gguf_writer.add_rope_dimension_count(head_dim)
|
||||
|
||||
|
||||
@ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
|
||||
class MambaModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.MAMBA
|
||||
|
|
@ -7181,6 +7211,7 @@ class DeepseekModel(TextModel):
|
|||
"DeepseekV2ForCausalLM",
|
||||
"DeepseekV3ForCausalLM",
|
||||
"KimiVLForConditionalGeneration",
|
||||
"YoutuForCausalLM",
|
||||
)
|
||||
class DeepseekV2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
|
||||
|
|
@ -7247,7 +7278,15 @@ class DeepseekV2Model(TextModel):
|
|||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
# first_k_dense_replace: number of leading layers using dense FFN instead of MoE
|
||||
# For non-MoE models (like Youtu), set to n_layer to use dense FFN for all layers
|
||||
# For MoE models (like DeepSeek-V2), this is the number of leading non-MoE layers
|
||||
has_moe = hparams.get("n_routed_experts") is not None
|
||||
first_k_dense_replace = hparams.get("first_k_dense_replace")
|
||||
if first_k_dense_replace is None:
|
||||
# Default: if no MoE, all layers are dense; if MoE, none are dense
|
||||
first_k_dense_replace = hparams["num_hidden_layers"] if not has_moe else 0
|
||||
self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
|
||||
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
|
||||
|
|
@ -7259,11 +7298,24 @@ class DeepseekV2Model(TextModel):
|
|||
self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||||
self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
|
||||
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
|
||||
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
|
||||
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
|
||||
# MoE parameters (required by C++ code for DEEPSEEK2 arch)
|
||||
# For non-MoE models like Youtu, use intermediate_size as expert_feed_forward_length
|
||||
moe_intermediate_size = self.find_hparam(["moe_intermediate_size", "intermediate_size"], optional=False)
|
||||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
|
||||
|
||||
if (n_routed_experts := hparams.get("n_routed_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_routed_experts)
|
||||
|
||||
# expert_shared_count is required by C++ code, default to 0 for non-MoE models
|
||||
n_shared_experts = hparams.get("n_shared_experts", 0)
|
||||
self.gguf_writer.add_expert_shared_count(n_shared_experts)
|
||||
|
||||
# When not set, C++ code will use scale_w = false to skip the no-op scaling
|
||||
if (routed_scaling_factor := hparams.get("routed_scaling_factor")) is not None:
|
||||
self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
|
||||
|
||||
if (norm_topk_prob := hparams.get("norm_topk_prob")) is not None and norm_topk_prob:
|
||||
self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
|
||||
|
||||
|
|
@ -7279,10 +7331,17 @@ class DeepseekV2Model(TextModel):
|
|||
# skip vision tensors and remove "language_model." for Kimi-VL
|
||||
if "vision_tower" in name or "multi_modal_projector" in name:
|
||||
return []
|
||||
|
||||
if name.startswith("siglip2.") or name.startswith("merger."):
|
||||
return []
|
||||
if name.startswith("language_model."):
|
||||
name = name.replace("language_model.", "")
|
||||
|
||||
# skip lm_head.weight if tie_word_embeddings is True
|
||||
if self.hparams.get("tie_word_embeddings", False):
|
||||
if name == "lm_head.weight" or name == "model.lm_head.weight":
|
||||
logger.info("Skipping tied output layer 'lm_head.weight' (will use token_embd.weight)")
|
||||
return []
|
||||
|
||||
# rename e_score_correction_bias tensors
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
|
|
@ -7429,7 +7488,6 @@ class MimoV2Model(TextModel):
|
|||
|
||||
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
|
||||
self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
|
||||
self.gguf_writer.add_rope_freq_base_swa(self.hparams["swa_rope_theta"])
|
||||
self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
|
||||
self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
|
||||
|
|
@ -9292,6 +9350,19 @@ class VoxtralWhisperEncoderModel(WhisperEncoderModel):
|
|||
self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
|
||||
|
||||
|
||||
@ModelBase.register("AudioFlamingo3ForConditionalGeneration")
|
||||
class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
if ".conv" in name and ".weight" in name:
|
||||
# Was trained in BF16, being safe, avoiding quantizing to FP16
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
|
||||
@ModelBase.register("FalconH1ForCausalLM")
|
||||
class FalconH1Model(Mamba2Model):
|
||||
model_arch = gguf.MODEL_ARCH.FALCON_H1
|
||||
|
|
@ -10154,7 +10225,6 @@ class ModernBertModel(BertModel):
|
|||
self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
|
||||
if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
|
||||
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
|
||||
self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("local_rope_theta")})["rope_theta"])
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
|
||||
|
||||
|
|
@ -10604,6 +10674,79 @@ class JanusProVisionModel(MmprojModel):
|
|||
return []
|
||||
|
||||
|
||||
@ModelBase.register("YOUTUVLForConditionalGeneration", "YOUTUVLForCausalLM")
|
||||
class YOUTUVLVisionModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
assert self.hparams_vision is not None
|
||||
self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.YOUTUVL)
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
|
||||
|
||||
# Handle activation function
|
||||
hidden_act = str(self.hparams.get("hidden_act", "gelu_pytorch_tanh")).lower()
|
||||
if hidden_act in ("gelu", "gelu_pytorch_tanh", "gelu_fast", "gelu_new", "gelu_accurate"):
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
elif hidden_act == "silu":
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
else:
|
||||
raise ValueError(f"Unsupported activation function for YOUTUVL: {hidden_act}")
|
||||
|
||||
self.gguf_writer.add_vision_spatial_merge_size(self.hparams.get("spatial_merge_size", 2))
|
||||
|
||||
window_size = self.hparams.get("window_size")
|
||||
if window_size is not None:
|
||||
self.gguf_writer.add_vision_window_size(window_size)
|
||||
# fullatt_block_indexes contains explicit layer indices that use full attention
|
||||
# e.g., [2, 5, 8, 11] means layers 2, 5, 8, 11 use full attention
|
||||
# All other layers use window attention
|
||||
fullatt_block_indexes = self.hparams.get("fullatt_block_indexes")
|
||||
assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for youtuvl"
|
||||
# Store the explicit layer indices for YoutuVL (irregular pattern approach)
|
||||
self.gguf_writer.add_vision_wa_layer_indexes(layers=fullatt_block_indexes)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
# Skip language model tensors
|
||||
skip_prefixes = ('lm_head.', 'model.layers.', 'model.embed_tokens.', 'model.norm.')
|
||||
if name.startswith(skip_prefixes):
|
||||
return []
|
||||
|
||||
# Try to map the tensor using TensorNameMap (handles vision encoder and projector)
|
||||
try:
|
||||
new_name = self.map_tensor_name(name)
|
||||
return [(new_name, data_torch)]
|
||||
except ValueError:
|
||||
# If mapping fails, log warning and skip
|
||||
logger.warning(f"Cannot map tensor: {name}")
|
||||
return []
|
||||
|
||||
|
||||
@ModelBase.register("SolarOpenForCausalLM")
|
||||
class SolarOpenModel(Glm4MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.GLM4_MOE
|
||||
|
||||
def set_vocab(self):
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
|
||||
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
|
||||
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -145,6 +145,8 @@ models = [
|
|||
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
|
||||
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
|
||||
{"name": "kormo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/KORMo-Team/KORMo-tokenizer", },
|
||||
{"name": "youtu", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Youtu-LLM-2B", },
|
||||
{"name": "solar-open", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/upstage/Solar-Open-100B", },
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
|
|
@ -165,6 +167,8 @@ pre_computed_hashes = [
|
|||
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B", "chkhsh": "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c"},
|
||||
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
|
||||
# jina-v2-de variants
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/aari1995/German_Semantic_V3", "chkhsh": "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df"},
|
||||
]
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -327,3 +327,7 @@ Maximum number of compiled CANN graphs kept in the LRU cache, default is 12. Whe
|
|||
### GGML_CANN_PREFILL_USE_GRAPH
|
||||
|
||||
Enable ACL graph execution during the prefill stage, default is false. This option is only effective when FA is enabled.
|
||||
|
||||
### GGML_CANN_OPERATOR_FUSION
|
||||
|
||||
Enable operator fusion during computation, default is false. This option fuses compatible operators (e.g., ADD + RMS_NORM) to reduce overhead and improve performance.
|
||||
|
|
|
|||
|
|
@ -218,6 +218,56 @@ cmake .. -G Ninja `
|
|||
ninja
|
||||
```
|
||||
|
||||
## Linux
|
||||
|
||||
The two steps just above also apply to Linux. When building for linux, the commands are mostly the same as those for PowerShell on Windows, but in the second step they do not have the `-DCMAKE_TOOLCHAIN_FILE` parameter, and then in both steps the backticks are replaced with back slashes.
|
||||
|
||||
If not installed already, install Git, CMake, Clang, Ninja and Python, then run in the terminal the following:
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
1. **Install OpenCL Headers and Library**
|
||||
|
||||
```bash
|
||||
mkdir -p ~/dev/llm
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja \
|
||||
-DBUILD_TESTING=OFF \
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF \
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF \
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" \
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
```bash
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && cd llama.cpp
|
||||
mkdir build && cd build
|
||||
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DGGML_OPENCL=ON
|
||||
ninja
|
||||
```
|
||||
|
||||
## Known Issues
|
||||
|
||||
- Flash attention does not always improve performance.
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@ Legend:
|
|||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
|
|
|
|||
|
|
@ -965,6 +965,7 @@
|
|||
"Metal","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[12,12,1,2560],ne_kernel=[3,3,1,2560],s0=1,s1=1,p0=1,p1=1,d0=1,d1=1,is_2D=1","support","1","yes","Metal"
|
||||
"Metal","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[12,12,2,2560],ne_kernel=[3,3,2,2560],s0=1,s1=1,p0=1,p1=1,d0=1,d1=1,is_2D=1","support","1","yes","Metal"
|
||||
"Metal","IM2COL","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[5,5,1,32],ne_kernel=[3,4,1,32],s0=1,s1=1,p0=0,p1=0,d0=1,d1=1,is_2D=1","support","1","yes","Metal"
|
||||
"Metal","IM2COL","type_input=f32,type_kernel=f32,dst_type=f32,ne_input=[2,2,1536,729],ne_kernel=[2,2,1536,4096],s0=1,s1=1,p0=0,p1=0,d0=1,d1=1,is_2D=1","support","1","yes","Metal"
|
||||
"Metal","IM2COL_3D","type_input=f32,type_kernel=f32,dst_type=f32,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","Metal"
|
||||
"Metal","IM2COL_3D","type_input=f32,type_kernel=f16,dst_type=f32,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","Metal"
|
||||
"Metal","IM2COL_3D","type_input=f32,type_kernel=f16,dst_type=f16,ne_input=[10,10,10,9],ne_kernel=[3,3,3,1],IC=3,s0=1,s1=1,s2=1,p0=1,p1=1,p2=1,d0=1,d1=1,d2=1,v=0","support","0","no","Metal"
|
||||
|
|
@ -4964,8 +4965,9 @@
|
|||
"Metal","CONV_TRANSPOSE_1D","ne_input=[2,1,1,1],ne_kernel=[3,1,1,1],s0=1,p0=0,d0=1","support","1","yes","Metal"
|
||||
"Metal","CONV_TRANSPOSE_2D","ne_input=[3,2,3,1],ne_kernel=[2,2,1,3],stride=1","support","1","yes","Metal"
|
||||
"Metal","CONV_TRANSPOSE_2D","ne_input=[10,10,9,1],ne_kernel=[3,3,1,9],stride=2","support","1","yes","Metal"
|
||||
"Metal","COUNT_EQUAL","type=f32,ne=[4,500,1,1]","support","0","no","Metal"
|
||||
"Metal","COUNT_EQUAL","type=f32,ne=[4,5000,1,1]","support","0","no","Metal"
|
||||
"Metal","CONV_TRANSPOSE_2D","ne_input=[129,63,35,1],ne_kernel=[3,3,48,35],stride=1","support","1","yes","Metal"
|
||||
"Metal","COUNT_EQUAL","type=f32,ne=[4,500,1,1]","support","1","yes","Metal"
|
||||
"Metal","COUNT_EQUAL","type=f32,ne=[4,5000,1,1]","support","1","yes","Metal"
|
||||
"Metal","ARGMAX","type=f32,ne=[32,1,1,1]","support","1","yes","Metal"
|
||||
"Metal","ARGMAX","type=f32,ne=[32,513,1,1]","support","1","yes","Metal"
|
||||
"Metal","ARGMAX","type=f32,ne=[100,10,1,1]","support","1","yes","Metal"
|
||||
|
|
@ -5715,15 +5717,15 @@
|
|||
"Metal","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Metal"
|
||||
"Metal","RMS_NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000001,inplace=1","support","1","yes","Metal"
|
||||
"Metal","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[6,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[6,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[6,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[3,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","1","yes","Metal"
|
||||
|
|
@ -5733,6 +5735,15 @@
|
|||
"Metal","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,1024,1,1],ne_b=[9,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[18,1024,1,1],ne_b=[9,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,1024,4,1],ne_b=[9,1024,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,1536,1,1],ne_b=[9,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[18,1536,1,1],ne_b=[9,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,1536,4,1],ne_b=[9,1536,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,2048,1,1],ne_b=[9,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[18,2048,1,1],ne_b=[9,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_CONV","type=f32,ne_a=[9,2048,4,1],ne_b=[9,2048,1,1]","support","1","yes","Metal"
|
||||
"Metal","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","1","yes","Metal"
|
||||
"Metal","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Metal"
|
||||
"Metal","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Metal"
|
||||
|
|
@ -8916,6 +8927,8 @@
|
|||
"Metal","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=0,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=0.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=1,m_prec=f32,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX","type=f32,ne=[32,2,32,1],mask=1,sinks=1,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX","type=f32,ne=[200001,2,3,1],mask=1,sinks=1,m_prec=f32,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX","type=f32,ne=[200001,2,3,1],mask=1,sinks=1,m_prec=f16,nr23=[1,1],scale=0.100000,max_bias=8.000000,inplace=0","support","1","yes","Metal"
|
||||
"Metal","SOFT_MAX_BACK","type=f32,ne=[16,16,1,1],scale=1.000000,max_bias=0.000000","support","0","no","Metal"
|
||||
"Metal","SOFT_MAX_BACK","type=f32,ne=[15,15,1,1],scale=1.000000,max_bias=0.000000","support","0","no","Metal"
|
||||
"Metal","SOFT_MAX_BACK","type=f32,ne=[16,16,2,3],scale=1.000000,max_bias=0.000000","support","0","no","Metal"
|
||||
|
|
@ -9542,311 +9555,311 @@
|
|||
"Metal","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","Metal"
|
||||
"Metal","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","Metal"
|
||||
"Metal","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[12,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[13,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[13,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=100","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=500","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=1023","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=9999","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=1","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=2","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=3","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=7","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=15","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=500,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","1","yes","Metal"
|
||||
"Metal","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","Metal"
|
||||
"Metal","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","Metal"
|
||||
"Metal","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","1","yes","Metal"
|
||||
|
|
@ -9891,8 +9904,9 @@
|
|||
"Metal","GROUP_NORM","type=f32,ne=[64,64,320,1],num_groups=32,eps=0.000001","support","1","yes","Metal"
|
||||
"Metal","GROUP_NORM","type=f32,ne=[9,9,1280,1],num_groups=32,eps=0.000001","support","1","yes","Metal"
|
||||
"Metal","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1,circular=0","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[33,17,2,1],pad_0=4,pad_1=3,circular=1","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0,circular=0","support","0","no","Metal"
|
||||
"Metal","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","1","yes","Metal"
|
||||
"Metal","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","1","yes","Metal"
|
||||
"Metal","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","0","no","Metal"
|
||||
|
|
@ -9923,17 +9937,41 @@
|
|||
"Metal","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","1","yes","Metal"
|
||||
"Metal","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","1","yes","Metal"
|
||||
"Metal","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","1","yes","Metal"
|
||||
"Metal","DIAG","type=f32,ne=[10,1,4,3]","support","0","no","Metal"
|
||||
"Metal","DIAG","type=f32,ne=[79,1,19,13]","support","0","no","Metal"
|
||||
"Metal","DIAG","type=f32,ne=[256,1,8,16]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[64,64,2,2]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[79,79,5,3],ne_rhs=[417,79,5,3]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,2],ne_rhs=[32,128,4,2]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[80,80,2,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[79,80,2,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,2,8],ne_rhs=[81,80,2,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[80,80,8,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[79,80,8,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[80,80,8,8],ne_rhs=[81,80,8,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[84,84,4,4],ne_rhs=[32,84,4,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[95,95,8,8],ne_rhs=[40,95,8,8]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,4],ne_rhs=[31,128,4,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,4],ne_rhs=[32,128,4,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,3,4],ne_rhs=[32,128,3,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,1],ne_rhs=[32,128,4,1]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[64,64,4,4],ne_rhs=[200,64,4,4]","support","0","no","Metal"
|
||||
"Metal","SOLVE_TRI","type=f32,ne_lhs=[64,64,4,4],ne_rhs=[384,64,4,4]","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=0","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=0","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=1","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=1","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=0","support","1","yes","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=0","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=1","support","0","no","Metal"
|
||||
"Metal","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=1","support","0","no","Metal"
|
||||
"Metal","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f32,permute=[0,1,2,3]","support","1","yes","Metal"
|
||||
"Metal","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f16,permute=[0,1,2,3]","support","1","yes","Metal"
|
||||
"Metal","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=bf16,permute=[0,1,2,3]","support","1","yes","Metal"
|
||||
|
|
|
|||
|
Can't render this file because it is too large.
|
|
|
@ -68,7 +68,7 @@ int main(int argc, char ** argv) {
|
|||
auto sparams = llama_sampler_chain_default_params();
|
||||
sparams.no_perf = false;
|
||||
|
||||
std::vector<llama_sampler *> samplers;
|
||||
std::vector<llama_sampler_seq_config> sampler_configs;
|
||||
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
|
@ -78,7 +78,13 @@ int main(int argc, char ** argv) {
|
|||
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
|
||||
|
||||
samplers.push_back(smpl);
|
||||
sampler_configs.push_back({ i, smpl });
|
||||
}
|
||||
|
||||
// TODO: temporarily gated behind a flag
|
||||
if (params.sampling.backend_sampling) {
|
||||
ctx_params.samplers = sampler_configs.data();
|
||||
ctx_params.n_samplers = sampler_configs.size();
|
||||
}
|
||||
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
|
|
@ -180,7 +186,7 @@ int main(int argc, char ** argv) {
|
|||
continue;
|
||||
}
|
||||
|
||||
const llama_token new_token_id = llama_sampler_sample(samplers[i], ctx, i_batch[i]);
|
||||
const llama_token new_token_id = llama_sampler_sample(sampler_configs[i].sampler, ctx, i_batch[i]);
|
||||
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_predict) {
|
||||
|
|
@ -236,15 +242,15 @@ int main(int argc, char ** argv) {
|
|||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_sampler_print(samplers[0]);
|
||||
llama_perf_sampler_print(sampler_configs[0].sampler);
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
for (auto & sampler_config : samplers) {
|
||||
llama_sampler_free(sampler_config);
|
||||
for (auto & sampler_config : sampler_configs) {
|
||||
llama_sampler_free(sampler_config.sampler);
|
||||
}
|
||||
|
||||
llama_free(ctx);
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@ project("ggml" C CXX ASM)
|
|||
### GGML Version
|
||||
set(GGML_VERSION_MAJOR 0)
|
||||
set(GGML_VERSION_MINOR 9)
|
||||
set(GGML_VERSION_PATCH 4)
|
||||
set(GGML_VERSION_PATCH 5)
|
||||
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
|
||||
|
||||
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
|
|
|||
|
|
@ -358,7 +358,7 @@ extern "C" {
|
|||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node);
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor const * const * test_nodes, size_t num_test_nodes);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
|
|
|
|||
|
|
@ -2053,7 +2053,7 @@ void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
|||
ggml_free(copy.ctx_unallocated);
|
||||
}
|
||||
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor const * const * test_nodes, size_t num_test_nodes) {
|
||||
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
||||
if (copy.buffer == NULL) {
|
||||
return false;
|
||||
|
|
@ -2064,22 +2064,22 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
|||
|
||||
assert(g1->n_nodes == g2->n_nodes);
|
||||
|
||||
if (test_node != nullptr) {
|
||||
// Compute the whole graph and only test the output for a specific tensor
|
||||
if (num_test_nodes != 0) {
|
||||
GGML_ASSERT(test_nodes);
|
||||
// Compute the whole graph and only test the output for specific tensors
|
||||
ggml_backend_graph_compute(backend1, g1);
|
||||
ggml_backend_graph_compute(backend2, g2);
|
||||
|
||||
int test_node_idx = -1;
|
||||
bool verified = false;
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
if (t1 == test_node) {
|
||||
test_node_idx = i;
|
||||
break;
|
||||
for (size_t j = 0; j < num_test_nodes; ++j) {
|
||||
if (g1->nodes[i] == test_nodes[j]) {
|
||||
callback(i, g1->nodes[i], g2->nodes[i], user_data);
|
||||
verified = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(test_node_idx != -1);
|
||||
|
||||
callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
|
||||
GGML_ASSERT(verified);
|
||||
} else {
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
|
|
|
|||
|
|
@ -26,6 +26,7 @@
|
|||
#include "ggml.h"
|
||||
|
||||
#include <aclnnop/aclnn_add.h>
|
||||
#include <aclnnop/aclnn_add_rms_norm.h>
|
||||
#include <aclnnop/aclnn_addcdiv.h>
|
||||
#include <aclnnop/aclnn_argmax.h>
|
||||
#include <aclnnop/aclnn_avgpool2d.h>
|
||||
|
|
@ -3805,3 +3806,57 @@ void ggml_cann_ssm_conv(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
|||
cubeMathType);
|
||||
}
|
||||
|
||||
|
||||
void ggml_cann_op_add_rms_norm_fused(ggml_backend_cann_context & ctx,
|
||||
ggml_tensor * add_node,
|
||||
ggml_tensor * rms_norm_node) {
|
||||
// Get the two input tensors for ADD operation
|
||||
ggml_tensor * x1 = add_node->src[0];
|
||||
ggml_tensor * x2 = add_node->src[1];
|
||||
|
||||
// Create ACL tensors for the two ADD inputs
|
||||
acl_tensor_ptr acl_x1 = ggml_cann_create_tensor(x1);
|
||||
acl_tensor_ptr acl_x2 = ggml_cann_create_tensor(x2);
|
||||
|
||||
// Get epsilon parameter from rms_norm_tensor
|
||||
float eps;
|
||||
memcpy(&eps, rms_norm_node->op_params, sizeof(float));
|
||||
|
||||
// Build gamma tensor (RMS normalization scaling factor)
|
||||
// Gamma should match the normalized dimensions (last dimension of x1)
|
||||
size_t acl_gamma_nb[GGML_MAX_DIMS];
|
||||
acl_gamma_nb[0] = ggml_type_size(rms_norm_node->type);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
acl_gamma_nb[i] = acl_gamma_nb[i - 1] * x1->ne[i - 1];
|
||||
}
|
||||
acl_tensor_ptr acl_gamma =
|
||||
get_cache_acl_tensor(ctx, &ctx.rms_norm_one_tensor_cache.cache, ctx.rms_norm_one_tensor_cache.size, x1->ne,
|
||||
acl_gamma_nb, rms_norm_node->type,
|
||||
1, // dims - only the last dimension
|
||||
1.0f // value
|
||||
);
|
||||
|
||||
// Build rstdOut tensor (output for normalized standard deviation)
|
||||
// Shape should be the dimensions that are NOT normalized
|
||||
int64_t acl_rstd_ne[] = { 1, x1->ne[1], x1->ne[2], x1->ne[3] };
|
||||
size_t acl_rstd_nb[GGML_MAX_DIMS - 1];
|
||||
acl_rstd_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
|
||||
acl_rstd_nb[i] = acl_rstd_nb[i - 1] * acl_rstd_ne[i - 1];
|
||||
}
|
||||
acl_tensor_ptr acl_rstd =
|
||||
get_cache_acl_tensor(ctx, &ctx.rms_norm_zero_tensor_cache.cache, ctx.rms_norm_zero_tensor_cache.size,
|
||||
acl_rstd_ne, acl_rstd_nb, GGML_TYPE_F32, GGML_MAX_DIMS,
|
||||
0.0f // value
|
||||
);
|
||||
|
||||
acl_tensor_ptr acl_xout = ggml_cann_create_tensor(add_node);
|
||||
|
||||
// Create yOut tensor (final output after RMS normalization)
|
||||
acl_tensor_ptr acl_yout = ggml_cann_create_tensor(rms_norm_node);
|
||||
|
||||
// Call fused ADD + RMS_NORM operator
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, AddRmsNorm, acl_x1.get(), acl_x2.get(), acl_gamma.get(),
|
||||
eps, // double type
|
||||
acl_yout.get(), acl_rstd.get(), acl_xout.get());
|
||||
}
|
||||
|
|
|
|||
|
|
@ -935,6 +935,20 @@ template <typename... Args> void register_acl_resources(std::vector<any_acl_reso
|
|||
*/
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Performs fused ADD + RMS_NORM operation using the CANN backend.
|
||||
*
|
||||
* This function fuses the ADD and RMS_NORM operations into a single kernel call
|
||||
* for better performance. It first adds two input tensors (x1 + x2), then applies
|
||||
* RMS normalization to the result.
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param dst The ADD operation node, contains the two input tensors to be added.
|
||||
* @param rms_norm_tensor The RMS_NORM operation node, contains the gamma weights
|
||||
* and epsilon parameter.
|
||||
*/
|
||||
void ggml_cann_op_add_rms_norm_fused(ggml_backend_cann_context & ctx, ggml_tensor * add_node, ggml_tensor * rms_norm_node);
|
||||
|
||||
/**
|
||||
* @brief Check whether a tensor is a weight tensor for matrix multiplication.
|
||||
*
|
||||
|
|
|
|||
|
|
@ -1888,6 +1888,7 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context & ctx, struct gg
|
|||
break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
ggml_cann_out_prod(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SSM_CONV:
|
||||
ggml_cann_ssm_conv(ctx, dst);
|
||||
break;
|
||||
|
|
@ -2077,6 +2078,40 @@ static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
|
|||
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Check if CANN backend can fuse the specified operation sequence
|
||||
*
|
||||
* This function determines whether an operation sequence starting from the specified node
|
||||
* can be fused into an optimized operation in the CANN backend. Operation fusion can reduce
|
||||
* memory access overhead and improve computational efficiency.
|
||||
*
|
||||
* @param cgraph Pointer to the computation graph
|
||||
* @param node_idx Index of the starting node in the computation graph
|
||||
* @param ops Sequence of operation types to check for fusion
|
||||
* @return true if the operations can be fused
|
||||
* @return false if the operations cannot be fused
|
||||
*/
|
||||
static bool ggml_cann_can_fuse(const struct ggml_cgraph * cgraph,
|
||||
int node_idx,
|
||||
std::initializer_list<enum ggml_op> ops) {
|
||||
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// CANN backend supports fusing ADD + RMS_NORM operations
|
||||
if ((ops.size() == 2) && ops.begin()[0] == GGML_OP_ADD && ops.begin()[1] == GGML_OP_RMS_NORM) {
|
||||
ggml_tensor * add_node = cgraph->nodes[node_idx];
|
||||
// TODO: support broadcast for ADD + RMS_NORM
|
||||
if (add_node->src[0]->ne[0] != add_node->src[1]->ne[0] || add_node->src[0]->ne[1] != add_node->src[1]->ne[1] ||
|
||||
add_node->src[0]->ne[2] != add_node->src[1]->ne[2] || add_node->src[0]->ne[3] != add_node->src[1]->ne[3]) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Evaluate the computation graph and optionally capture or execute it using CANN graph API.
|
||||
*
|
||||
|
|
@ -2101,9 +2136,18 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
|
|||
#endif // USE_ACL_GRAPH
|
||||
// Only perform the graph execution if CANN graphs are not enabled, or we are capturing the graph.
|
||||
// With the use of CANN graphs, the execution will be performed by the graph launch.
|
||||
static bool opt_fusion = parse_bool(get_env("GGML_CANN_OPERATOR_FUSION").value_or(""));
|
||||
|
||||
if (!use_cann_graph || cann_graph_capture_required) {
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
if (opt_fusion) {
|
||||
if (ggml_cann_can_fuse(cgraph, i, { GGML_OP_ADD, GGML_OP_RMS_NORM })) {
|
||||
ggml_cann_op_add_rms_norm_fused(*cann_ctx, node, cgraph->nodes[i + 1]);
|
||||
i++;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE ||
|
||||
node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
|
|
|
|||
|
|
@ -54,6 +54,20 @@ if (CUDAToolkit_FOUND)
|
|||
|
||||
enable_language(CUDA)
|
||||
|
||||
# TODO: Remove once CCCL 3.2 has been released and bundled with CUDA Toolkit
|
||||
if (GGML_CUDA_CUB_3DOT2)
|
||||
include(FetchContent)
|
||||
|
||||
FetchContent_Declare(
|
||||
CCCL
|
||||
GIT_REPOSITORY https://github.com/nvidia/cccl.git
|
||||
GIT_TAG v3.2.0-rc2
|
||||
GIT_SHALLOW TRUE
|
||||
)
|
||||
|
||||
FetchContent_MakeAvailable(CCCL)
|
||||
endif()
|
||||
|
||||
# Replace any plain 12X CUDA architectures with their "architecture-specific" equivalents 12Xa.
|
||||
# 12X is forwards-compatible, 12Xa is not.
|
||||
# Notably the Blackwell FP4 tensor core instructions are not forwards compatible and therefore need 12Xa.
|
||||
|
|
@ -143,6 +157,9 @@ if (CUDAToolkit_FOUND)
|
|||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas)
|
||||
else ()
|
||||
if (GGML_CUDA_CUB_3DOT2)
|
||||
target_link_libraries(ggml-cuda PRIVATE CCCL::CCCL)
|
||||
endif()
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "10.1")
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
else()
|
||||
|
|
@ -150,6 +167,9 @@ if (CUDAToolkit_FOUND)
|
|||
endif()
|
||||
endif()
|
||||
else()
|
||||
if (GGML_CUDA_CUB_3DOT2)
|
||||
target_link_libraries(ggml-cuda PRIVATE CCCL::CCCL)
|
||||
endif()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas)
|
||||
endif()
|
||||
|
||||
|
|
@ -218,6 +238,10 @@ if (CUDAToolkit_FOUND)
|
|||
|
||||
if (NOT MSVC)
|
||||
list(APPEND CUDA_CXX_FLAGS -Wno-pedantic)
|
||||
else()
|
||||
# CCCL 3.2 onwards will require a cpp-standard-compliant preprocessor for MSVC
|
||||
# https://github.com/NVIDIA/cccl/pull/6827
|
||||
list(APPEND CUDA_CXX_FLAGS /Zc:preprocessor)
|
||||
endif()
|
||||
|
||||
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
|
||||
|
|
|
|||
|
|
@ -22,13 +22,13 @@ static __global__ void init_offsets(int * offsets, const int ncols, const int nr
|
|||
}
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
||||
const float * x,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
ggml_sort_order order,
|
||||
cudaStream_t stream) {
|
||||
void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
||||
const float * x,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
ggml_sort_order order,
|
||||
cudaStream_t stream) {
|
||||
ggml_cuda_pool_alloc<int> temp_indices_alloc(pool, ncols * nrows);
|
||||
ggml_cuda_pool_alloc<float> temp_keys_alloc(pool, ncols * nrows);
|
||||
ggml_cuda_pool_alloc<int> offsets_alloc(pool, nrows + 1);
|
||||
|
|
@ -49,28 +49,49 @@ static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
|||
size_t temp_storage_bytes = 0;
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
DeviceSegmentedRadixSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
||||
temp_indices, dst, // values (indices)
|
||||
ncols * nrows, nrows, // num items, num segments
|
||||
d_offsets, d_offsets + 1, 0, sizeof(float) * 8, // all bits
|
||||
stream);
|
||||
if (nrows == 1) {
|
||||
DeviceRadixSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
||||
temp_indices, dst, // values (indices)
|
||||
ncols, 0, sizeof(float) * 8, stream);
|
||||
} else {
|
||||
DeviceSegmentedSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
||||
temp_indices, dst, // values (indices)
|
||||
ncols * nrows, nrows, // num items, num segments
|
||||
d_offsets, d_offsets + 1, stream);
|
||||
}
|
||||
} else {
|
||||
DeviceSegmentedRadixSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
|
||||
dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, 0,
|
||||
sizeof(float) * 8, stream);
|
||||
if (nrows == 1) {
|
||||
DeviceRadixSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
||||
temp_indices, dst, // values (indices)
|
||||
ncols, 0, sizeof(float) * 8, stream);
|
||||
} else {
|
||||
DeviceSegmentedSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
|
||||
dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, stream);
|
||||
}
|
||||
}
|
||||
|
||||
ggml_cuda_pool_alloc<uint8_t> temp_storage_alloc(pool, temp_storage_bytes);
|
||||
void * d_temp_storage = temp_storage_alloc.get();
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
DeviceSegmentedRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
|
||||
ncols * nrows, nrows, d_offsets, d_offsets + 1, 0, sizeof(float) * 8,
|
||||
stream);
|
||||
if (nrows == 1) {
|
||||
DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
||||
temp_indices, dst, // values (indices)
|
||||
ncols, 0, sizeof(float) * 8, stream);
|
||||
} else {
|
||||
DeviceSegmentedSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
|
||||
ncols * nrows, nrows, d_offsets, d_offsets + 1, stream);
|
||||
}
|
||||
} else {
|
||||
DeviceSegmentedRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
|
||||
temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
|
||||
0, sizeof(float) * 8, stream);
|
||||
if (nrows == 1) {
|
||||
DeviceRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
||||
temp_indices, dst, // values (indices)
|
||||
ncols, 0, sizeof(float) * 8, stream);
|
||||
} else {
|
||||
DeviceSegmentedSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
|
||||
temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
|
||||
stream);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
|
@ -141,12 +162,12 @@ static int next_power_of_2(int x) {
|
|||
return n;
|
||||
}
|
||||
|
||||
static void argsort_f32_i32_cuda_bitonic(const float * x,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
ggml_sort_order order,
|
||||
cudaStream_t stream) {
|
||||
void argsort_f32_i32_cuda_bitonic(const float * x,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
ggml_sort_order order,
|
||||
cudaStream_t stream) {
|
||||
// bitonic sort requires ncols to be power of 2
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
|
||||
|
|
|
|||
|
|
@ -1,3 +1,19 @@
|
|||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
||||
const float * x,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
ggml_sort_order order,
|
||||
cudaStream_t stream);
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
void argsort_f32_i32_cuda_bitonic(const float * x,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
ggml_sort_order order,
|
||||
cudaStream_t stream);
|
||||
|
|
|
|||
|
|
@ -950,15 +950,16 @@ struct ggml_cuda_device_info {
|
|||
int device_count;
|
||||
|
||||
struct cuda_device_info {
|
||||
int cc; // compute capability
|
||||
int nsm; // number of streaming multiprocessors
|
||||
size_t smpb; // max. shared memory per block
|
||||
size_t smpbo; // max. shared memory per block (with opt-in)
|
||||
bool integrated; // Device is integrated as opposed to discrete
|
||||
bool vmm; // virtual memory support
|
||||
size_t vmm_granularity; // granularity of virtual memory
|
||||
int cc; // compute capability
|
||||
int nsm; // number of streaming multiprocessors
|
||||
size_t smpb; // max. shared memory per block
|
||||
size_t smpbo; // max. shared memory per block (with opt-in)
|
||||
bool integrated; // Device is integrated as opposed to discrete
|
||||
bool vmm; // virtual memory support
|
||||
size_t vmm_granularity; // granularity of virtual memory
|
||||
size_t total_vram;
|
||||
int warp_size; // Number of threads in a dispatch
|
||||
int warp_size; // Number of threads in a dispatch
|
||||
bool supports_cooperative_launch; // whether cooperative launch is supported
|
||||
};
|
||||
|
||||
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
|
||||
|
|
@ -1058,11 +1059,11 @@ struct ggml_cuda_graph {
|
|||
cudaGraphExec_t instance = nullptr;
|
||||
size_t num_nodes = 0;
|
||||
std::vector<cudaGraphNode_t> nodes;
|
||||
std::vector<cudaKernelNodeParams> params;
|
||||
bool disable_due_to_gpu_arch = false;
|
||||
bool disable_due_to_too_many_updates = false;
|
||||
bool disable_due_to_failed_graph_capture = false;
|
||||
int number_consecutive_updates = 0;
|
||||
bool cuda_graphs_enabled = false;
|
||||
std::vector<ggml_graph_node_properties> ggml_graph_properties;
|
||||
#endif
|
||||
};
|
||||
|
|
|
|||
|
|
@ -12,11 +12,11 @@ const int CUDA_CPY_BLOCK_NM = 8; // block size of 3rd dimension if available
|
|||
const int CUDA_CPY_BLOCK_ROWS = 8; // block dimension for marching through rows
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_scalar(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
static __global__ void cpy_scalar(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
|
|
@ -40,10 +40,10 @@ static __global__ void cpy_scalar(const char * cx, char * cdst, const int ne,
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
|
||||
const T* src = reinterpret_cast<const T*>(cx);
|
||||
T* dst = reinterpret_cast<T*>(cdst);
|
||||
|
|
@ -117,60 +117,60 @@ static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) {
|
|||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
static __global__ void cpy_scalar_contiguous(const char * cx, char * cdst, const int64_t ne) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
|
|
@ -188,19 +188,20 @@ static void ggml_cpy_scalar_contiguous_cuda(
|
|||
cudaStream_t stream) {
|
||||
|
||||
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_scalar_contiguous<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t, bool transposed = false>
|
||||
static void ggml_cpy_scalar_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
if (transposed) {
|
||||
GGML_ASSERT(ne == ne00*ne01*ne02); // ne[3] is 1 assumed
|
||||
int ne00n, ne01n, ne02n;
|
||||
int64_t ne00n, ne01n, ne02n;
|
||||
if (nb00 <= nb02) { // most likely safe to handle nb00 = nb02 case here
|
||||
ne00n = ne00;
|
||||
ne01n = ne01;
|
||||
|
|
@ -211,143 +212,159 @@ static void ggml_cpy_scalar_cuda(
|
|||
ne02n = 1;
|
||||
}
|
||||
|
||||
dim3 dimGrid( (ne01n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
||||
(ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
||||
(ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM);
|
||||
int64_t grid_x = (ne01n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D;
|
||||
int64_t grid_y = (ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D;
|
||||
int64_t grid_z = (ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM;
|
||||
GGML_ASSERT(grid_x < UINT_MAX);
|
||||
GGML_ASSERT(grid_y < USHRT_MAX);
|
||||
GGML_ASSERT(grid_z < USHRT_MAX);
|
||||
dim3 dimGrid(grid_x, grid_y, grid_z);
|
||||
dim3 dimBlock(CUDA_CPY_TILE_DIM_2D, CUDA_CPY_BLOCK_ROWS, 1);
|
||||
cpy_scalar_transpose<dst_t><<<dimGrid, dimBlock, 0, stream>>>
|
||||
(cx, cdst, ne, ne00n, ne01n, ne02n, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
} else {
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_scalar<cpy_1_scalar<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
const int num_blocks = ne / QK8_0;
|
||||
const int64_t num_blocks = ne / QK8_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q8_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q8_0_f32, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
const int num_blocks = ne / QK4_0;
|
||||
const int64_t num_blocks = ne / QK4_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q4_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
const int num_blocks = ne / QK4_1;
|
||||
const int64_t num_blocks = ne / QK4_1;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q4_1_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_0 == 0);
|
||||
const int num_blocks = ne / QK5_0;
|
||||
const int64_t num_blocks = ne / QK5_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q5_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_1 == 0);
|
||||
const int num_blocks = ne / QK5_1;
|
||||
const int64_t num_blocks = ne / QK5_1;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q5_1_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_iq4_nl_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_NL == 0);
|
||||
const int num_blocks = ne / QK4_NL;
|
||||
const int64_t num_blocks = ne / QK4_NL;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
|
@ -356,9 +373,6 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
|||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
|
||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
#include "ggml.h"
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
# include <cub/block/block_scan.cuh>
|
||||
# include <cub/cub.cuh>
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
template<typename T, int BLOCK_SIZE>
|
||||
|
|
@ -185,9 +185,34 @@ static __global__ void cumsum_kernel(
|
|||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
template <typename T>
|
||||
static void cumsum_cub(ggml_cuda_pool & pool,
|
||||
const T * src,
|
||||
T * dst,
|
||||
int64_t ne,
|
||||
cudaStream_t stream) {
|
||||
size_t tmp_size = 0;
|
||||
|
||||
// Query how much temp storage CUDA UnBound (CUB) needs
|
||||
cub::DeviceScan::InclusiveSum(nullptr, // d_temp_storage (null = just query size)
|
||||
tmp_size, // reference to size (will be set by CUB)
|
||||
src, // input pointer
|
||||
dst, // output pointer
|
||||
ne, // number of elements
|
||||
stream // CUDA stream to use
|
||||
);
|
||||
|
||||
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
|
||||
|
||||
// Perform the inclusive scan
|
||||
cub::DeviceScan::InclusiveSum((void *) tmp_alloc.get(), tmp_size, src, dst, ne, stream);
|
||||
}
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
template<typename T>
|
||||
static void cumsum_cuda(
|
||||
const T * src, T * dst,
|
||||
[[maybe_unused]] ggml_backend_cuda_context & ctx, const T * src, T * dst,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
|
||||
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3,
|
||||
|
|
@ -201,6 +226,15 @@ static void cumsum_cuda(
|
|||
|
||||
if (is_contiguous) {
|
||||
use_cub = true;
|
||||
const int64_t nrows = ne01 * ne02 * ne03;
|
||||
// TODO: Compare with DeviceSegmentedScan::InclusiveSegmentedSum for nrows > 1 once InclusiveSegmentedSum is released
|
||||
// Heuristics were determined as part of https://github.com/ggml-org/llama.cpp/pull/17004
|
||||
if (((nrows == 1) && (ne00 > 1024)) || (ne00 / nrows > 4096)) {
|
||||
for (int i=0; i<nrows; i++) {
|
||||
cumsum_cub(ctx.pool(), src + i * ne00, dst + i * ne00, ne00, stream);
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
dim3 grid_dims(ne01, ne02, ne03);
|
||||
|
|
@ -239,7 +273,7 @@ void ggml_cuda_op_cumsum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
case GGML_TYPE_F32:
|
||||
{
|
||||
cumsum_cuda(
|
||||
(const float *)src0->data, (float *)dst->data,
|
||||
ctx, (const float *)src0->data, (float *)dst->data,
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
||||
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
|
||||
|
|
|
|||
|
|
@ -918,7 +918,9 @@ void launch_fattn(
|
|||
blocks_num.y = 1;
|
||||
blocks_num.z = 1;
|
||||
|
||||
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float));
|
||||
if (ntiles_total % blocks_num.x != 0) { // Fixup is only needed if the SMs work on fractional tiles.
|
||||
dst_tmp_meta.alloc((size_t(blocks_num.x) * ncols * (2 + DV/2)));
|
||||
}
|
||||
} else {
|
||||
const int ntiles_KQ = (K->ne[1] + nbatch_fa - 1) / nbatch_fa; // Max. number of parallel blocks limited by tensor size.
|
||||
|
||||
|
|
|
|||
|
|
@ -531,7 +531,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
|||
for (int k0 = 0; k0 < nbatch_fa; k0 += np*T_C_KQ::I) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < T_C_KQ::ne; ++l) {
|
||||
if (!oob_check || k0 + T_C_KQ::get_i(l) < k_VKQ_sup) {
|
||||
if (!oob_check || k0 + (threadIdx.y % np)*T_C_KQ::I + T_C_KQ::get_i(l) < k_VKQ_sup) {
|
||||
KQ_max_new[l % 2] = fmaxf(KQ_max_new[l % 2], KQ_C[k0/(np*T_C_KQ::I)].x[l] + FATTN_KQ_MAX_OFFSET);
|
||||
}
|
||||
}
|
||||
|
|
@ -583,7 +583,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
|||
for (int k0 = 0; k0 < nbatch_fa; k0 += np*T_C_KQ::J) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < T_C_KQ::ne; ++l) {
|
||||
if (!oob_check || k0 + T_C_KQ::get_j(l) < k_VKQ_sup) {
|
||||
if (!oob_check || k0 + (threadIdx.y % np)*T_C_KQ::J + T_C_KQ::get_j(l) < k_VKQ_sup) {
|
||||
// Turing + Volta:
|
||||
KQ_max_new[(l/2) % 2] = fmaxf(KQ_max_new[(l/2) % 2], KQ_C[(k0/(np*T_C_KQ::J))].x[l] + FATTN_KQ_MAX_OFFSET);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@
|
|||
#include "ggml-cuda/count-equal.cuh"
|
||||
#include "ggml-cuda/cpy.cuh"
|
||||
#include "ggml-cuda/cross-entropy-loss.cuh"
|
||||
#include "ggml-cuda/cumsum.cuh"
|
||||
#include "ggml-cuda/diagmask.cuh"
|
||||
#include "ggml-cuda/diag.cuh"
|
||||
#include "ggml-cuda/fattn.cuh"
|
||||
|
|
@ -44,6 +45,7 @@
|
|||
#include "ggml-cuda/ssm-scan.cuh"
|
||||
#include "ggml-cuda/sum.cuh"
|
||||
#include "ggml-cuda/sumrows.cuh"
|
||||
#include "ggml-cuda/top-k.cuh"
|
||||
#include "ggml-cuda/mean.cuh"
|
||||
#include "ggml-cuda/tsembd.cuh"
|
||||
#include "ggml-cuda/topk-moe.cuh"
|
||||
|
|
@ -201,16 +203,6 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||
GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
|
||||
|
||||
int64_t total_vram = 0;
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
|
||||
#else
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
|
||||
#endif // GGML_CUDA_FORCE_MMQ
|
||||
#ifdef GGML_CUDA_FORCE_CUBLAS
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
|
||||
#else
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
|
||||
#endif // GGML_CUDA_FORCE_CUBLAS
|
||||
GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
|
||||
|
||||
std::vector<std::pair<int, std::string>> turing_devices_without_mma;
|
||||
|
|
@ -241,6 +233,14 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
info.devices[id].warp_size = prop.warpSize;
|
||||
|
||||
#ifndef GGML_USE_MUSA
|
||||
int supports_coop_launch = 0;
|
||||
CUDA_CHECK(cudaDeviceGetAttribute(&supports_coop_launch, cudaDevAttrCooperativeLaunch, id));
|
||||
info.devices[id].supports_cooperative_launch = !!supports_coop_launch;
|
||||
#else
|
||||
info.devices[id].supports_cooperative_launch = false;
|
||||
#endif // !(GGML_USE_MUSA)
|
||||
#if defined(GGML_USE_HIP)
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlock;
|
||||
|
||||
|
|
@ -2687,6 +2687,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_SUM:
|
||||
ggml_cuda_op_sum(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CUMSUM:
|
||||
ggml_cuda_op_cumsum(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SUM_ROWS:
|
||||
ggml_cuda_op_sum_rows(ctx, dst);
|
||||
break;
|
||||
|
|
@ -2699,6 +2702,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_SSM_SCAN:
|
||||
ggml_cuda_op_ssm_scan(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_TOP_K:
|
||||
ggml_cuda_op_top_k(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARGSORT:
|
||||
ggml_cuda_op_argsort(ctx, dst);
|
||||
break;
|
||||
|
|
@ -2708,9 +2714,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
ggml_cuda_cross_entropy_loss(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CUMSUM:
|
||||
ggml_cuda_op_cumsum(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_TRI:
|
||||
ggml_cuda_op_tri(ctx, dst);
|
||||
break;
|
||||
|
|
@ -3263,6 +3266,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
|||
should_launch_concurrent_events = should_launch_concurrent_events && event.is_valid();
|
||||
}
|
||||
}
|
||||
|
||||
if (should_launch_concurrent_events) {
|
||||
// Restore original node order within each concurrent region to enable fusion within streams
|
||||
|
||||
|
|
@ -3314,6 +3318,8 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
|||
cgraph->nodes[start_pos + i] = const_cast<ggml_tensor *>(event.original_order[i]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
stream_ctx.concurrent_events.clear();
|
||||
}
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
|
|
@ -3702,10 +3708,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
|||
}
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
static bool ggml_cuda_set_cuda_graph_enabled(ggml_backend_cuda_context * cuda_ctx) {
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
|
||||
|
|
@ -3716,7 +3719,6 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
|||
}
|
||||
|
||||
bool use_cuda_graph = true;
|
||||
bool cuda_graph_update_required = false;
|
||||
|
||||
if (cuda_ctx->cuda_graph->graph == nullptr) {
|
||||
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
|
||||
|
|
@ -3737,6 +3739,27 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
|||
use_cuda_graph = false;
|
||||
}
|
||||
|
||||
cuda_ctx->cuda_graph->cuda_graphs_enabled = use_cuda_graph;
|
||||
#else
|
||||
bool use_cuda_graph = false;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
|
||||
return use_cuda_graph;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
|
||||
bool use_cuda_graph = false;
|
||||
bool cuda_graph_update_required = false;
|
||||
|
||||
// graph_optimize calls set_cuda_graph_enabled, in-case it not called (i.e. graph_compute is directly called)
|
||||
// we call it here instead.
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
use_cuda_graph = ggml_cuda_set_cuda_graph_enabled(cuda_ctx);
|
||||
|
||||
if (use_cuda_graph) {
|
||||
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
|
||||
|
||||
|
|
@ -3751,11 +3774,13 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
|||
|
||||
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
||||
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
||||
cuda_ctx->cuda_graph->cuda_graphs_enabled = false;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif // USE_CUDA_GRAPH
|
||||
|
||||
if (use_cuda_graph && cuda_graph_update_required) {
|
||||
// Start CUDA graph capture
|
||||
|
|
@ -3767,11 +3792,6 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
|||
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
|
||||
}
|
||||
|
||||
#else
|
||||
bool use_cuda_graph = false;
|
||||
bool cuda_graph_update_required = false;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
|
||||
bool graph_evaluated_or_captured = false;
|
||||
|
||||
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
|
||||
|
|
@ -3807,8 +3827,10 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
|
|||
static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
|
||||
|
||||
const bool use_cuda_graph = ggml_cuda_set_cuda_graph_enabled(cuda_ctx);
|
||||
|
||||
static bool enable_graph_optimization = [] {
|
||||
const char * env = getenv("GGML_CUDA_GRAPH_OPT");
|
||||
const char * env = getenv("GGML_CUDA_GRAPH_OPT");
|
||||
return env != nullptr && atoi(env) == 1;
|
||||
}();
|
||||
|
||||
|
|
@ -3816,12 +3838,13 @@ static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph
|
|||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(ggml_backend_cuda_get_device_count() == 1 && "compute graph optimization is only supported on single GPU in the CUDA backend");
|
||||
GGML_LOG_DEBUG("Optimizing CUDA graph %p with %d nodes\n", cgraph->nodes, cgraph->n_nodes);
|
||||
|
||||
ggml_cuda_stream_context & stream_context = cuda_ctx->stream_context();
|
||||
stream_context.reset();
|
||||
|
||||
if (!use_cuda_graph || ggml_backend_cuda_get_device_count() != 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
// number of out-degrees for a particular node
|
||||
std::unordered_map<const ggml_tensor *, int> fan_out;
|
||||
// reverse mapping of node to index in the cgraph
|
||||
|
|
@ -3882,6 +3905,12 @@ static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph
|
|||
if (count >= min_fan_out && count <= max_fan_out) {
|
||||
const int root_node_idx = node_indices[root_node];
|
||||
|
||||
// only optimize for attn_norm
|
||||
// TODO: make this more generic
|
||||
if (!strstr(root_node->name, "attn_norm")) {
|
||||
continue;
|
||||
}
|
||||
|
||||
bool is_part_of_event = false;
|
||||
for (const auto & [start, end] : concurrent_node_ranges) {
|
||||
if (root_node_idx >= start && root_node_idx <= end) {
|
||||
|
|
@ -4610,6 +4639,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
return true;
|
||||
case GGML_OP_SUM:
|
||||
return ggml_is_contiguous_rows(op->src[0]);
|
||||
case GGML_OP_TOP_K:
|
||||
case GGML_OP_ARGSORT:
|
||||
#ifndef GGML_CUDA_USE_CUB
|
||||
return op->src[0]->ne[0] <= 1024;
|
||||
|
|
|
|||
|
|
@ -1,6 +1,14 @@
|
|||
#include "common.cuh"
|
||||
#include "ggml.h"
|
||||
#include "softmax.cuh"
|
||||
|
||||
#ifdef GGML_USE_HIP
|
||||
#include <hip/hip_cooperative_groups.h>
|
||||
#else
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#endif // GGML_USE_HIP
|
||||
|
||||
#include <cstdint>
|
||||
#include <utility>
|
||||
|
||||
|
|
@ -160,6 +168,156 @@ static __global__ void soft_max_f32(
|
|||
dst[col] = vals[col] * inv_sum;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// TODO: This is a common pattern used across kernels that could be moved to common.cuh + templated
|
||||
static __device__ float two_stage_warp_reduce_max(float val) {
|
||||
val = warp_reduce_max(val);
|
||||
if (blockDim.x > WARP_SIZE) {
|
||||
assert((blockDim.x <= 1024) && (blockDim.x % WARP_SIZE) == 0);
|
||||
__shared__ float local_vals[32];
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
local_vals[warp_id] = val;
|
||||
}
|
||||
__syncthreads();
|
||||
val = -INFINITY;
|
||||
if (lane_id < (static_cast<int>(blockDim.x) / WARP_SIZE)) {
|
||||
val = local_vals[lane_id];
|
||||
}
|
||||
return warp_reduce_max(val);
|
||||
} else {
|
||||
return val;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ float two_stage_warp_reduce_sum(float val) {
|
||||
val = warp_reduce_sum(val);
|
||||
if (blockDim.x > WARP_SIZE) {
|
||||
assert((blockDim.x <= 1024) && (blockDim.x % WARP_SIZE) == 0);
|
||||
__shared__ float local_vals[32];
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
local_vals[warp_id] = val;
|
||||
}
|
||||
__syncthreads();
|
||||
val = 0.0f;
|
||||
if (lane_id < (static_cast<int>(blockDim.x) / WARP_SIZE)) {
|
||||
val = local_vals[lane_id];
|
||||
}
|
||||
return warp_reduce_sum(val);
|
||||
} else {
|
||||
return val;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Template to allow keeping ncols in registers if they fit
|
||||
static __device__ void soft_max_f32_parallelize_cols_single_row(const float * __restrict__ x,
|
||||
float * __restrict__ dst,
|
||||
float * __restrict__ tmp_maxs,
|
||||
float * __restrict__ tmp_sums,
|
||||
const soft_max_params p) {
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
const cg::grid_group g = cg::this_grid();
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int col_start = blockIdx.x * blockDim.x + tid;
|
||||
const int n_elem_per_thread = 4;
|
||||
|
||||
float local_vals[n_elem_per_thread] = { -INFINITY, -INFINITY, -INFINITY, -INFINITY };
|
||||
float local_max = -INFINITY;
|
||||
const int step_size = gridDim.x * blockDim.x;
|
||||
|
||||
// Compute thread-local max
|
||||
for (int col = col_start; col < p.ncols;) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < n_elem_per_thread; i++) {
|
||||
const int idx = col + i * step_size;
|
||||
local_vals[i] = idx < p.ncols ? x[idx] : -INFINITY;
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i = 0; i < n_elem_per_thread; i++) {
|
||||
local_max = fmaxf(local_max, local_vals[i]);
|
||||
}
|
||||
col += step_size * n_elem_per_thread;
|
||||
}
|
||||
|
||||
// Compute CTA-level max
|
||||
local_max = two_stage_warp_reduce_max(local_max);
|
||||
|
||||
// Store CTA-level max to GMEM
|
||||
if (tid == 0) {
|
||||
tmp_maxs[blockIdx.x] = local_max;
|
||||
}
|
||||
g.sync();
|
||||
|
||||
// Compute compute global max from CTA-level maxs
|
||||
assert(gridDim.x < blockDim.x); // currently we only support this case
|
||||
if (tid < gridDim.x) {
|
||||
local_max = tmp_maxs[tid];
|
||||
} else {
|
||||
local_max = -INFINITY;
|
||||
}
|
||||
local_max = two_stage_warp_reduce_max(local_max);
|
||||
|
||||
// Compute softmax dividends, accumulate divisor
|
||||
float tmp_expf = 0.0f;
|
||||
for (int col = col_start; col < p.ncols;) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < n_elem_per_thread; i++) {
|
||||
const int idx = col + i * step_size;
|
||||
local_vals[i] = idx < p.ncols ? x[idx] : -INFINITY;
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i = 0; i < n_elem_per_thread; i++) {
|
||||
const int idx = col + i * step_size;
|
||||
if (idx < p.ncols) {
|
||||
const float tmp = expf(local_vals[i] - local_max);
|
||||
tmp_expf += tmp;
|
||||
dst[idx] = tmp;
|
||||
}
|
||||
}
|
||||
col += step_size * n_elem_per_thread;
|
||||
}
|
||||
|
||||
// Reduce divisor within CTA
|
||||
tmp_expf = two_stage_warp_reduce_sum(tmp_expf);
|
||||
|
||||
// Store CTA-level sum to GMEM
|
||||
if (tid == 0) {
|
||||
tmp_sums[blockIdx.x] = tmp_expf;
|
||||
}
|
||||
g.sync();
|
||||
|
||||
// Compute global sum from CTA-level sums
|
||||
if (tid < gridDim.x) {
|
||||
tmp_expf = tmp_sums[tid];
|
||||
} else {
|
||||
tmp_expf = 0.0f;
|
||||
}
|
||||
tmp_expf = two_stage_warp_reduce_sum(tmp_expf);
|
||||
|
||||
// Divide dividend by global sum + store data
|
||||
for (int col = col_start; col < p.ncols;) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < n_elem_per_thread; i++) {
|
||||
const int idx = col + i * step_size;
|
||||
local_vals[i] = idx < p.ncols ? dst[idx] : -INFINITY;
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i = 0; i < n_elem_per_thread; i++) {
|
||||
const int idx = col + i * step_size;
|
||||
if (idx < p.ncols) {
|
||||
dst[idx] = local_vals[i] / tmp_expf;
|
||||
}
|
||||
}
|
||||
col += step_size * n_elem_per_thread;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif // __clang__
|
||||
|
|
@ -216,9 +374,31 @@ static void launch_soft_max_kernels(const float * x, const T * mask, const float
|
|||
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>(x, mask, sinks, dst, p);
|
||||
}
|
||||
|
||||
__launch_bounds__(8*WARP_SIZE, 1) static __global__ void soft_max_f32_parallelize_cols(const float * __restrict__ x,
|
||||
float * __restrict__ dst,
|
||||
float * __restrict__ tmp_maxs,
|
||||
float * __restrict__ tmp_sums,
|
||||
const soft_max_params p)
|
||||
// We loop over all instead of parallelizing across gridDim.y as cooperative groups
|
||||
// currently only support synchronizing the complete grid if not launched as a cluster group
|
||||
// (which requires CC > 9.0)
|
||||
// https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/device-callable-apis.html#grid-synchronization
|
||||
// https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/device-callable-apis.html#class-cluster-group
|
||||
{
|
||||
for (int rowx = 0; rowx < p.ne01 * p.ne02 * p.ne03; rowx++) {
|
||||
soft_max_f32_parallelize_cols_single_row(x + int64_t(rowx) * p.ncols, dst + int64_t(rowx) * p.ncols, tmp_maxs,
|
||||
tmp_sums, p);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void soft_max_f32_cuda(const float * x, const T * mask, const float * sinks, float * dst, const soft_max_params & params, cudaStream_t stream) {
|
||||
template <typename T>
|
||||
static void soft_max_f32_cuda(const float * x,
|
||||
const T * mask,
|
||||
const float * sinks,
|
||||
float * dst,
|
||||
const soft_max_params & params,
|
||||
cudaStream_t stream,
|
||||
[[maybe_unused]] ggml_backend_cuda_context & ctx) {
|
||||
int nth = WARP_SIZE;
|
||||
const int64_t ncols_x = params.ncols;
|
||||
|
||||
|
|
@ -236,8 +416,25 @@ static void soft_max_f32_cuda(const float * x, const T * mask, const float * sin
|
|||
if (nbytes_shared <= smpbo) {
|
||||
launch_soft_max_kernels<32, 64, 128, 256, 512, 1024, 2048, 4096>(x, mask, sinks, dst, params, stream, block_dims, block_nums, nbytes_shared);
|
||||
} else {
|
||||
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
|
||||
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, sinks, dst, params);
|
||||
// Parallelize across SMs for top-p/dist-sampling
|
||||
// The heuristic for parallelizing rows across SMs vs parallelizing single row & looping over all rows was done on the basis of a B6000 GPU and
|
||||
// Can be adapted further for lower-SM-count GPUs, though keeping data in registers should be implemented first as that is the optimal solution.
|
||||
if (ggml_cuda_info().devices[id].supports_cooperative_launch &&
|
||||
ncols_x / (params.ne01 * params.ne02 * params.ne03) > 8192 && mask == nullptr && sinks == nullptr &&
|
||||
params.scale == 1.0f && params.max_bias == 0.0f) {
|
||||
ggml_cuda_pool_alloc<float> tmp_maxs_alloc(ctx.pool(), ggml_cuda_info().devices[id].nsm * sizeof(float));
|
||||
ggml_cuda_pool_alloc<float> tmp_sums_alloc(ctx.pool(), ggml_cuda_info().devices[id].nsm * sizeof(float));
|
||||
|
||||
void * kernel_args[] = { (void *) &x, (void *) &dst, (void *) &tmp_maxs_alloc.ptr,
|
||||
(void *) &tmp_sums_alloc.ptr, (void *) const_cast<soft_max_params *>(¶ms) };
|
||||
CUDA_CHECK(cudaLaunchCooperativeKernel((void *) soft_max_f32_parallelize_cols,
|
||||
dim3(ggml_cuda_info().devices[id].nsm, 1, 1),
|
||||
dim3(WARP_SIZE * 8, 1, 1), kernel_args, 0, stream));
|
||||
} else {
|
||||
const size_t nbytes_shared_low = WARP_SIZE * sizeof(float);
|
||||
soft_max_f32<false, 0, 0>
|
||||
<<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, sinks, dst, params);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -315,9 +512,9 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||
params.m1 = m1;
|
||||
|
||||
if (use_f16) {
|
||||
soft_max_f32_cuda(src0_d, (const half *) src1_d, (const float *) src2_d, dst_d, params, stream);
|
||||
soft_max_f32_cuda(src0_d, (const half *) src1_d, (const float *) src2_d, dst_d, params, stream, ctx);
|
||||
} else {
|
||||
soft_max_f32_cuda(src0_d, (const float *) src1_d, (const float *) src2_d, dst_d, params, stream);
|
||||
soft_max_f32_cuda(src0_d, (const float *) src1_d, (const float *) src2_d, dst_d, params, stream, ctx);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,96 @@
|
|||
#include "argsort.cuh"
|
||||
#include "top-k.cuh"
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
# include <cub/cub.cuh>
|
||||
# if (CCCL_MAJOR_VERSION >= 3 && CCCL_MINOR_VERSION >= 2)
|
||||
# include <cuda/iterator>
|
||||
# define CUB_TOP_K_AVAILABLE
|
||||
using namespace cub;
|
||||
# endif // CCCL_MAJOR_VERSION >= 3 && CCCL_MINOR_VERSION >= 2
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
#ifdef CUB_TOP_K_AVAILABLE
|
||||
|
||||
static void top_k_cub(ggml_cuda_pool & pool,
|
||||
const float * src,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int k,
|
||||
cudaStream_t stream) {
|
||||
auto requirements = cuda::execution::require(cuda::execution::determinism::not_guaranteed,
|
||||
cuda::execution::output_ordering::unsorted);
|
||||
auto stream_env = cuda::stream_ref{ stream };
|
||||
auto env = cuda::std::execution::env{ stream_env, requirements };
|
||||
|
||||
auto indexes_in = cuda::make_counting_iterator(0);
|
||||
|
||||
size_t temp_storage_bytes = 0;
|
||||
DeviceTopK::MaxPairs(nullptr, temp_storage_bytes, src, cuda::discard_iterator(), indexes_in, dst, ncols, k,
|
||||
env);
|
||||
|
||||
ggml_cuda_pool_alloc<uint8_t> temp_storage_alloc(pool, temp_storage_bytes);
|
||||
void * d_temp_storage = temp_storage_alloc.get();
|
||||
|
||||
DeviceTopK::MaxPairs(d_temp_storage, temp_storage_bytes, src, cuda::discard_iterator(), indexes_in, dst,
|
||||
ncols, k, env);
|
||||
}
|
||||
|
||||
#elif defined(GGML_CUDA_USE_CUB) // CUB_TOP_K_AVAILABLE
|
||||
|
||||
static int next_power_of_2(int x) {
|
||||
int n = 1;
|
||||
while (n < x) {
|
||||
n *= 2;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
#endif // CUB_TOP_K_AVAILABLE
|
||||
|
||||
void ggml_cuda_op_top_k(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
int * dst_d = (int *) dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
// are these asserts truly necessary?
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
const int64_t k = dst->ne[0];
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
#ifdef CUB_TOP_K_AVAILABLE
|
||||
// TODO: Switch to `DeviceSegmentedTopK` for multi-row TopK once implemented
|
||||
// https://github.com/NVIDIA/cccl/issues/6391
|
||||
// TODO: investigate if there exists a point where parallelized argsort is faster than sequential top-k
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
top_k_cub(pool, src0_d + i * ncols, dst_d + i * k, ncols, k, stream);
|
||||
}
|
||||
#elif defined(GGML_CUDA_USE_CUB) // CUB_TOP_K_AVAILABLE
|
||||
// Fall back to argsort + copy
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
|
||||
|
||||
ggml_cuda_pool_alloc<int> temp_dst_alloc(pool, ncols * nrows);
|
||||
int * tmp_dst = temp_dst_alloc.get();
|
||||
|
||||
if (shared_mem > max_shared_mem || ncols > 1024) {
|
||||
argsort_f32_i32_cuda_cub(pool, src0_d, tmp_dst, ncols, nrows, GGML_SORT_ORDER_DESC, stream);
|
||||
} else {
|
||||
argsort_f32_i32_cuda_bitonic(src0_d, tmp_dst, ncols, nrows, GGML_SORT_ORDER_DESC, stream);
|
||||
}
|
||||
CUDA_CHECK(cudaMemcpy2DAsync(dst_d, k * sizeof(int), tmp_dst, ncols * sizeof(int), k * sizeof(int), nrows,
|
||||
cudaMemcpyDeviceToDevice, stream));
|
||||
#else // GGML_CUDA_USE_CUB
|
||||
ggml_cuda_pool_alloc<int> temp_dst_alloc(pool, ncols * nrows);
|
||||
int * tmp_dst = temp_dst_alloc.get();
|
||||
argsort_f32_i32_cuda_bitonic(src0_d, tmp_dst, ncols, nrows, GGML_SORT_ORDER_DESC, stream);
|
||||
CUDA_CHECK(cudaMemcpy2DAsync(dst_d, k * sizeof(int), tmp_dst, ncols * sizeof(int), k * sizeof(int), nrows,
|
||||
cudaMemcpyDeviceToDevice, stream));
|
||||
#endif
|
||||
}
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_op_top_k(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
@ -45,9 +45,11 @@
|
|||
#define cublasSgemm hipblasSgemm
|
||||
#define cublasStatus_t hipblasStatus_t
|
||||
#define cublasOperation_t hipblasOperation_t
|
||||
#define cudaDevAttrCooperativeLaunch hipDeviceAttributeCooperativeLaunch
|
||||
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
|
||||
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
|
||||
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
|
||||
#define cudaDeviceGetAttribute hipDeviceGetAttribute
|
||||
#define cudaDeviceProp hipDeviceProp_t
|
||||
#define cudaDeviceSynchronize hipDeviceSynchronize
|
||||
#define cudaError_t hipError_t
|
||||
|
|
@ -70,6 +72,7 @@
|
|||
#define cudaHostRegisterPortable hipHostRegisterPortable
|
||||
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
|
||||
#define cudaHostUnregister hipHostUnregister
|
||||
#define cudaLaunchCooperativeKernel hipLaunchCooperativeKernel
|
||||
#define cudaLaunchHostFunc hipLaunchHostFunc
|
||||
#define cudaMalloc hipMalloc
|
||||
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
||||
|
|
|
|||
|
|
@ -61,6 +61,7 @@
|
|||
#define cudaHostRegisterPortable musaHostRegisterPortable
|
||||
#define cudaHostRegisterReadOnly musaHostRegisterReadOnly
|
||||
#define cudaHostUnregister musaHostUnregister
|
||||
#define cudaLaunchCooperativeKernel musaLaunchCooperativeKernel
|
||||
#define cudaLaunchHostFunc musaLaunchHostFunc
|
||||
#define cudaMalloc musaMalloc
|
||||
#define cudaMallocHost musaMallocHost
|
||||
|
|
|
|||
|
|
@ -85,13 +85,16 @@ static void glu_swiglu_fp32_per_thread(const struct htp_tensor * src0,
|
|||
struct htp_spad * dst_spad,
|
||||
uint32_t nth,
|
||||
uint32_t ith,
|
||||
uint32_t src0_nrows_per_thread) {
|
||||
uint32_t src0_nrows_per_thread,
|
||||
dma_queue * dma_queue) {
|
||||
htp_act_preamble3;
|
||||
|
||||
size_t src0_row_size = nb01;
|
||||
size_t src1_row_size = nb11;
|
||||
size_t dst_row_size = nb1;
|
||||
|
||||
|
||||
|
||||
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
|
||||
|
||||
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
|
||||
|
|
@ -105,10 +108,129 @@ static void glu_swiglu_fp32_per_thread(const struct htp_tensor * src0,
|
|||
uint64_t t1, t2;
|
||||
t1 = HAP_perf_get_qtimer_count();
|
||||
|
||||
int is_aligned = 1;
|
||||
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
|
||||
is_aligned = 0;
|
||||
FARF(HIGH, "swiglu-f32: unaligned addresses in elementwise op, possibly slower execution\n");
|
||||
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
|
||||
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
|
||||
uint8_t * restrict data_dst = (uint8_t *) dst->data;
|
||||
|
||||
const bool src1_valid = src1->ne[0];
|
||||
const int nc = (src1_valid) ? ne00 : ne00 / 2;
|
||||
if (!src1_valid) {
|
||||
const int32_t swapped = op_params[1];
|
||||
data_src1 = data_src0;
|
||||
src1_row_size = src0_row_size;
|
||||
|
||||
const size_t nc_in_bytes = nc * SIZEOF_FP32;
|
||||
data_src0 += swapped ? nc_in_bytes : 0;
|
||||
data_src1 += swapped ? 0 : nc_in_bytes;
|
||||
}
|
||||
|
||||
const size_t src0_row_size_aligned = htp_round_up(src0_row_size, VLEN);
|
||||
const size_t src1_row_size_aligned = htp_round_up(src1_row_size, VLEN);
|
||||
const size_t dst_row_size_aligned = htp_round_up(dst_row_size, VLEN);
|
||||
|
||||
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_spad->size_per_thread);
|
||||
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_spad->size_per_thread);
|
||||
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_spad->size_per_thread);
|
||||
|
||||
// While given src0_spad->size_per_thread, divide it to two ping-pong buffer for src0
|
||||
size_t src0_spad_half_size = src0_spad->size_per_thread / 2;
|
||||
size_t src1_spad_half_size = src1_spad->size_per_thread / 2;
|
||||
size_t dst_spad_half_size = dst_spad->size_per_thread / 2;
|
||||
|
||||
const int BLOCK = src0_spad_half_size / src0_row_size_aligned; // How many rows can we process in one block
|
||||
if (BLOCK == 0) {
|
||||
FARF(ERROR,
|
||||
"swiglu-f32 : current VTCM reservation %zu is too small for even 1 row per thread, needed at least %zu\n",
|
||||
src0_spad->size_per_thread, src0_row_size_aligned);
|
||||
return;
|
||||
}
|
||||
|
||||
// See discussion: https://github.com/ggml-org/llama.cpp/pull/18151#issuecomment-3678235379
|
||||
for (uint32_t ir = src0_start_row, spad_idx = 0; ir < src0_end_row && spad_idx < 2; ir += BLOCK, spad_idx++) {
|
||||
const uint32_t block_size = MIN(BLOCK, src0_end_row - ir);
|
||||
|
||||
// Dummy DMA transation for sequencing (interleaving dst,src,dst,...)
|
||||
dma_queue_push_vtcm_to_ddr(dma_queue,
|
||||
dma_make_ptr(data_dst, dst_spad_data + (spad_idx * dst_spad_half_size)),
|
||||
dst_row_size, dst_row_size_aligned, 0);
|
||||
|
||||
dma_queue_push_ddr_to_vtcm(dma_queue,
|
||||
dma_make_ptr(src0_spad_data + (spad_idx * src0_spad_half_size), data_src0 + (ir * src0_row_size)),
|
||||
src0_row_size_aligned, src0_row_size, block_size);
|
||||
dma_queue_push_ddr_to_vtcm(dma_queue,
|
||||
dma_make_ptr(src1_spad_data + (spad_idx * src1_spad_half_size), data_src1 + (ir * src1_row_size)),
|
||||
src1_row_size_aligned, src1_row_size, block_size);
|
||||
}
|
||||
|
||||
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir += BLOCK) {
|
||||
const uint32_t block_size = MIN(BLOCK, src0_end_row - ir);
|
||||
|
||||
float * dst_spad = (float *) dma_queue_pop(dma_queue).src;
|
||||
float * src0_spad = (float *) dma_queue_pop(dma_queue).dst;
|
||||
float * src1_spad = (float *) dma_queue_pop(dma_queue).dst;
|
||||
|
||||
for (uint32_t ib = 0; ib < block_size; ib++) {
|
||||
const float * src0_spad_ptr = src0_spad + ib * (src0_row_size_aligned / sizeof(float));
|
||||
const float * src1_spad_ptr = src1_spad + ib * (src1_row_size_aligned / sizeof(float));
|
||||
float * dst_spad_ptr = dst_spad + ib * (dst_row_size_aligned / sizeof(float));
|
||||
|
||||
//swiglu(x) = x1 * sigmoid(x0)
|
||||
hvx_fast_sigmoid_f32((const uint8_t *) src0_spad_ptr, (uint8_t *) dst_spad_ptr, nc);
|
||||
hvx_mul_mul_f32_opt((const uint8_t *) src0_spad_ptr, (const uint8_t *) dst_spad_ptr,
|
||||
(const uint8_t *) src1_spad_ptr, (uint8_t *) dst_spad_ptr, nc);
|
||||
}
|
||||
|
||||
dma_queue_push_vtcm_to_ddr(dma_queue, dma_make_ptr(data_dst + (ir * dst_row_size), dst_spad), dst_row_size,
|
||||
dst_row_size_aligned, block_size);
|
||||
|
||||
// prefetch N+2 loop iteration if any
|
||||
const uint32_t pref_block = (ir + BLOCK * 2);
|
||||
if (pref_block < src0_end_row) {
|
||||
const uint32_t pref_block_size = MIN(BLOCK, src0_end_row - pref_block);
|
||||
dma_queue_push_ddr_to_vtcm(dma_queue, dma_make_ptr(src0_spad, data_src0 + (pref_block * src0_row_size)),
|
||||
src0_row_size_aligned, src0_row_size, pref_block_size);
|
||||
dma_queue_push_ddr_to_vtcm(dma_queue, dma_make_ptr(src1_spad, data_src1 + (pref_block * src1_row_size)),
|
||||
src1_row_size_aligned, src1_row_size, pref_block_size);
|
||||
}
|
||||
}
|
||||
|
||||
dma_queue_flush(dma_queue);
|
||||
|
||||
t2 = HAP_perf_get_qtimer_count();
|
||||
|
||||
FARF(HIGH, "swiglu-f32 %d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth,
|
||||
ne00, ne01, ne02, ne03, src0_start_row, src0_end_row, ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3,
|
||||
(unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
|
||||
}
|
||||
|
||||
static void glu_swiglu_oai_fp32_per_thread(const struct htp_tensor * src0,
|
||||
const struct htp_tensor * src1,
|
||||
struct htp_tensor * dst,
|
||||
const int32_t * op_params,
|
||||
struct htp_spad * src0_spad,
|
||||
struct htp_spad * src1_spad,
|
||||
struct htp_spad * dst_spad,
|
||||
uint32_t nth,
|
||||
uint32_t ith,
|
||||
uint32_t src0_nrows_per_thread,
|
||||
dma_queue * dma_queue) {
|
||||
htp_act_preamble3;
|
||||
|
||||
uint64_t t1, t2;
|
||||
t1 = HAP_perf_get_qtimer_count();
|
||||
|
||||
size_t src0_row_size = nb01;
|
||||
size_t src1_row_size = nb11;
|
||||
size_t dst_row_size = nb1;
|
||||
|
||||
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
|
||||
|
||||
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
|
||||
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
|
||||
|
||||
// no work for this thread
|
||||
if (src0_start_row >= src0_end_row) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
|
||||
|
|
@ -127,130 +249,94 @@ static void glu_swiglu_fp32_per_thread(const struct htp_tensor * src0,
|
|||
data_src1 += swapped ? 0 : nc_in_bytes;
|
||||
}
|
||||
|
||||
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size);
|
||||
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_row_size);
|
||||
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size);
|
||||
const size_t src0_row_size_aligned = htp_round_up(src0_row_size, VLEN);
|
||||
const size_t src1_row_size_aligned = htp_round_up(src1_row_size, VLEN);
|
||||
const size_t dst_row_size_aligned = htp_round_up(dst_row_size, VLEN);
|
||||
|
||||
const bool opt_path = ((1 == is_aligned) && !(nb01 & (VLEN - 1)));
|
||||
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
|
||||
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));
|
||||
const float * restrict src1 = (float *) (data_src1 + (ir * src1_row_size));
|
||||
float * restrict dst = (float *) (data_dst + (ir * dst_row_size));
|
||||
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_spad->size_per_thread);
|
||||
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_spad->size_per_thread);
|
||||
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_spad->size_per_thread);
|
||||
|
||||
if (ir + 1 < src0_end_row) {
|
||||
htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size);
|
||||
}
|
||||
// While given src0_spad->size_per_thread, divide it to two ping-pong buffer for src0
|
||||
size_t src0_spad_half_size = src0_spad->size_per_thread / 2;
|
||||
size_t src1_spad_half_size = src1_spad->size_per_thread / 2;
|
||||
size_t dst_spad_half_size = dst_spad->size_per_thread / 2;
|
||||
|
||||
if (opt_path) {
|
||||
hvx_fast_sigmoid_f32((const uint8_t *) src0, (uint8_t *) src0_spad_data, nc);
|
||||
hvx_mul_mul_f32_opt((const uint8_t *) src0, (const uint8_t *) src0_spad_data, (const uint8_t *) src1,
|
||||
(uint8_t *) dst, nc);
|
||||
} else {
|
||||
hvx_exp_f32((const uint8_t *) src0, src0_spad_data, nc, true);
|
||||
hvx_add_scalar_f32(src0_spad_data, 1.0, src1_spad_data, nc);
|
||||
hvx_inverse_f32(src1_spad_data, src0_spad_data, nc);
|
||||
|
||||
hvx_mul_f32((const uint8_t *) src0, src0_spad_data, dst_spad_data, nc);
|
||||
hvx_mul_f32(dst_spad_data, (const uint8_t *) src1, (uint8_t *) dst, nc);
|
||||
}
|
||||
}
|
||||
|
||||
t2 = HAP_perf_get_qtimer_count();
|
||||
|
||||
FARF(HIGH, "swiglu-f32 %d/%d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth, opt_path,
|
||||
ne00, ne01, ne02, ne03, src0_start_row, src0_end_row, ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3,
|
||||
(unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
|
||||
}
|
||||
|
||||
static void glu_swiglu_oai_fp32_per_thread(const struct htp_tensor * src0,
|
||||
const struct htp_tensor * src1,
|
||||
struct htp_tensor * dst,
|
||||
const int32_t * op_params,
|
||||
struct htp_spad * src0_spad,
|
||||
struct htp_spad * src1_spad,
|
||||
struct htp_spad * dst_spad,
|
||||
uint32_t nth,
|
||||
uint32_t ith,
|
||||
uint32_t src0_nrows_per_thread) {
|
||||
htp_act_preamble3;
|
||||
|
||||
uint64_t t1, t2;
|
||||
t1 = HAP_perf_get_qtimer_count();
|
||||
|
||||
const size_t src0_row_size = nb01;
|
||||
const size_t src1_row_size = nb11;
|
||||
const size_t dst_row_size = nb1;
|
||||
|
||||
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
|
||||
|
||||
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
|
||||
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
|
||||
|
||||
// no work for this thread
|
||||
if (src0_start_row >= src0_end_row) {
|
||||
const int BLOCK = src0_spad_half_size / src0_row_size_aligned; // How many rows can we process in one block
|
||||
if (BLOCK == 0) {
|
||||
FARF(ERROR,
|
||||
"swiglu-oai-f32 : current VTCM reservation %zu is too small for even 1 row per thread, needed at least "
|
||||
"%zu\n",
|
||||
src0_spad->size_per_thread, src0_row_size_aligned);
|
||||
return;
|
||||
}
|
||||
const float alpha = ((const float *) (op_params))[2];
|
||||
const float limit = ((const float *) (op_params))[3];
|
||||
|
||||
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
|
||||
FARF(HIGH, "act-f32: unaligned addresses in activations op, possibly slower execution\n");
|
||||
// See discussion: https://github.com/ggml-org/llama.cpp/pull/18151#issuecomment-3678235379
|
||||
for (uint32_t ir = src0_start_row, spad_idx = 0; ir < src0_end_row && spad_idx < 2; ir += BLOCK, spad_idx++) {
|
||||
const uint32_t block_size = MIN(BLOCK, src0_end_row - ir);
|
||||
|
||||
// Dummy DMA transation for sequencing (interleaving dst,src,dst,...)
|
||||
dma_queue_push_vtcm_to_ddr(dma_queue, dma_make_ptr(data_dst, dst_spad_data + (spad_idx * dst_spad_half_size)),
|
||||
dst_row_size, dst_row_size_aligned, 0);
|
||||
|
||||
dma_queue_push_ddr_to_vtcm(
|
||||
dma_queue,
|
||||
dma_make_ptr(src0_spad_data + (spad_idx * src0_spad_half_size), data_src0 + (ir * src0_row_size)),
|
||||
src0_row_size_aligned, src0_row_size, block_size);
|
||||
dma_queue_push_ddr_to_vtcm(
|
||||
dma_queue,
|
||||
dma_make_ptr(src1_spad_data + (spad_idx * src1_spad_half_size), data_src1 + (ir * src1_row_size)),
|
||||
src1_row_size_aligned, src1_row_size, block_size);
|
||||
}
|
||||
|
||||
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
|
||||
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
|
||||
uint8_t * restrict data_dst = (uint8_t *) dst->data;
|
||||
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir += BLOCK) {
|
||||
const uint32_t block_size = MIN(BLOCK, src0_end_row - ir);
|
||||
|
||||
bool src1_valid = src1->ne[0];
|
||||
if (!src1_valid) {
|
||||
data_src1 = data_src0;
|
||||
}
|
||||
float * dst_spad = (float *) dma_queue_pop(dma_queue).src;
|
||||
float * src0_spad = (float *) dma_queue_pop(dma_queue).dst;
|
||||
float * src1_spad = (float *) dma_queue_pop(dma_queue).dst;
|
||||
|
||||
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size);
|
||||
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_row_size);
|
||||
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size);
|
||||
for (uint32_t ib = 0; ib < block_size; ib++) {
|
||||
const float * src0_spad_ptr = src0_spad + ib * (src0_row_size_aligned / sizeof(float));
|
||||
const float * src1_spad_ptr = src1_spad + ib * (src1_row_size_aligned / sizeof(float));
|
||||
float * dst_spad_ptr = dst_spad + ib * (dst_row_size_aligned / sizeof(float));
|
||||
|
||||
const int32_t swapped = op_params[1];
|
||||
const float alpha = ((const float *) (op_params))[2];
|
||||
const float limit = ((const float *) (op_params))[3];
|
||||
|
||||
const int nc = (src1_valid) ? ne00 : ne00 / 2;
|
||||
|
||||
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
|
||||
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));
|
||||
const float * restrict src1 = (float *) (data_src1 + (ir * src1_row_size));
|
||||
float * restrict dst = (float *) (data_dst + (ir * dst_row_size));
|
||||
|
||||
if (ir + 1 < src0_end_row) {
|
||||
htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size);
|
||||
// x (src0_spad_data) = std::min(src0_p[k], limit);
|
||||
hvx_min_scalar_f32((const uint8_t *) src0_spad_ptr, limit, (uint8_t *) src0_spad_ptr, nc);
|
||||
// y1 (src1_spad_data) = std::clamp(src1_p[k], -limit, limit);
|
||||
hvx_clamp_scalar_f32((const uint8_t *) src1_spad_ptr, -limit, limit, (uint8_t *) src1_spad_ptr, nc);
|
||||
// y (src1_spad_data) = y1 + 1.f
|
||||
hvx_add_scalar_f32((const uint8_t *) src1_spad_ptr, 1.0, (uint8_t *) src1_spad_ptr, nc);
|
||||
// x1 (dst_spad_data) = alpha * (x)
|
||||
hvx_mul_scalar_f32((const uint8_t *) src0_spad_ptr, alpha, (uint8_t *) dst_spad_ptr, nc);
|
||||
// x2 (dst_spad_data) = sigmoid(x1) = 1/(1+exp(-x1))
|
||||
hvx_fast_sigmoid_f32((const uint8_t *) dst_spad_ptr, (uint8_t *) dst_spad_ptr, nc);
|
||||
// out = x * sigmoid(alpha * x) * (y + 1.f)
|
||||
hvx_mul_mul_f32_opt((const uint8_t *) src0_spad_ptr, (const uint8_t *) dst_spad_ptr,
|
||||
(const uint8_t *) src1_spad_ptr, (uint8_t *) dst_spad_ptr, nc);
|
||||
}
|
||||
|
||||
if (!src1) {
|
||||
src0 += swapped ? nc : 0;
|
||||
src1 += swapped ? 0 : nc;
|
||||
}
|
||||
dma_queue_push_vtcm_to_ddr(dma_queue, dma_make_ptr(data_dst + (ir * dst_row_size), dst_spad), dst_row_size,
|
||||
dst_row_size_aligned, block_size);
|
||||
|
||||
// x (src0_spad_data) = std::min(src0_p[k], limit);
|
||||
hvx_min_scalar_f32((const uint8_t *) src0, limit, src0_spad_data, nc);
|
||||
// y1 (src1_spad_data) = std::clamp(src1_p[k], -limit, limit);
|
||||
hvx_clamp_scalar_f32((const uint8_t *) src1, -limit, limit, src1_spad_data, nc);
|
||||
// y (src1_spad_data) = y1 + 1.f
|
||||
hvx_add_scalar_f32(src1_spad_data, 1.0, src1_spad_data, nc);
|
||||
// x1 (dst_spad_data) = alpha * (x)
|
||||
hvx_mul_scalar_f32(src0_spad_data, alpha, dst_spad_data, nc);
|
||||
// x2 (dst_spad_data) = expf(-x1)
|
||||
hvx_exp_f32(dst_spad_data, dst_spad_data, nc, true);
|
||||
// x3 (dst_spad_data) = x2 + 1.f
|
||||
hvx_add_scalar_f32(dst_spad_data, 1.0, dst_spad_data, nc);
|
||||
// x4 (dst_spad_data) = 1 / x3
|
||||
hvx_inverse_f32(dst_spad_data, dst_spad_data, nc);
|
||||
// out_glu(dst_spad_data) = x * x4
|
||||
hvx_mul_f32(src0_spad_data, dst_spad_data, dst_spad_data, nc);
|
||||
// out = out_glu * (y + 1.f);
|
||||
hvx_mul_f32(dst_spad_data, src1_spad_data, (uint8_t *) dst, nc);
|
||||
// prefetch N+2 loop iteration if any
|
||||
const uint32_t pref_block = (ir + BLOCK * 2);
|
||||
if (pref_block < src0_end_row) {
|
||||
const uint32_t pref_block_size = MIN(BLOCK, src0_end_row - pref_block);
|
||||
dma_queue_push_ddr_to_vtcm(dma_queue, dma_make_ptr(src0_spad, data_src0 + (pref_block * src0_row_size)),
|
||||
src0_row_size_aligned, src0_row_size, pref_block_size);
|
||||
dma_queue_push_ddr_to_vtcm(dma_queue, dma_make_ptr(src1_spad, data_src1 + (pref_block * src1_row_size)),
|
||||
src1_row_size_aligned, src1_row_size, pref_block_size);
|
||||
}
|
||||
}
|
||||
|
||||
dma_queue_flush(dma_queue);
|
||||
|
||||
t2 = HAP_perf_get_qtimer_count();
|
||||
|
||||
FARF(HIGH, "swiglu-f32 %d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth, src0->ne[0],
|
||||
FARF(HIGH, "swiglu-oai-f32 %d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth, src0->ne[0],
|
||||
src0->ne[1], src0->ne[2], src0->ne[3], src0_start_row, src0_end_row, src1->ne[0], src1->ne[1], src1->ne[2],
|
||||
src1->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
|
||||
}
|
||||
|
|
@ -371,7 +457,8 @@ static void unary_silu_fp32_per_thread(const struct htp_tensor * src0,
|
|||
struct htp_spad * dst_spad,
|
||||
uint32_t nth,
|
||||
uint32_t ith,
|
||||
uint32_t src0_nrows_per_thread) {
|
||||
uint32_t src0_nrows_per_thread,
|
||||
dma_queue * dma_queue) {
|
||||
htp_act_preamble2;
|
||||
|
||||
uint64_t t1, t2;
|
||||
|
|
@ -379,6 +466,8 @@ static void unary_silu_fp32_per_thread(const struct htp_tensor * src0,
|
|||
|
||||
const size_t src0_row_size = nb01;
|
||||
const size_t dst_row_size = nb1;
|
||||
const size_t src0_row_size_aligned = htp_round_up(src0_row_size, VLEN);
|
||||
const size_t dst_row_size_aligned = htp_round_up(dst_row_size, VLEN);
|
||||
|
||||
const uint32_t src0_nrows = ne01 * ne02 * ne03;
|
||||
|
||||
|
|
@ -390,64 +479,91 @@ static void unary_silu_fp32_per_thread(const struct htp_tensor * src0,
|
|||
return;
|
||||
}
|
||||
|
||||
int is_aligned = 1;
|
||||
int opt_path = 0;
|
||||
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
|
||||
is_aligned = 0;
|
||||
FARF(HIGH, "silu-f32: unaligned addresses in elementwise op, possibly slower execution\n");
|
||||
}
|
||||
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
|
||||
opt_path = 1;
|
||||
const uint8_t * data_src0 = (const uint8_t *) src0->data;
|
||||
uint8_t * data_dst = (uint8_t *) dst->data;
|
||||
|
||||
uint8_t * src0_spad_data = src0_spad->data + (ith * src0_spad->size_per_thread);
|
||||
uint8_t * dst_spad_data = dst_spad->data + (ith * dst_spad->size_per_thread);
|
||||
|
||||
// While given src0_spad->size_per_thread, divide it to two ping-pong buffer for src0
|
||||
size_t src0_spad_half_size = src0_spad->size_per_thread / 2;
|
||||
size_t dst_spad_half_size = dst_spad->size_per_thread / 2;
|
||||
|
||||
const int BLOCK = src0_spad_half_size / src0_row_size_aligned; // How many rows can we process in one block
|
||||
|
||||
if (BLOCK == 0) {
|
||||
FARF(ERROR, "silu-f32 : current VTCM reservation %zu is too small for even 1 row per thread, needed at least %zu\n",
|
||||
src0_spad->size_per_thread, src0_row_size_aligned);
|
||||
return;
|
||||
}
|
||||
|
||||
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
|
||||
uint8_t * restrict data_dst = (uint8_t *) dst->data;
|
||||
// See discussion: https://github.com/ggml-org/llama.cpp/pull/18151#issuecomment-3678235379
|
||||
for (uint32_t ir = src0_start_row, spad_idx = 0; ir < src0_end_row && spad_idx < 2; ir += BLOCK, spad_idx++) {
|
||||
const uint32_t block_size = MIN(BLOCK, src0_end_row - ir);
|
||||
|
||||
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size);
|
||||
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size);
|
||||
// Dummy DMA transation for sequencing (interleaving dst,src,dst,...)
|
||||
dma_queue_push_vtcm_to_ddr(dma_queue,
|
||||
dma_make_ptr(data_dst, dst_spad_data + (spad_idx * dst_spad_half_size)),
|
||||
dst_row_size, dst_row_size_aligned, 0);
|
||||
|
||||
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
|
||||
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));
|
||||
float * restrict dst = (float *) (data_dst + (ir * dst_row_size));
|
||||
dma_queue_push_ddr_to_vtcm(dma_queue,
|
||||
dma_make_ptr(src0_spad_data + (spad_idx * src0_spad_half_size), data_src0 + (ir * src0_row_size)),
|
||||
src0_row_size_aligned, src0_row_size, block_size);
|
||||
}
|
||||
|
||||
if (ir + 1 < src0_end_row) {
|
||||
htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size);
|
||||
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir += BLOCK) {
|
||||
const uint32_t block_size = MIN(BLOCK, src0_end_row - ir);
|
||||
|
||||
float* dst_spad = (float *) dma_queue_pop(dma_queue).src;
|
||||
float* src0_spad = (float *) dma_queue_pop(dma_queue).dst;
|
||||
|
||||
for (uint32_t ib = 0; ib < block_size; ib++) {
|
||||
const float* src0_spad_ptr = src0_spad + ib * (src0_row_size_aligned / sizeof(float));
|
||||
float* dst_spad_ptr = dst_spad + ib * (dst_row_size_aligned / sizeof(float));
|
||||
|
||||
// silu = x * sigmoid(x)
|
||||
hvx_fast_sigmoid_f32((const uint8_t *) src0_spad_ptr, (uint8_t *) dst_spad_ptr, ne0);
|
||||
hvx_mul_f32_opt((const uint8_t *) src0_spad_ptr, (uint8_t *) dst_spad_ptr, (uint8_t *) dst_spad_ptr, ne0);
|
||||
}
|
||||
|
||||
if (1 == opt_path) {
|
||||
hvx_fast_sigmoid_f32((const uint8_t *) src0, (uint8_t *) src0_spad_data, ne0);
|
||||
hvx_mul_f32_opt((const uint8_t *) src0, src0_spad_data, (uint8_t *) dst, ne0);
|
||||
} else {
|
||||
hvx_exp_f32((const uint8_t *) src0, src0_spad_data, ne0, true);
|
||||
hvx_add_scalar_f32(src0_spad_data, 1.0, dst_spad_data, ne0);
|
||||
hvx_inverse_f32(dst_spad_data, src0_spad_data, ne0);
|
||||
dma_queue_push_vtcm_to_ddr(dma_queue,
|
||||
dma_make_ptr(data_dst + (ir * dst_row_size), dst_spad),
|
||||
dst_row_size, dst_row_size_aligned, block_size);
|
||||
|
||||
hvx_mul_f32((const uint8_t *) src0, src0_spad_data, (uint8_t *) dst, ne0);
|
||||
// prefetch N+2 loop iteration if any
|
||||
const uint32_t pref_block = (ir + BLOCK * 2);
|
||||
if (pref_block < src0_end_row) {
|
||||
const uint32_t pref_block_size = MIN(BLOCK, src0_end_row - pref_block);
|
||||
dma_queue_push_ddr_to_vtcm(dma_queue,
|
||||
dma_make_ptr(src0_spad, data_src0 + (pref_block * src0_row_size)),
|
||||
src0_row_size_aligned, src0_row_size, pref_block_size);
|
||||
}
|
||||
}
|
||||
|
||||
dma_queue_flush(dma_queue);
|
||||
|
||||
t2 = HAP_perf_get_qtimer_count();
|
||||
|
||||
FARF(HIGH, "silu-f32 %d/%d/%d: %ux%ux%ux%u (%u:%u) -> %ux%ux%ux%u usec %u\n", ith, nth, opt_path, ne00, ne01, ne02,
|
||||
FARF(HIGH, "silu-f32 %d/%d: %ux%ux%ux%u (%u:%u) -> %ux%ux%ux%u usec %u\n", ith, nth, ne00, ne01, ne02,
|
||||
ne03, src0_start_row, src0_end_row, ne0, ne1, ne2, ne3, (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
|
||||
}
|
||||
|
||||
static void unary_silu_fp32(unsigned int n, unsigned int i, void * data) {
|
||||
struct htp_ops_context * octx = (struct htp_ops_context *) data;
|
||||
unary_silu_fp32_per_thread(&octx->src0, &octx->dst, octx->op_params, &octx->src0_spad, &octx->dst_spad, n, i,
|
||||
octx->src0_nrows_per_thread);
|
||||
octx->src0_nrows_per_thread, octx->ctx->dma[i]);
|
||||
}
|
||||
|
||||
static void glu_swiglu_fp32(unsigned int n, unsigned int i, void * data) {
|
||||
struct htp_ops_context * octx = (struct htp_ops_context *) data;
|
||||
glu_swiglu_fp32_per_thread(&octx->src0, &octx->src1, &octx->dst, octx->op_params, &octx->src0_spad,
|
||||
&octx->src1_spad, &octx->dst_spad, n, i, octx->src0_nrows_per_thread);
|
||||
&octx->src1_spad, &octx->dst_spad, n, i, octx->src0_nrows_per_thread, octx->ctx->dma[i]);
|
||||
}
|
||||
|
||||
static void glu_swiglu_oai_fp32(unsigned int n, unsigned int i, void * data) {
|
||||
struct htp_ops_context * octx = (struct htp_ops_context *) data;
|
||||
glu_swiglu_oai_fp32_per_thread(&octx->src0, &octx->src1, &octx->dst, octx->op_params, &octx->src0_spad,
|
||||
&octx->src1_spad, &octx->dst_spad, n, i, octx->src0_nrows_per_thread);
|
||||
&octx->src1_spad, &octx->dst_spad, n, i, octx->src0_nrows_per_thread, octx->ctx->dma[i]);
|
||||
}
|
||||
|
||||
static int execute_op_activations_fp32(struct htp_ops_context * octx) {
|
||||
|
|
|
|||
|
|
@ -1684,3 +1684,60 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_sgd(ggm
|
|||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_memset(ggml_metal_library_t lib, const ggml_tensor * op) {
|
||||
GGML_ASSERT(op->type == GGML_TYPE_I64);
|
||||
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
snprintf(base, 256, "kernel_memset_%s", ggml_type_name(op->type));
|
||||
snprintf(name, 256, "%s", base);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_count_equal(ggml_metal_library_t lib, const ggml_tensor * op) {
|
||||
assert(op->op == GGML_OP_COUNT_EQUAL);
|
||||
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, op->src[0], ne);
|
||||
|
||||
GGML_ASSERT(op->src[0]->type == op->src[1]->type);
|
||||
GGML_ASSERT(op->src[0]->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(op->type == GGML_TYPE_I64);
|
||||
|
||||
// note: the kernel only supports i32 output due to metal atomic add only supporting atomic_int
|
||||
GGML_ASSERT(ggml_nelements(op->src[0]) < (1LL << 31));
|
||||
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
int nsg = 1;
|
||||
while (32*nsg < ne00 && nsg < 32) {
|
||||
nsg *= 2;
|
||||
}
|
||||
|
||||
snprintf(base, 256, "kernel_count_equal_%s", ggml_type_name(op->src[0]->type));
|
||||
snprintf(name, 256, "%s_nsg=%d", base, nsg);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
ggml_metal_cv_t cv = ggml_metal_cv_init();
|
||||
|
||||
ggml_metal_cv_set_int16(cv, nsg, FC_COUNT_EQUAL + 0);
|
||||
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
|
||||
|
||||
ggml_metal_cv_free(cv);
|
||||
}
|
||||
|
||||
res.smem = 32 * sizeof(int32_t);
|
||||
res.nsg = nsg;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -147,6 +147,8 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_arange
|
|||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_adamw (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_sgd (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_memset (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_count_equal (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_pad(
|
||||
ggml_metal_library_t lib,
|
||||
|
|
|
|||
|
|
@ -1023,6 +1023,11 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
|||
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
|
||||
case GGML_OP_L2_NORM:
|
||||
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return has_simdgroup_reduction &&
|
||||
op->src[0]->type == GGML_TYPE_I32 &&
|
||||
op->src[1]->type == GGML_TYPE_I32 &&
|
||||
op->type == GGML_TYPE_I64;
|
||||
case GGML_OP_ARGMAX:
|
||||
return has_simdgroup_reduction;
|
||||
case GGML_OP_NORM:
|
||||
|
|
|
|||
|
|
@ -78,6 +78,7 @@
|
|||
#define FC_MUL_MM 700
|
||||
#define FC_ROPE 800
|
||||
#define FC_SSM_CONV 900
|
||||
#define FC_COUNT_EQUAL 1000
|
||||
|
||||
// op-specific constants
|
||||
#define OP_FLASH_ATTN_EXT_NQPTG 8
|
||||
|
|
@ -894,6 +895,25 @@ typedef struct {
|
|||
float step;
|
||||
} ggml_metal_kargs_arange;
|
||||
|
||||
typedef struct {
|
||||
int64_t val;
|
||||
} ggml_metal_kargs_memset;
|
||||
|
||||
typedef struct {
|
||||
int32_t ne00;
|
||||
int32_t ne01;
|
||||
int32_t ne02;
|
||||
int32_t ne03;
|
||||
uint64_t nb00;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb03;
|
||||
uint64_t nb10;
|
||||
uint64_t nb11;
|
||||
uint64_t nb12;
|
||||
uint64_t nb13;
|
||||
} ggml_metal_kargs_count_equal;
|
||||
|
||||
typedef struct {
|
||||
int32_t k0;
|
||||
int32_t k1;
|
||||
|
|
|
|||
|
|
@ -448,7 +448,11 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
|
|||
{
|
||||
n_fuse = ggml_metal_op_opt_step_sgd(ctx, idx);
|
||||
} break;
|
||||
default:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
{
|
||||
n_fuse = ggml_metal_op_count_equal(ctx, idx);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(node->op));
|
||||
GGML_ABORT("fatal error");
|
||||
|
|
@ -2177,7 +2181,11 @@ size_t ggml_metal_op_flash_attn_ext_extra_pad(const ggml_tensor * op) {
|
|||
|
||||
const bool has_mask = op->src[3] != nullptr;
|
||||
|
||||
if (ggml_metal_op_flash_attn_ext_use_vec(op)) {
|
||||
// note: the non-vec kernel requires more extra memory, so always reserve for it
|
||||
GGML_ASSERT(OP_FLASH_ATTN_EXT_NCPSG >= OP_FLASH_ATTN_EXT_VEC_NCPSG);
|
||||
|
||||
//if (ggml_metal_op_flash_attn_ext_use_vec(op)) {
|
||||
if (false) {
|
||||
// note: always reserve the padding space to avoid graph reallocations
|
||||
//const bool has_kvpad = ne11 % OP_FLASH_ATTN_EXT_VEC_NCPSG != 0;
|
||||
const bool has_kvpad = true;
|
||||
|
|
@ -4090,3 +4098,64 @@ int ggml_metal_op_opt_step_sgd(ggml_metal_op_t ctx, int idx) {
|
|||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_count_equal(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
ggml_metal_library_t lib = ctx->lib;
|
||||
ggml_metal_encoder_t enc = ctx->enc;
|
||||
|
||||
GGML_TENSOR_LOCALS(int32_t, ne0, op->src[0], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
|
||||
|
||||
{
|
||||
ggml_metal_kargs_memset args = { /*.val =*/ 0 };
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_memset(lib, op);
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 1);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, 1, 1, 1, 1, 1, 1);
|
||||
}
|
||||
|
||||
ggml_metal_op_concurrency_reset(ctx);
|
||||
|
||||
{
|
||||
ggml_metal_kargs_count_equal args = {
|
||||
/*.ne00 =*/ ne00,
|
||||
/*.ne01 =*/ ne01,
|
||||
/*.ne02 =*/ ne02,
|
||||
/*.ne03 =*/ ne03,
|
||||
/*.nb00 =*/ nb00,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.nb10 =*/ nb10,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.nb13 =*/ nb13,
|
||||
};
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_count_equal(lib, op);
|
||||
|
||||
const size_t smem = pipeline.smem;
|
||||
|
||||
const int nth = 32*pipeline.nsg;
|
||||
|
||||
GGML_ASSERT(nth <= ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[1]), 2);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 3);
|
||||
|
||||
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -87,6 +87,7 @@ int ggml_metal_op_leaky_relu (ggml_metal_op_t ctx, int idx);
|
|||
int ggml_metal_op_tri (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_opt_step_adamw (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_opt_step_sgd (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_count_equal (ggml_metal_op_t ctx, int idx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1790,6 +1790,7 @@ kernel void kernel_op_sum_f32(
|
|||
return;
|
||||
}
|
||||
|
||||
// TODO: become function constant
|
||||
const uint nsg = (ntg.x + 31) / 32;
|
||||
|
||||
float sumf = 0;
|
||||
|
|
@ -9557,9 +9558,6 @@ template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mul_mm_t kernel_mul_m
|
|||
|
||||
template [[host_name("kernel_mul_mm_f32_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_f16_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, half4x4, 1, dequantize_f16, half, half4x4, half, half2x4>;
|
||||
#if defined(GGML_METAL_HAS_BF16)
|
||||
template [[host_name("kernel_mul_mm_bf16_f16")]] kernel mul_mm_t kernel_mul_mm<bfloat, bfloat4x4, simdgroup_bfloat8x8, half, half2x4, simdgroup_half8x8, bfloat4x4, 1, dequantize_bf16, bfloat, bfloat4x4, half, half2x4>;
|
||||
#endif
|
||||
template [[host_name("kernel_mul_mm_q4_0_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_q4_1_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_q5_0_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0, float, float4x4, half, half2x4>;
|
||||
|
|
@ -9615,9 +9613,6 @@ template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mul_mm_id kernel_m
|
|||
|
||||
template [[host_name("kernel_mul_mm_id_f32_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_id_f16_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, half4x4, 1, dequantize_f16, half, half4x4, half, half2x4>;
|
||||
#if defined(GGML_METAL_HAS_BF16)
|
||||
template [[host_name("kernel_mul_mm_id_bf16_f16")]] kernel mul_mm_id kernel_mul_mm_id<bfloat, bfloat4x4, simdgroup_bfloat8x8, half, half2x4, simdgroup_half8x8, bfloat4x4, 1, dequantize_bf16, bfloat, bfloat4x4, half, half2x4>;
|
||||
#endif
|
||||
template [[host_name("kernel_mul_mm_id_q4_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_id_q4_1_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1, float, float4x4, half, half2x4>;
|
||||
template [[host_name("kernel_mul_mm_id_q5_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0, float, float4x4, half, half2x4>;
|
||||
|
|
@ -9920,3 +9915,75 @@ kernel void kernel_opt_step_sgd_f32(
|
|||
|
||||
x[gid] = x[gid] * (1.0f - pars[0] * pars[1]) - pars[0] * g[gid];
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_memset(
|
||||
constant ggml_metal_kargs_fill & args,
|
||||
device T * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = args.val;
|
||||
}
|
||||
|
||||
typedef decltype(kernel_memset<int64_t>) kernel_memset_t;
|
||||
|
||||
template [[host_name("kernel_memset_i64")]] kernel kernel_memset_t kernel_memset<int64_t>;
|
||||
|
||||
constant short FC_count_equal_nsg [[function_constant(FC_COUNT_EQUAL + 0)]];
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_count_equal(
|
||||
constant ggml_metal_kargs_count_equal & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device atomic_int * dst,
|
||||
threadgroup int32_t * shmem_i32 [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort3 tpitg[[thread_position_in_threadgroup]],
|
||||
ushort sgitg[[simdgroup_index_in_threadgroup]],
|
||||
ushort tiisg[[thread_index_in_simdgroup]],
|
||||
ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
const short NSG = FC_count_equal_nsg;
|
||||
|
||||
const int i3 = tgpig.z;
|
||||
const int i2 = tgpig.y;
|
||||
const int i1 = tgpig.x;
|
||||
|
||||
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
int sum = 0;
|
||||
|
||||
device const char * base0 = src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03;
|
||||
device const char * base1 = src1 + i1*args.nb11 + i2*args.nb12 + i3*args.nb13;
|
||||
|
||||
for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
|
||||
const T v0 = *(device const T *)(base0 + i0*args.nb00);
|
||||
const T v1 = *(device const T *)(base1 + i0*args.nb10);
|
||||
sum += (v0 == v1);
|
||||
}
|
||||
|
||||
sum = simd_sum(sum);
|
||||
|
||||
if (tiisg == 0) {
|
||||
shmem_i32[sgitg] = sum;
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
if (sgitg == 0) {
|
||||
float v = 0.0f;
|
||||
if (tpitg.x < NSG) {
|
||||
v = shmem_i32[tpitg.x];
|
||||
}
|
||||
|
||||
float total = simd_sum(v);
|
||||
if (tpitg.x == 0) {
|
||||
atomic_fetch_add_explicit(dst, (int32_t) total, memory_order_relaxed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
typedef decltype(kernel_count_equal<int32_t>) kernel_count_equal_t;
|
||||
|
||||
template [[host_name("kernel_count_equal_i32")]] kernel kernel_count_equal_t kernel_count_equal<int32_t>;
|
||||
|
|
|
|||
|
|
@ -1517,10 +1517,12 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input) {
|
|||
struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
|
||||
graph->n_nodes = n_nodes;
|
||||
std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
|
||||
tensor_ptrs.reserve(n_tensors);
|
||||
for (uint32_t i = 0; i < n_tensors; i++) {
|
||||
tensor_ptrs[tensors[i].id] = &tensors[i];
|
||||
tensor_ptrs.emplace(tensors[i].id, &tensors[i]);
|
||||
}
|
||||
std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
|
||||
tensor_map.reserve(n_nodes);
|
||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||
int64_t id;
|
||||
memcpy(&id, &nodes[i], sizeof(id));
|
||||
|
|
|
|||
|
|
@ -36,7 +36,47 @@ if (WIN32)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
find_package(IntelSYCL)
|
||||
macro(detect_and_find_package package_name)
|
||||
set(test_source "
|
||||
cmake_minimum_required(VERSION ${CMAKE_VERSION})
|
||||
project(check_package LANGUAGES CXX)
|
||||
find_package(${package_name} QUIET)
|
||||
")
|
||||
|
||||
set(test_dir "${CMAKE_CURRENT_BINARY_DIR}/check_package_${package_name}")
|
||||
file(WRITE "${test_dir}/CMakeLists.txt" "${test_source}")
|
||||
|
||||
set(cmake_args "")
|
||||
if(CMAKE_GENERATOR)
|
||||
list(APPEND cmake_args "-G" "${CMAKE_GENERATOR}")
|
||||
endif()
|
||||
if(CMAKE_GENERATOR_PLATFORM)
|
||||
list(APPEND cmake_args "-A" "${CMAKE_GENERATOR_PLATFORM}")
|
||||
endif()
|
||||
if(CMAKE_GENERATOR_TOOLSET)
|
||||
list(APPEND cmake_args "-T" "${CMAKE_GENERATOR_TOOLSET}")
|
||||
endif()
|
||||
if(CMAKE_CXX_COMPILER)
|
||||
list(APPEND cmake_args "-DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}")
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_COMMAND} ${cmake_args} .
|
||||
WORKING_DIRECTORY "${test_dir}"
|
||||
RESULT_VARIABLE result
|
||||
OUTPUT_QUIET
|
||||
ERROR_QUIET
|
||||
)
|
||||
|
||||
if(result EQUAL 0)
|
||||
find_package(${package_name} ${ARGN})
|
||||
else()
|
||||
message(WARNING "Detection of ${package_name} failed. The package might be broken or incompatible.")
|
||||
set(${package_name}_FOUND FALSE)
|
||||
endif()
|
||||
endmacro()
|
||||
|
||||
detect_and_find_package(IntelSYCL)
|
||||
if (IntelSYCL_FOUND)
|
||||
# Use oneAPI CMake when possible
|
||||
target_link_libraries(ggml-sycl PRIVATE IntelSYCL::SYCL_CXX)
|
||||
|
|
@ -191,3 +231,4 @@ if (GGML_SYCL_DEVICE_ARCH)
|
|||
target_compile_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
|
||||
target_link_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
|
||||
endif()
|
||||
|
||||
|
|
|
|||
|
|
@ -434,8 +434,15 @@ static constexpr std::initializer_list<ggml_op> topk_moe_early_softmax_norm{ GGM
|
|||
GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
||||
GGML_OP_SUM_ROWS, GGML_OP_CLAMP, GGML_OP_DIV,
|
||||
GGML_OP_RESHAPE };
|
||||
|
||||
static constexpr std::initializer_list<ggml_op> topk_moe_sigmoid_norm_bias{ GGML_OP_UNARY, GGML_OP_RESHAPE, GGML_OP_ADD,
|
||||
GGML_OP_ARGSORT, GGML_OP_VIEW, GGML_OP_GET_ROWS,
|
||||
GGML_OP_RESHAPE, GGML_OP_SUM_ROWS, GGML_OP_CLAMP,
|
||||
GGML_OP_DIV, GGML_OP_RESHAPE };
|
||||
|
||||
static constexpr std::initializer_list<ggml_op> topk_moe_early_softmax { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
|
||||
GGML_OP_VIEW, GGML_OP_GET_ROWS };
|
||||
|
||||
static constexpr std::initializer_list<ggml_op> topk_moe_late_softmax { GGML_OP_ARGSORT, GGML_OP_VIEW,
|
||||
GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
||||
GGML_OP_SOFT_MAX, GGML_OP_RESHAPE };
|
||||
|
|
@ -464,6 +471,32 @@ static constexpr std::initializer_list<std::array<int, 3>> topk_moe_early_softma
|
|||
{ 9, 0, 8 }, // reshape->src[0] == div
|
||||
};
|
||||
|
||||
//node #436 ( UNARY): ffn_moe_probs-10 ( 256K) [Vulka ] use=2: ffn_moe_logits-10 ( 256K) [Vulka ]
|
||||
//node #437 ( RESHAPE): ffn_moe_probs-10 (re ( 256K) [Vulka ] use=1: ffn_moe_probs-10 ( 256K) [Vulka ]
|
||||
//node #438 ( ADD): ffn_moe_probs_biased ( 256K) [Vulka ] use=1: ffn_moe_probs-10 ( 256K) [Vulka ] blk.10.exp_probs_b.b ( 0K) [Vulka ]
|
||||
//node #439 ( ARGSORT): ffn_moe_argsort-10 ( 256K) [Vulka ] use=1: ffn_moe_probs_biased ( 256K) [Vulka ]
|
||||
//node #440 ( VIEW): ffn_moe_topk-10 ( 255K) [Vulka ] use=3: ffn_moe_argsort-10 ( 256K) [Vulka ]
|
||||
//node #441 ( GET_ROWS): ffn_moe_weights-10 ( 12K) [Vulka ] use=1: ffn_moe_probs-10 (re ( 256K) [Vulka ] ffn_moe_topk-10 ( 255K) [Vulka ]
|
||||
//node #442 ( RESHAPE): ffn_moe_weights-10 ( ( 12K) [Vulka ] use=2: ffn_moe_weights-10 ( 12K) [Vulka ]
|
||||
//node #443 ( SUM_ROWS): ffn_moe_weights_sum- ( 2K) [Vulka ] use=1: ffn_moe_weights-10 ( ( 12K) [Vulka ]
|
||||
//node #444 ( CLAMP): ffn_moe_weights_sum_ ( 2K) [Vulka ] use=1: ffn_moe_weights_sum- ( 2K) [Vulka ]
|
||||
//node #445 ( DIV): ffn_moe_weights_norm ( 12K) [Vulka ] use=1: ffn_moe_weights-10 ( ( 12K) [Vulka ] ffn_moe_weights_sum_ ( 2K) [Vulka ]
|
||||
//node #446 ( RESHAPE): ffn_moe_weights_norm ( 12K) [Vulka ] use=1: ffn_moe_weights_norm ( 12K) [Vulka ]
|
||||
static constexpr std::initializer_list<std::array<int, 3>> topk_moe_sigmoid_norm_bias_edges {
|
||||
{ 1, 0, 0 }, // reshape->src[0] == sigmoid
|
||||
{ 2, 0, 0 }, // add->src[0] == sigmoid
|
||||
{ 3, 0, 2 }, // argsort->src[0] == add
|
||||
{ 4, 0, 3 }, // view->src[0] == argsort
|
||||
{ 5, 0, 1 }, // get_rows->src[0] == reshape
|
||||
{ 5, 1, 4 }, // get_rows->src[1] == view
|
||||
{ 6, 0, 5 }, // reshape->src[0] == get_rows
|
||||
{ 7, 0, 6 }, // sum_rows->src[0] == reshape
|
||||
{ 8, 0, 7 }, // clamp->src[0] == sum_rows
|
||||
{ 9, 0, 6 }, // div->src[0] == reshape
|
||||
{ 9, 1, 8 }, // div->src[1] == clamp
|
||||
{10, 0, 9 }, // reshape->src[0] == div
|
||||
};
|
||||
|
||||
// same as early_softmax_norm but ending after the get_rows
|
||||
static constexpr std::initializer_list<std::array<int, 3>> topk_moe_early_softmax_edges {
|
||||
{ 1, 0, 0 }, // reshape->src[0] == softmax
|
||||
|
|
@ -491,16 +524,10 @@ enum topk_moe_mode {
|
|||
TOPK_MOE_EARLY_SOFTMAX,
|
||||
TOPK_MOE_EARLY_SOFTMAX_NORM,
|
||||
TOPK_MOE_LATE_SOFTMAX,
|
||||
TOPK_MOE_SIGMOID_NORM_BIAS,
|
||||
TOPK_MOE_COUNT,
|
||||
};
|
||||
|
||||
static topk_moe_mode ggml_vk_num_additional_ops_to_topk_moe_mode(uint32_t num) {
|
||||
topk_moe_mode mode = num == topk_moe_early_softmax_norm.size() - 1 ? TOPK_MOE_EARLY_SOFTMAX_NORM :
|
||||
num == topk_moe_early_softmax.size() - 1 ? TOPK_MOE_EARLY_SOFTMAX :
|
||||
TOPK_MOE_LATE_SOFTMAX;
|
||||
return mode;
|
||||
}
|
||||
|
||||
static constexpr std::initializer_list<std::array<int, 3>> rope_view_set_rows_edges {
|
||||
{ 1, 0, 0 }, // view->src[0] == rope
|
||||
{ 2, 0, 1 }, // set_rows->src[0] == view
|
||||
|
|
@ -738,6 +765,9 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_topk_f32[num_topk_pipelines];
|
||||
vk_pipeline pipeline_sum_rows_f32;
|
||||
vk_pipeline pipeline_cumsum_f32;
|
||||
vk_pipeline pipeline_cumsum_small_f32;
|
||||
vk_pipeline pipeline_cumsum_multipass1_f32;
|
||||
vk_pipeline pipeline_cumsum_multipass2_f32;
|
||||
vk_pipeline pipeline_argmax_f32;
|
||||
vk_pipeline pipeline_count_equal_i32;
|
||||
std::map<vk_solve_tri_pipeline_state, vk_pipeline> pipeline_solve_tri_f32;
|
||||
|
|
@ -766,7 +796,7 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_count_experts;
|
||||
|
||||
// [2] is for whether to take n_experts from spec constant (0) or push constant (1)
|
||||
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][TOPK_MOE_COUNT][2];
|
||||
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][2];
|
||||
|
||||
std::vector<vk_pipeline_ref> all_pipelines;
|
||||
|
||||
|
|
@ -1181,6 +1211,11 @@ struct vk_op_topk_moe_push_constants {
|
|||
uint32_t n_expert_used;
|
||||
float clamp_min;
|
||||
float clamp_max;
|
||||
uint32_t gating_func;
|
||||
uint32_t has_bias;
|
||||
uint32_t with_norm;
|
||||
float output_scale;
|
||||
float output_bias;
|
||||
};
|
||||
|
||||
struct vk_op_add_id_push_constants {
|
||||
|
|
@ -1771,6 +1806,8 @@ struct ggml_backend_vk_context {
|
|||
// Bit 'i' means nodes[start_of_fusion + i] writes to memory.
|
||||
// If there's no fusion, bit 0 is still set.
|
||||
int fused_ops_write_mask {};
|
||||
topk_moe_mode fused_topk_moe_mode {};
|
||||
bool fused_topk_moe_scale {};
|
||||
|
||||
// for GGML_VK_PERF_LOGGER
|
||||
std::unique_ptr<vk_perf_logger> perf_logger;
|
||||
|
|
@ -2668,7 +2705,7 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec
|
|||
switch (src0_type) {
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
lut_size = 2*2048;
|
||||
lut_size = 2*2048 + 4*2048;
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
lut_size = 8*256;
|
||||
|
|
@ -2861,39 +2898,41 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
const uint32_t tk_m = device->coopmat_support ? device->coopmat_k : 1;
|
||||
const uint32_t tk_s = device->coopmat_support ? device->coopmat_k : 1;
|
||||
|
||||
l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, subgroup_size_8 };
|
||||
m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
|
||||
s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
|
||||
const uint32_t s_warptile_wm = device->subgroup_size == 8 ? 8 : 32;
|
||||
|
||||
l_warptile_mmq = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, subgroup_size_8 };
|
||||
m_warptile_mmq = { 128, 64, 64, 32, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
|
||||
s_warptile_mmq = { subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
|
||||
l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, subgroup_size_8 };
|
||||
m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
|
||||
s_warptile = { subgroup_size_32, 32, 32, 16, s_warptile_wm, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
|
||||
|
||||
l_warptile_mmq = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, subgroup_size_8 };
|
||||
m_warptile_mmq = { 128, 64, 64, 32, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
|
||||
s_warptile_mmq = { subgroup_size_32, 32, 32, 32, s_warptile_wm, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
|
||||
|
||||
// Integer MMQ has a smaller shared memory profile, but heavier register use
|
||||
l_warptile_mmq_int = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
|
||||
m_warptile_mmq_int = { 128, 64, 64, 32, subgroup_size_8, 32, 2, 2, 2, 1, subgroup_size_8 };
|
||||
s_warptile_mmq_int = { subgroup_size_32, 32, 32, 32, 32, 32, 2, 2, 1, 1, subgroup_size_8 };
|
||||
l_warptile_mmq_int = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
|
||||
m_warptile_mmq_int = { 128, 64, 64, 32, subgroup_size_8, 32, 2, 2, 2, 1, subgroup_size_8 };
|
||||
s_warptile_mmq_int = { subgroup_size_32, 32, 32, 32, s_warptile_wm, 32, 2, 2, 1, 1, subgroup_size_8 };
|
||||
|
||||
// K-quants use even more registers, mitigate by setting WMITER to 1
|
||||
l_warptile_mmq_int_k = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 1, 4, 4, 1, subgroup_size_8 };
|
||||
m_warptile_mmq_int_k = { 128, 64, 64, 32, subgroup_size_8, 32, 1, 2, 2, 1, subgroup_size_8 };
|
||||
s_warptile_mmq_int_k = { subgroup_size_32, 32, 32, 32, 32, 32, 1, 2, 1, 1, subgroup_size_8 };
|
||||
l_warptile_mmq_int_k = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 1, 4, 4, 1, subgroup_size_8 };
|
||||
m_warptile_mmq_int_k = { 128, 64, 64, 32, subgroup_size_8, 32, 1, 2, 2, 1, subgroup_size_8 };
|
||||
s_warptile_mmq_int_k = { subgroup_size_32, 32, 32, 32, s_warptile_wm, 32, 1, 2, 1, 1, subgroup_size_8 };
|
||||
|
||||
l_warptile_id = { 128, 128, 128, 16, mul_mat_subgroup_size_16 * 2, 64, 2, tm_l, tn_l, tk_l, mul_mat_subgroup_size_16 };
|
||||
m_warptile_id = { 128, 64, 64, 16, mul_mat_subgroup_size_16, 32, 2, tm_m, tn_m, tk_m, mul_mat_subgroup_size_16 };
|
||||
s_warptile_id = { mul_mat_subgroup_size_16, 32, 32, 16, 32, 32, 2, tm_s, tn_s, tk_s, mul_mat_subgroup_size_16 };
|
||||
l_warptile_id = { 128, 128, 128, 16, mul_mat_subgroup_size_16 * 2, 64, 2, tm_l, tn_l, tk_l, mul_mat_subgroup_size_16 };
|
||||
m_warptile_id = { 128, 64, 64, 16, mul_mat_subgroup_size_16, 32, 2, tm_m, tn_m, tk_m, mul_mat_subgroup_size_16 };
|
||||
s_warptile_id = { mul_mat_subgroup_size_16, 32, 32, 16, s_warptile_wm, 32, 2, tm_s, tn_s, tk_s, mul_mat_subgroup_size_16 };
|
||||
|
||||
l_warptile_mmqid = { 128, 128, 128, 32, mul_mat_subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, mul_mat_subgroup_size_8 };
|
||||
m_warptile_mmqid = { 128, 64, 64, 32, mul_mat_subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, mul_mat_subgroup_size_8 };
|
||||
s_warptile_mmqid = { mul_mat_subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, mul_mat_subgroup_size_8 };
|
||||
l_warptile_mmqid = { 128, 128, 128, 32, mul_mat_subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, mul_mat_subgroup_size_8 };
|
||||
m_warptile_mmqid = { 128, 64, 64, 32, mul_mat_subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, mul_mat_subgroup_size_8 };
|
||||
s_warptile_mmqid = { mul_mat_subgroup_size_32, 32, 32, 32, s_warptile_wm, 32, 2, tm_s, tn_s, tk_s, mul_mat_subgroup_size_8 };
|
||||
|
||||
l_warptile_mmqid_int = { 128, 128, 128, 32, mul_mat_subgroup_size_8 * 2, 64, 2, 4, 4, 1, mul_mat_subgroup_size_8 };
|
||||
m_warptile_mmqid_int = { 128, 64, 64, 32, mul_mat_subgroup_size_8, 32, 2, 2, 2, 1, mul_mat_subgroup_size_8 };
|
||||
s_warptile_mmqid_int = { mul_mat_subgroup_size_32, 32, 32, 32, 32, 32, 2, 2, 1, 1, mul_mat_subgroup_size_8 };
|
||||
l_warptile_mmqid_int = { 128, 128, 128, 32, mul_mat_subgroup_size_8 * 2, 64, 2, 4, 4, 1, mul_mat_subgroup_size_8 };
|
||||
m_warptile_mmqid_int = { 128, 64, 64, 32, mul_mat_subgroup_size_8, 32, 2, 2, 2, 1, mul_mat_subgroup_size_8 };
|
||||
s_warptile_mmqid_int = { mul_mat_subgroup_size_32, 32, 32, 32, s_warptile_wm, 32, 2, 2, 1, 1, mul_mat_subgroup_size_8 };
|
||||
|
||||
l_warptile_mmqid_int_k = { 128, 128, 128, 32, mul_mat_subgroup_size_16 * 2, 64, 1, 4, 4, 1, mul_mat_subgroup_size_16 };
|
||||
m_warptile_mmqid_int_k = { 128, 64, 64, 32, mul_mat_subgroup_size_16, 32, 1, 2, 2, 1, mul_mat_subgroup_size_16 };
|
||||
s_warptile_mmqid_int_k = { mul_mat_subgroup_size_32, 32, 32, 32, 32, 32, 1, 2, 1, 1, mul_mat_subgroup_size_16 };
|
||||
l_warptile_mmqid_int_k = { 128, 128, 128, 32, mul_mat_subgroup_size_16 * 2, 64, 1, 4, 4, 1, mul_mat_subgroup_size_16 };
|
||||
m_warptile_mmqid_int_k = { 128, 64, 64, 32, mul_mat_subgroup_size_16, 32, 1, 2, 2, 1, mul_mat_subgroup_size_16 };
|
||||
s_warptile_mmqid_int_k = { mul_mat_subgroup_size_32, 32, 32, 32, s_warptile_wm, 32, 1, 2, 1, 1, mul_mat_subgroup_size_16 };
|
||||
|
||||
// chip specific tuning
|
||||
if ((device->architecture == AMD_GCN) && (device->driver_id != vk::DriverId::eAmdProprietary)) {
|
||||
|
|
@ -3593,6 +3632,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
uint32_t rm_kq = 2;
|
||||
uint32_t rm_stdq_int = 1;
|
||||
uint32_t rm_kq_int = 1;
|
||||
auto const &rm_iq_int = [](uint32_t i) { return i == 0 ? 8u : 4u; };
|
||||
if (device->vendor_id == VK_VENDOR_ID_AMD) {
|
||||
if (device->architecture == AMD_GCN) {
|
||||
rm_stdq = 2;
|
||||
|
|
@ -3696,6 +3736,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_q8_1_f32", arr_dmmv_q4_k_q8_1_f32_len[reduc], arr_dmmv_q4_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_q8_1_f32", arr_dmmv_q5_k_q8_1_f32_len[reduc], arr_dmmv_q5_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_q8_1_f32", arr_dmmv_q6_k_q8_1_f32_len[reduc], arr_dmmv_q6_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_q8_1_f32", arr_dmmv_iq1_s_q8_1_f32_len[reduc], arr_dmmv_iq1_s_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(i), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(i), i+1}, 1, true, use_subgroups, subgroup_size_int);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_q8_1_f32", arr_dmmv_iq1_m_q8_1_f32_len[reduc], arr_dmmv_iq1_m_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(i), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(i), i+1}, 1, true, use_subgroups, subgroup_size_int);
|
||||
|
||||
}
|
||||
#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
|
||||
}
|
||||
|
|
@ -3742,6 +3786,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_q8_1_f32", arr_dmmv_id_q4_k_q8_1_f32_len[reduc], arr_dmmv_id_q4_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_q8_1_f32", arr_dmmv_id_q5_k_q8_1_f32_len[reduc], arr_dmmv_id_q5_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_q8_1_f32", arr_dmmv_id_q6_k_q8_1_f32_len[reduc], arr_dmmv_id_q6_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_IQ1_S], "mul_mat_vec_id_iq1_s_q8_1_f32", arr_dmmv_id_iq1_s_q8_1_f32_len[reduc], arr_dmmv_id_iq1_s_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(0), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(0)}, 1, true, use_subgroups, subgroup_size_int);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_IQ1_M], "mul_mat_vec_id_iq1_m_q8_1_f32", arr_dmmv_id_iq1_m_q8_1_f32_len[reduc], arr_dmmv_id_iq1_m_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(0), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(0)}, 1, true, use_subgroups, subgroup_size_int);
|
||||
}
|
||||
#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
|
||||
}
|
||||
|
|
@ -3749,6 +3796,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
#if !defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
GGML_UNUSED(rm_stdq_int);
|
||||
GGML_UNUSED(rm_kq_int);
|
||||
GGML_UNUSED(rm_iq_int);
|
||||
#endif
|
||||
|
||||
// dequant shaders
|
||||
|
|
@ -4135,7 +4183,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cumsum_f32, "cumsum_f32", cumsum_f32_len, cumsum_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { 128, device->subgroup_size }, 1, true, true, device->subgroup_size);
|
||||
const uint32_t cumsum_elem_per_thread = (device->vendor_id == VK_VENDOR_ID_AMD || device->vendor_id == VK_VENDOR_ID_INTEL) ? 2 : 4;
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cumsum_f32, "cumsum_f32", cumsum_f32_len, cumsum_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { 256, device->subgroup_size, cumsum_elem_per_thread }, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cumsum_small_f32, "cumsum_f32", cumsum_f32_len, cumsum_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { 128, device->subgroup_size, 1 }, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cumsum_multipass1_f32, "cumsum_multipass1_f32", cumsum_multipass1_f32_len, cumsum_multipass1_f32_data, "main", 3, sizeof(vk_op_sum_rows_push_constants), {256, 1, 1}, { 256, device->subgroup_size }, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_cumsum_multipass2_f32, "cumsum_multipass2_f32", cumsum_multipass2_f32_len, cumsum_multipass2_f32_data, "main", 3, sizeof(vk_op_sum_rows_push_constants), {256, 1, 1}, { 256, device->subgroup_size }, 1, true, true, device->subgroup_size);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_count_equal_i32, "count_equal_i32", count_equal_i32_len, count_equal_i32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, { device->subgroup_size }, 1);
|
||||
|
||||
|
|
@ -4291,9 +4343,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
for (uint32_t use_push = 0; use_push < 2; ++use_push) {
|
||||
for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
|
||||
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX][use_push], "topk_moe_f32_early_softmax_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 0, use_push}, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX_NORM][use_push], "topk_moe_f32_early_softmax_norm"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1, 0, use_push}, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_LATE_SOFTMAX][use_push], "topk_moe_f32_late_softmax"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 1, use_push}, 1, true, true, device->subgroup_size);
|
||||
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][use_push], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 4, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, use_push}, 1, true, true, device->subgroup_size);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -5584,6 +5634,8 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
break;
|
||||
default:
|
||||
return nullptr;
|
||||
|
|
@ -5740,6 +5792,8 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
|
|||
case GGML_TYPE_Q4_K:
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ1_S:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
break;
|
||||
default:
|
||||
return nullptr;
|
||||
|
|
@ -6721,7 +6775,12 @@ static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
|
||||
vk_pipeline pipeline = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
|
||||
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, std::array<uint32_t, 1>{ne}, { ne, 1, 1 });
|
||||
const uint32_t num_blocks = CEIL_DIV(ne, pipeline->wg_denoms[0]);
|
||||
// clamp the number of elements to the max workgroup count. The shader will iterate over the total number of blocks.
|
||||
const uint64_t max_elements = std::min<uint64_t>(uint64_t{ctx->device->properties.limits.maxComputeWorkGroupCount[0]} * pipeline->wg_denoms[0], std::numeric_limits<uint32_t>::max());
|
||||
const uint32_t elements = std::min(ne, static_cast<uint32_t>(max_elements));
|
||||
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, std::array<uint32_t, 2>{ ne, num_blocks }, { elements, 1, 1 });
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
}
|
||||
|
||||
|
|
@ -7005,7 +7064,7 @@ static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_
|
|||
// Quantization overhead is not worth it for small k
|
||||
switch (device->vendor_id) {
|
||||
case VK_VENDOR_ID_NVIDIA:
|
||||
if (src0_type == GGML_TYPE_Q2_K) {
|
||||
if (src0_type == GGML_TYPE_Q2_K || src0_type == GGML_TYPE_IQ1_S || src0_type == GGML_TYPE_IQ1_M) {
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
@ -8684,10 +8743,9 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
if (ctx->num_additional_fused_ops) {
|
||||
uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
|
||||
GGML_ASSERT(idx < num_topk_moe_pipelines);
|
||||
topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
|
||||
// use n_experts from push constant if it's not equal to the power of two spec constant
|
||||
bool use_push = dst->ne[0] != (1u << idx);
|
||||
return ctx->device->pipeline_topk_moe[idx][mode][use_push];
|
||||
return ctx->device->pipeline_topk_moe[idx][use_push];
|
||||
}
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
|
||||
|
|
@ -8760,7 +8818,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
return nullptr;
|
||||
case GGML_OP_CUMSUM:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_cumsum_f32;
|
||||
if (src0->ne[0] <= 512) {
|
||||
return ctx->device->pipeline_cumsum_small_f32;
|
||||
} else {
|
||||
return ctx->device->pipeline_cumsum_f32;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
|
|
@ -10346,14 +10408,16 @@ static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
}
|
||||
|
||||
static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx) {
|
||||
topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
|
||||
topk_moe_mode mode = ctx->fused_topk_moe_mode;
|
||||
ggml_tensor * logits = cgraph->nodes[node_idx + 0]->src[0];
|
||||
ggml_tensor * weights = (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) ? cgraph->nodes[node_idx + 9] :
|
||||
(mode == TOPK_MOE_EARLY_SOFTMAX) ? cgraph->nodes[node_idx + 4] :
|
||||
cgraph->nodes[node_idx + 5];
|
||||
ggml_tensor * ids = (mode == TOPK_MOE_LATE_SOFTMAX) ? cgraph->nodes[node_idx + 1] : cgraph->nodes[node_idx + 3];
|
||||
ggml_tensor * bias = (mode == TOPK_MOE_SIGMOID_NORM_BIAS) ? cgraph->nodes[node_idx + 2]->src[1] : logits;
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx + ctx->num_additional_fused_ops];
|
||||
ggml_tensor * ids = (mode == TOPK_MOE_SIGMOID_NORM_BIAS) ? cgraph->nodes[node_idx + 4] :
|
||||
(mode == TOPK_MOE_LATE_SOFTMAX) ? cgraph->nodes[node_idx + 1] :
|
||||
cgraph->nodes[node_idx + 3];
|
||||
|
||||
GGML_ASSERT(logits->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(bias->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(weights->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
|
||||
|
|
@ -10368,6 +10432,7 @@ static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
|
||||
|
||||
vk_subbuffer logits_buf = ggml_vk_tensor_subbuffer(ctx, logits);
|
||||
vk_subbuffer bias_buf = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
vk_subbuffer weights_buf = ggml_vk_tensor_subbuffer(ctx, weights);
|
||||
vk_subbuffer ids_buf = ggml_vk_tensor_subbuffer(ctx, ids);
|
||||
|
||||
|
|
@ -10375,18 +10440,45 @@ static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
pc.n_rows = n_rows;
|
||||
pc.n_experts_push = n_experts;
|
||||
pc.n_expert_used = n_expert_used;
|
||||
pc.clamp_min = -std::numeric_limits<float>::infinity();
|
||||
pc.clamp_max = std::numeric_limits<float>::infinity();
|
||||
if (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) {
|
||||
ggml_tensor * clamp = cgraph->nodes[node_idx + 7];
|
||||
GGML_ASSERT(clamp->op == GGML_OP_CLAMP);
|
||||
pc.clamp_min = ggml_get_op_params_f32(clamp, 0);
|
||||
pc.clamp_max = ggml_get_op_params_f32(clamp, 1);
|
||||
}
|
||||
if (mode == TOPK_MOE_SIGMOID_NORM_BIAS) {
|
||||
ggml_tensor * clamp = cgraph->nodes[node_idx + 8];
|
||||
GGML_ASSERT(clamp->op == GGML_OP_CLAMP);
|
||||
pc.clamp_min = ggml_get_op_params_f32(clamp, 0);
|
||||
pc.clamp_max = ggml_get_op_params_f32(clamp, 1);
|
||||
}
|
||||
|
||||
#define GATING_FUNC_SOFTMAX 0
|
||||
#define GATING_FUNC_SIGMOID 1
|
||||
#define GATING_FUNC_SOFTMAX_WEIGHT 2
|
||||
|
||||
pc.gating_func = mode == TOPK_MOE_SIGMOID_NORM_BIAS ? GATING_FUNC_SIGMOID :
|
||||
mode == TOPK_MOE_LATE_SOFTMAX ? GATING_FUNC_SOFTMAX_WEIGHT :
|
||||
GATING_FUNC_SOFTMAX;
|
||||
pc.has_bias = mode == TOPK_MOE_SIGMOID_NORM_BIAS;
|
||||
pc.with_norm = mode == TOPK_MOE_EARLY_SOFTMAX_NORM || mode == TOPK_MOE_SIGMOID_NORM_BIAS;
|
||||
if (ctx->fused_topk_moe_scale) {
|
||||
GGML_ASSERT(weights->op == GGML_OP_SCALE);
|
||||
pc.output_scale = ggml_get_op_params_f32(weights, 0);
|
||||
pc.output_bias = ggml_get_op_params_f32(weights, 1);
|
||||
} else {
|
||||
pc.output_scale = 1.0f;
|
||||
pc.output_bias = 0.0f;
|
||||
}
|
||||
|
||||
GGML_ASSERT(n_expert_used <= n_experts);
|
||||
|
||||
const uint32_t rows_per_block = 4;
|
||||
std::array<uint32_t, 3> elements = { CEIL_DIV(n_rows, rows_per_block), 1, 1 };
|
||||
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {logits_buf, weights_buf, ids_buf}, pc, elements);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {logits_buf, bias_buf, weights_buf, ids_buf}, pc, elements);
|
||||
}
|
||||
|
||||
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_cgraph * cgraph, int node_idx, bool backprop) {
|
||||
|
|
@ -10634,8 +10726,50 @@ static void ggml_vk_mean(ggml_backend_vk_context * ctx, vk_context& subctx, cons
|
|||
}
|
||||
|
||||
static void ggml_vk_cumsum(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CUMSUM, p);
|
||||
vk_op_sum_rows_push_constants pc = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
|
||||
// Use the single pass shader when the rows are small or there are enough rows to fill the GPU.
|
||||
// For fewer, larger rows, use the multipass shader to spread each row across SMs.
|
||||
if (dst->ne[0] <= 4096 || ggml_nrows(dst) >= ctx->device->shader_core_count) {
|
||||
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CUMSUM, pc);
|
||||
return;
|
||||
}
|
||||
|
||||
// First pass computes partial sums within a block, and stores the last partial
|
||||
// to the temp buffer. Second pass sums the block partials from the temp buffer
|
||||
// and adds that to the result of the first pass.
|
||||
vk_pipeline pipeline1 = ctx->device->pipeline_cumsum_multipass1_f32;
|
||||
vk_pipeline pipeline2 = ctx->device->pipeline_cumsum_multipass2_f32;
|
||||
GGML_ASSERT(pipeline1 != nullptr && pipeline2 != nullptr);
|
||||
|
||||
ggml_pipeline_request_descriptor_sets(ctx, pipeline1, 1);
|
||||
ggml_pipeline_request_descriptor_sets(ctx, pipeline2, 1);
|
||||
|
||||
std::array<uint32_t, 3> elements;
|
||||
|
||||
elements[0] = dst->ne[0];
|
||||
elements[1] = (uint32_t)ggml_nrows(dst);
|
||||
elements[2] = 1;
|
||||
|
||||
size_t temp_size = sizeof(float) * elements[0] * ggml_nrows(dst);
|
||||
|
||||
if (ctx->prealloc_size_split_k < temp_size) {
|
||||
ctx->prealloc_size_split_k = temp_size;
|
||||
ggml_vk_preallocate_buffers(ctx, subctx);
|
||||
}
|
||||
|
||||
vk_subbuffer src_buf = ggml_vk_tensor_subbuffer(ctx, src0);
|
||||
vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst);
|
||||
vk_subbuffer temp_buf = ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0);
|
||||
|
||||
if (ctx->prealloc_split_k_need_sync) {
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
}
|
||||
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline1, {src_buf, dst_buf, temp_buf}, pc, elements);
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline2, {src_buf, dst_buf, temp_buf}, pc, elements);
|
||||
|
||||
ctx->prealloc_split_k_need_sync = true;
|
||||
}
|
||||
|
||||
static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
|
|
@ -12128,6 +12262,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
|
||||
break;
|
||||
case GGML_OP_UNARY:
|
||||
if (ctx->fused_topk_moe_mode != TOPK_MOE_COUNT) {
|
||||
ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx);
|
||||
break;
|
||||
}
|
||||
|
||||
switch (ggml_get_unary_op(node)) {
|
||||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
|
|
@ -12175,7 +12314,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
|
||||
break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
if (ctx->num_additional_fused_ops) {
|
||||
if (ctx->fused_topk_moe_mode != TOPK_MOE_COUNT) {
|
||||
ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx);
|
||||
} else {
|
||||
ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node);
|
||||
|
|
@ -12195,7 +12334,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
|
||||
break;
|
||||
case GGML_OP_ARGSORT:
|
||||
if (ctx->num_additional_fused_ops) {
|
||||
if (ctx->fused_topk_moe_mode != TOPK_MOE_COUNT) {
|
||||
ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx);
|
||||
} else {
|
||||
ggml_vk_argsort(ctx, compute_ctx, src0, node);
|
||||
|
|
@ -13048,6 +13187,24 @@ static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struc
|
|||
get_rows = cgraph->nodes[node_idx + 4];
|
||||
argsort = cgraph->nodes[node_idx + 2];
|
||||
break;
|
||||
case TOPK_MOE_SIGMOID_NORM_BIAS:
|
||||
softmax = cgraph->nodes[node_idx + 0]; // really sigmoid
|
||||
weights = cgraph->nodes[node_idx + 10];
|
||||
get_rows = cgraph->nodes[node_idx + 5];
|
||||
argsort = cgraph->nodes[node_idx + 3];
|
||||
if (ggml_get_unary_op(softmax) != GGML_UNARY_OP_SIGMOID) {
|
||||
return false;
|
||||
}
|
||||
// bias is expected to be 1D
|
||||
if (ggml_nrows(cgraph->nodes[node_idx + 2]->src[1]) != 1 ||
|
||||
!ggml_is_contiguous(cgraph->nodes[node_idx + 2]->src[1])) {
|
||||
return false;
|
||||
}
|
||||
// sigmoid fusion seems to generate infinities on moltenvk
|
||||
if (ctx->device->driver_id == vk::DriverId::eMoltenvk) {
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
case TOPK_MOE_EARLY_SOFTMAX:
|
||||
softmax = cgraph->nodes[node_idx + 0];
|
||||
weights = cgraph->nodes[node_idx + 4];
|
||||
|
|
@ -13071,26 +13228,28 @@ static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struc
|
|||
probs = probs->src[0];
|
||||
ggml_tensor * selection_probs = argsort->src[0];
|
||||
|
||||
if (probs != selection_probs) {
|
||||
if (probs != selection_probs && mode != TOPK_MOE_SIGMOID_NORM_BIAS) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const float * op_params = (const float *)softmax->op_params;
|
||||
|
||||
float scale = op_params[0];
|
||||
float max_bias = op_params[1];
|
||||
|
||||
if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (scale != 1.0f || max_bias != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
if (softmax->op == GGML_OP_SOFT_MAX) {
|
||||
const float * op_params = (const float *)softmax->op_params;
|
||||
|
||||
// don't fuse when masks or sinks are present
|
||||
if (softmax->src[1] || softmax->src[2]) {
|
||||
return false;
|
||||
float scale = op_params[0];
|
||||
float max_bias = op_params[1];
|
||||
|
||||
if (scale != 1.0f || max_bias != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// don't fuse when masks or sinks are present
|
||||
if (softmax->src[1] || softmax->src[2]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const int n_expert = softmax->ne[0];
|
||||
|
|
@ -13363,6 +13522,8 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
total_mul_mat_bytes += bytes;
|
||||
}
|
||||
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_COUNT;
|
||||
ctx->fused_topk_moe_scale = false;
|
||||
const char *fusion_string {};
|
||||
if (!ctx->device->disable_fusion) {
|
||||
uint32_t num_adds = ggml_vk_fuse_multi_add(ctx, cgraph, i);
|
||||
|
|
@ -13408,13 +13569,23 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
ctx->num_additional_fused_ops = topk_moe_early_softmax_norm.size() - 1;
|
||||
// view of argsort writes to memory
|
||||
ctx->fused_ops_write_mask |= 1 << 3;
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_EARLY_SOFTMAX_NORM;
|
||||
fusion_string = "TOPK_MOE_EARLY_SOFTMAX_NORM";
|
||||
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_sigmoid_norm_bias, { i + 4, i + 10 }) &&
|
||||
ggml_check_edges(cgraph, i, topk_moe_sigmoid_norm_bias_edges) &&
|
||||
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_SIGMOID_NORM_BIAS)) {
|
||||
ctx->num_additional_fused_ops = topk_moe_sigmoid_norm_bias.size() - 1;
|
||||
// view of argsort writes to memory
|
||||
ctx->fused_ops_write_mask |= 1 << 4;
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_SIGMOID_NORM_BIAS;
|
||||
fusion_string = "TOPK_MOE_SIGMOID_NORM_BIAS";
|
||||
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax, { i + 3, i + 4 }) &&
|
||||
ggml_check_edges(cgraph, i, topk_moe_early_softmax_edges) &&
|
||||
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX)) {
|
||||
ctx->num_additional_fused_ops = topk_moe_early_softmax.size() - 1;
|
||||
// view of argsort writes to memory
|
||||
ctx->fused_ops_write_mask |= 1 << 3;
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_EARLY_SOFTMAX;
|
||||
fusion_string = "TOPK_MOE_EARLY_SOFTMAX";
|
||||
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_late_softmax, { i + 1, i + 5 }) &&
|
||||
ggml_check_edges(cgraph, i, topk_moe_late_softmax_edges) &&
|
||||
|
|
@ -13422,8 +13593,17 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
ctx->num_additional_fused_ops = topk_moe_late_softmax.size() - 1;
|
||||
// view of argsort writes to memory
|
||||
ctx->fused_ops_write_mask |= 1 << 1;
|
||||
ctx->fused_topk_moe_mode = TOPK_MOE_LATE_SOFTMAX;
|
||||
fusion_string = "TOPK_MOE_LATE_SOFTMAX";
|
||||
}
|
||||
if (ctx->fused_topk_moe_mode != TOPK_MOE_COUNT) {
|
||||
// Look for an additional scale op to fuse - occurs in deepseek2 and nemotron3 nano.
|
||||
if (ggml_can_fuse_subgraph(cgraph, i + ctx->num_additional_fused_ops - 1, { GGML_OP_DIV, GGML_OP_RESHAPE, GGML_OP_SCALE }, { i + ctx->num_additional_fused_ops + 1 }) ||
|
||||
ggml_can_fuse_subgraph(cgraph, i + ctx->num_additional_fused_ops, { GGML_OP_GET_ROWS, GGML_OP_SCALE }, { i + ctx->num_additional_fused_ops + 1 })) {
|
||||
ctx->fused_topk_moe_scale = true;
|
||||
ctx->num_additional_fused_ops++;
|
||||
}
|
||||
}
|
||||
}
|
||||
ctx->fused_ops_write_mask |= 1 << ctx->num_additional_fused_ops;
|
||||
|
||||
|
|
@ -13602,6 +13782,9 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
if (keep_pattern(topk_moe_early_softmax_norm)) {
|
||||
continue;
|
||||
}
|
||||
if (keep_pattern(topk_moe_sigmoid_norm_bias)) {
|
||||
continue;
|
||||
}
|
||||
if (keep_pattern(topk_moe_early_softmax)) {
|
||||
continue;
|
||||
}
|
||||
|
|
@ -13628,6 +13811,7 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
}
|
||||
// Don't pull forward nodes from fusion patterns
|
||||
if (match_pattern(topk_moe_early_softmax_norm, j) ||
|
||||
match_pattern(topk_moe_sigmoid_norm_bias, j) ||
|
||||
match_pattern(topk_moe_early_softmax, j) ||
|
||||
match_pattern(topk_moe_late_softmax, j)) {
|
||||
continue;
|
||||
|
|
|
|||
|
|
@ -14,6 +14,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
|
|||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 128;
|
||||
layout (constant_id = 1) const uint SUBGROUP_SIZE = 32;
|
||||
layout (constant_id = 2) const uint ELEM_PER_THREAD = 4;
|
||||
|
||||
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
|
||||
|
||||
|
|
@ -38,32 +39,45 @@ void main() {
|
|||
last_sum = 0;
|
||||
}
|
||||
|
||||
uint col = tid;
|
||||
uint num_iter = CEIL_DIV(p.n_cols, BLOCK_SIZE);
|
||||
uint col = tid * ELEM_PER_THREAD;
|
||||
uint num_iter = CEIL_DIV(p.n_cols, BLOCK_SIZE * ELEM_PER_THREAD);
|
||||
for (int i = 0; i < num_iter; ++i) {
|
||||
FLOAT_TYPE v = 0;
|
||||
if (col < p.n_cols) {
|
||||
v = FLOAT_TYPE(data_a[src_idx + col]);
|
||||
FLOAT_TYPE v[ELEM_PER_THREAD];
|
||||
FLOAT_TYPE thread_sum = 0;
|
||||
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
|
||||
if (col + j < p.n_cols) {
|
||||
thread_sum += FLOAT_TYPE(data_a[src_idx + col + j]);
|
||||
}
|
||||
v[j] = thread_sum;
|
||||
}
|
||||
v = subgroupInclusiveAdd(v);
|
||||
|
||||
thread_sum = subgroupExclusiveAdd(thread_sum);
|
||||
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
|
||||
v[j] += thread_sum;
|
||||
}
|
||||
// Store the largest partial sum for each subgroup, then add the partials for all
|
||||
// lower subgroups and the final partial sum from the previous iteration.
|
||||
if (gl_SubgroupInvocationID == SUBGROUP_SIZE - 1) {
|
||||
partial[subgroup_id] = v;
|
||||
partial[subgroup_id] = v[ELEM_PER_THREAD - 1];
|
||||
}
|
||||
barrier();
|
||||
for (int j = 0; j < subgroup_id; ++j) {
|
||||
v += partial[j];
|
||||
for (int s = 0; s < subgroup_id; ++s) {
|
||||
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
|
||||
v[j] += partial[s];
|
||||
}
|
||||
}
|
||||
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
|
||||
v[j] += last_sum;
|
||||
}
|
||||
v += last_sum;
|
||||
barrier();
|
||||
if (tid == BLOCK_SIZE - 1) {
|
||||
last_sum = v;
|
||||
last_sum = v[ELEM_PER_THREAD - 1];
|
||||
}
|
||||
if (col < p.n_cols) {
|
||||
data_d[dst_idx + col] = D_TYPE(v);
|
||||
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
|
||||
if (col + j < p.n_cols) {
|
||||
data_d[dst_idx + col + j] = D_TYPE(v[j]);
|
||||
}
|
||||
}
|
||||
col += BLOCK_SIZE;
|
||||
col += BLOCK_SIZE * ELEM_PER_THREAD;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,60 @@
|
|||
#version 450
|
||||
|
||||
#include "types.glsl"
|
||||
#include "sum_rows.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : enable
|
||||
#extension GL_KHR_shader_subgroup_basic : enable
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
|
||||
layout (binding = 2) writeonly buffer T {D_TYPE data_t[];};
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 128;
|
||||
layout (constant_id = 1) const uint SUBGROUP_SIZE = 32;
|
||||
|
||||
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
|
||||
|
||||
shared FLOAT_TYPE partial[BLOCK_SIZE / SUBGROUP_SIZE];
|
||||
|
||||
void main() {
|
||||
const uint row = gl_WorkGroupID.y;
|
||||
const uint tid = gl_LocalInvocationID.x;
|
||||
const uint col = gl_GlobalInvocationID.x;
|
||||
|
||||
const uint i03 = fastdiv(row, p.ne0_12mp, p.ne0_12L);
|
||||
const uint i03_offset = i03 * p.ne01*p.ne02;
|
||||
const uint i02 = fastdiv(row - i03_offset, p.ne0_1mp, p.ne0_1L);
|
||||
const uint i01 = row - i03_offset - i02*p.ne01;
|
||||
|
||||
const uint src_idx = get_aoffset() + i01 * p.nb01 + i02 * p.nb02 + i03 * p.nb03;
|
||||
const uint dst_idx = get_doffset() + i01 * p.nb11 + i02 * p.nb12 + i03 * p.nb13;
|
||||
|
||||
uint subgroup_id = tid / SUBGROUP_SIZE;
|
||||
|
||||
FLOAT_TYPE v = 0;
|
||||
if (col < p.n_cols) {
|
||||
v = FLOAT_TYPE(data_a[src_idx + col]);
|
||||
}
|
||||
v = subgroupInclusiveAdd(v);
|
||||
|
||||
// Store the largest partial sum for each subgroup, then add the partials for all
|
||||
// lower subgroups and the final partial sum from the previous iteration.
|
||||
if (gl_SubgroupInvocationID == SUBGROUP_SIZE - 1) {
|
||||
partial[subgroup_id] = v;
|
||||
}
|
||||
barrier();
|
||||
for (int j = 0; j < subgroup_id; ++j) {
|
||||
v += partial[j];
|
||||
}
|
||||
barrier();
|
||||
if (tid == BLOCK_SIZE - 1) {
|
||||
data_t[gl_WorkGroupID.x + gl_NumWorkGroups.x * row] = v;
|
||||
}
|
||||
if (col < p.n_cols) {
|
||||
data_d[dst_idx + col] = D_TYPE(v);
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
#version 450
|
||||
|
||||
#include "types.glsl"
|
||||
#include "sum_rows.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : enable
|
||||
#extension GL_KHR_shader_subgroup_basic : enable
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) buffer D {D_TYPE data_d[];};
|
||||
layout (binding = 2) readonly buffer T {D_TYPE data_t[];};
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 128;
|
||||
layout (constant_id = 1) const uint SUBGROUP_SIZE = 32;
|
||||
|
||||
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
|
||||
|
||||
shared FLOAT_TYPE temp[BLOCK_SIZE / SUBGROUP_SIZE];
|
||||
|
||||
void main() {
|
||||
const uint row = gl_WorkGroupID.y;
|
||||
const uint tid = gl_LocalInvocationID.x;
|
||||
|
||||
const uint i03 = fastdiv(row, p.ne0_12mp, p.ne0_12L);
|
||||
const uint i03_offset = i03 * p.ne01*p.ne02;
|
||||
const uint i02 = fastdiv(row - i03_offset, p.ne0_1mp, p.ne0_1L);
|
||||
const uint i01 = row - i03_offset - i02*p.ne01;
|
||||
|
||||
const uint src_idx = get_aoffset() + i01 * p.nb01 + i02 * p.nb02 + i03 * p.nb03;
|
||||
const uint dst_idx = get_doffset() + i01 * p.nb11 + i02 * p.nb12 + i03 * p.nb13;
|
||||
|
||||
const uint col = gl_GlobalInvocationID.x;
|
||||
|
||||
float v = 0;
|
||||
// prefetch value we're adding to
|
||||
if (col < p.n_cols) {
|
||||
v = data_d[dst_idx + col];
|
||||
}
|
||||
|
||||
// compute the sum of all previous blocks
|
||||
uint c = tid;
|
||||
float sum = 0;
|
||||
while (c < gl_WorkGroupID.x) {
|
||||
sum += data_t[c + gl_NumWorkGroups.x * row];
|
||||
c += BLOCK_SIZE;
|
||||
}
|
||||
|
||||
sum = subgroupAdd(sum);
|
||||
if (gl_SubgroupInvocationID == 0) {
|
||||
temp[gl_SubgroupID] = sum;
|
||||
}
|
||||
barrier();
|
||||
sum = 0;
|
||||
[[unroll]] for (uint s = 0; s < BLOCK_SIZE / SUBGROUP_SIZE; ++s) {
|
||||
sum += temp[s];
|
||||
}
|
||||
|
||||
// Add the sum to what the first pass computed
|
||||
if (col < p.n_cols) {
|
||||
data_d[dst_idx + col] = v + sum;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -14,6 +14,8 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
|||
#define K_PER_ITER 8
|
||||
#elif defined(DATA_A_QUANT_K)
|
||||
#define K_PER_ITER 16
|
||||
#elif defined(DATA_A_IQ1_S) || defined(DATA_A_IQ1_M)
|
||||
#define K_PER_ITER 32
|
||||
#else
|
||||
#error unimplemented
|
||||
#endif
|
||||
|
|
@ -49,6 +51,15 @@ void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const
|
|||
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 1];
|
||||
cache_b_qs[2] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 2];
|
||||
cache_b_qs[3] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 3];
|
||||
#elif K_PER_ITER == 32
|
||||
cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 ];
|
||||
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 1];
|
||||
cache_b_qs[2] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 2];
|
||||
cache_b_qs[3] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 3];
|
||||
cache_b_qs[4] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 4];
|
||||
cache_b_qs[5] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 5];
|
||||
cache_b_qs[6] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 6];
|
||||
cache_b_qs[7] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 7];
|
||||
#else
|
||||
#error unimplemented
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -377,3 +377,118 @@ FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
|
|||
return FLOAT_TYPE(float(cache_b_ds.x) * float(d_scale) * float(q_sum));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_IQ1_S)
|
||||
void repack8(uint ib, uint iqs, out i32vec4 out0, out i32vec4 out1) {
|
||||
const uint ib32 = iqs / 32;
|
||||
|
||||
const uint qh = data_a[ib].qh[ib32];
|
||||
|
||||
const uint qs16_0 = data_a_packed16[ib].qs[(4 * ib32 + 0) / 2];
|
||||
const uint qs16_1 = data_a_packed16[ib].qs[(4 * ib32 + 2) / 2];
|
||||
|
||||
const uint qs0 = qs16_0 & 0xFF;
|
||||
const uint qs1 = qs16_0 >> 8;
|
||||
const uint qs2 = qs16_1 & 0xFF;
|
||||
const uint qs3 = qs16_1 >> 8;
|
||||
|
||||
const uint hi0 = bitfieldExtract(qh, 3 * int(0), 3);
|
||||
const uint hi1 = bitfieldExtract(qh, 3 * int(1), 3);
|
||||
const uint hi2 = bitfieldExtract(qh, 3 * int(2), 3);
|
||||
const uint hi3 = bitfieldExtract(qh, 3 * int(3), 3);
|
||||
|
||||
const int32_t grid0 = int32_t(iq1s_grid_gpu[qs0 | (hi0 << 8)]);
|
||||
const int32_t grid1 = int32_t(iq1s_grid_gpu[qs1 | (hi1 << 8)]);
|
||||
const int32_t grid2 = int32_t(iq1s_grid_gpu[qs2 | (hi2 << 8)]);
|
||||
const int32_t grid3 = int32_t(iq1s_grid_gpu[qs3 | (hi3 << 8)]);
|
||||
|
||||
out0 = i32vec4((grid0 >> 0) & 0x0F0F0F0F,
|
||||
(grid0 >> 4) & 0x0F0F0F0F,
|
||||
(grid1 >> 0) & 0x0F0F0F0F,
|
||||
(grid1 >> 4) & 0x0F0F0F0F);
|
||||
out1 = i32vec4((grid2 >> 0) & 0x0F0F0F0F,
|
||||
(grid2 >> 4) & 0x0F0F0F0F,
|
||||
(grid3 >> 0) & 0x0F0F0F0F,
|
||||
(grid3 >> 4) & 0x0F0F0F0F);
|
||||
}
|
||||
|
||||
vec2 get_dm(uint ib, uint iqs) {
|
||||
const uint ib32 = iqs / 32;
|
||||
|
||||
const uint qh = data_a[ib].qh[ib32];
|
||||
const float delta = ((qh & 0x8000) != 0) ? -IQ1S_DELTA : IQ1S_DELTA;
|
||||
|
||||
const float d = float(data_a[ib].d);
|
||||
const float dl = d * float(2 * bitfieldExtract(qh, 12, 3) + 1);
|
||||
|
||||
// the -1 cancels out the bias in iq1s_grid_gpu
|
||||
return FLOAT_TYPE_VEC2(dl, dl * (delta - 1));
|
||||
}
|
||||
|
||||
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
|
||||
int32_t q_sum = 0;
|
||||
|
||||
const uint ib_k = ib_a / 8;
|
||||
const uint iqs_k = (ib_a % 8) * 32 + iqs * 32;
|
||||
|
||||
i32vec4 qs_a0;
|
||||
i32vec4 qs_a1;
|
||||
repack8(ib_k, iqs_k, qs_a0, qs_a1);
|
||||
|
||||
const vec2 dm = get_dm(ib_k, iqs_k);
|
||||
|
||||
q_sum += dotPacked4x8EXT(qs_a0.x, cache_b_qs[0]);
|
||||
q_sum += dotPacked4x8EXT(qs_a0.y, cache_b_qs[1]);
|
||||
q_sum += dotPacked4x8EXT(qs_a0.z, cache_b_qs[2]);
|
||||
q_sum += dotPacked4x8EXT(qs_a0.w, cache_b_qs[3]);
|
||||
q_sum += dotPacked4x8EXT(qs_a1.x, cache_b_qs[4]);
|
||||
q_sum += dotPacked4x8EXT(qs_a1.y, cache_b_qs[5]);
|
||||
q_sum += dotPacked4x8EXT(qs_a1.z, cache_b_qs[6]);
|
||||
q_sum += dotPacked4x8EXT(qs_a1.w, cache_b_qs[7]);
|
||||
|
||||
return FLOAT_TYPE(float(cache_b_ds.x) * float(dm.x) * float(q_sum) + float(dm.y) * float(cache_b_ds.y));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_IQ1_M)
|
||||
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
|
||||
const uint ib_k = ib_a / 8;
|
||||
const uint iqs_k = (ib_a % 8) * 32 + iqs * 32;
|
||||
|
||||
const uint ib32 = iqs_k / 32;
|
||||
const uint ib64 = ib32 / 2;
|
||||
|
||||
const uint16_t[4] scales = data_a[ib_k].scales;
|
||||
const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12;
|
||||
const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x);
|
||||
|
||||
const uint qs32 = data_a_packed32[ib_k].qs[ib32];
|
||||
const uint qh16 = data_a_packed16[ib_k].qh[ib32];
|
||||
|
||||
float sum = 0;
|
||||
const uint sc = data_a[ib_k].scales[ib64];
|
||||
[[unroll]] for (int l = 0; l < 4; ++l) {
|
||||
const uint ib16 = 2 * ib32 + l / 2;
|
||||
const float dl = d * (2 * bitfieldExtract(sc, 3 * int(ib16 & 3), 3) + 1);
|
||||
const uint qh = qh16 >> (4 * l);
|
||||
const uint qs = (qs32 >> (8 * l)) & 0xFF;
|
||||
const float delta = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA;
|
||||
|
||||
const int32_t grid = int32_t(iq1s_grid_gpu[qs | ((qh & 7) << 8)]);
|
||||
|
||||
int32_t q_sum = 0;
|
||||
q_sum += dotPacked4x8EXT((grid >> 0) & 0x0F0F0F0F, cache_b_qs[2 * l + 0]);
|
||||
q_sum += dotPacked4x8EXT((grid >> 4) & 0x0F0F0F0F, cache_b_qs[2 * l + 1]);
|
||||
|
||||
int32_t y_sum = 0;
|
||||
y_sum += dotPacked4x8EXT(int(0x01010101), cache_b_qs[2 * l + 0]);
|
||||
y_sum += dotPacked4x8EXT(int(0x01010101), cache_b_qs[2 * l + 1]);
|
||||
|
||||
// the -1 cancels out the bias in iq1s_grid_gpu
|
||||
sum += dl * (q_sum + y_sum * (delta - 1));
|
||||
}
|
||||
sum *= float(cache_b_ds.x);
|
||||
|
||||
return sum;
|
||||
}
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@
|
|||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint ne;
|
||||
uint num_blocks;
|
||||
} p;
|
||||
|
||||
#include "types.glsl"
|
||||
|
|
@ -33,8 +34,7 @@ layout (binding = 1) writeonly buffer D {block_q8_1_x4 data_b[];};
|
|||
shared float shmem[GROUP_SIZE];
|
||||
#endif
|
||||
|
||||
void quantize() {
|
||||
const uint wgid = gl_WorkGroupID.x;
|
||||
void quantize(const uint wgid) {
|
||||
const uint tid = INVOCATION_ID;
|
||||
|
||||
// Each thread handles a vec4, so 8 threads handle a block
|
||||
|
|
@ -45,11 +45,7 @@ void quantize() {
|
|||
const uint ib = wgid * blocks_per_group + block_in_wg;
|
||||
const uint iqs = tid % 8;
|
||||
|
||||
#ifndef QBLOCK_X4
|
||||
if (ib >= gl_NumWorkGroups.x * blocks_per_group) {
|
||||
return;
|
||||
}
|
||||
#else
|
||||
#ifdef QBLOCK_X4
|
||||
const uint ibx4_outer = ib / 4;
|
||||
const uint ibx4_inner = ib % 4;
|
||||
|
||||
|
|
@ -123,5 +119,9 @@ void quantize() {
|
|||
}
|
||||
|
||||
void main() {
|
||||
quantize();
|
||||
uint wgid = gl_WorkGroupID.x;
|
||||
while (wgid < p.num_blocks) {
|
||||
quantize(wgid);
|
||||
wgid += gl_NumWorkGroups.x;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -7,6 +7,10 @@
|
|||
|
||||
#include "types.glsl"
|
||||
|
||||
#define GATING_FUNC_SOFTMAX 0
|
||||
#define GATING_FUNC_SIGMOID 1
|
||||
#define GATING_FUNC_SOFTMAX_WEIGHT 2
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint n_rows;
|
||||
|
|
@ -14,15 +18,18 @@ layout (push_constant) uniform parameter
|
|||
uint n_expert_used;
|
||||
float clamp_min;
|
||||
float clamp_max;
|
||||
uint gating_func;
|
||||
uint has_bias;
|
||||
uint with_norm;
|
||||
float output_scale;
|
||||
float output_bias;
|
||||
};
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 4, local_size_z = 1) in;
|
||||
|
||||
layout(constant_id = 0) const uint WARP_SIZE = 32;
|
||||
layout(constant_id = 1) const uint n_experts_spec = 512;
|
||||
layout(constant_id = 2) const bool with_norm = true;
|
||||
layout(constant_id = 3) const bool late_softmax = false;
|
||||
layout(constant_id = 4) const bool nexperts_use_push = false;
|
||||
layout(constant_id = 2) const bool nexperts_use_push = false;
|
||||
|
||||
uint n_experts = nexperts_use_push ? n_experts_push : n_experts_spec;
|
||||
|
||||
|
|
@ -31,8 +38,9 @@ uint n_experts = nexperts_use_push ? n_experts_push : n_experts_spec;
|
|||
const uint experts_per_thread = CEIL_DIV(n_experts_spec, WARP_SIZE);
|
||||
|
||||
layout (binding = 0, std430) readonly buffer Logits {float logits[];};
|
||||
layout (binding = 1, std430) writeonly buffer Weights {float weights[];};
|
||||
layout (binding = 2, std430) writeonly buffer Ids {uint ids[];};
|
||||
layout (binding = 1, std430) readonly buffer BiasProbs {float bias[];};
|
||||
layout (binding = 2, std430) writeonly buffer Weights {float weights[];};
|
||||
layout (binding = 3, std430) writeonly buffer Ids {uint ids[];};
|
||||
|
||||
const float INFINITY = 1.0 / 0.0;
|
||||
|
||||
|
|
@ -87,20 +95,45 @@ void main() {
|
|||
}
|
||||
|
||||
const uint logits_offset = n_experts * row;
|
||||
const uint bias_offset = 0; // 1D
|
||||
const uint weights_offset = n_expert_used * row;
|
||||
const uint ids_offset = n_experts * row;
|
||||
const uint lane = gl_SubgroupInvocationID;
|
||||
|
||||
float wt[experts_per_thread];
|
||||
float probs[experts_per_thread];
|
||||
[[unroll]]
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
probs[i] = -INFINITY;
|
||||
}
|
||||
|
||||
[[unroll]]
|
||||
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
|
||||
const uint expert = i + lane;
|
||||
wt[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[logits_offset + expert] : -INFINITY;
|
||||
probs[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[logits_offset + expert] : -INFINITY;
|
||||
}
|
||||
|
||||
if (!late_softmax) {
|
||||
softmax_warp_inplace(wt, n_experts, lane, nexperts_use_push);
|
||||
if (gating_func == GATING_FUNC_SOFTMAX) {
|
||||
softmax_warp_inplace(probs, n_experts, lane, nexperts_use_push);
|
||||
} else if (gating_func == GATING_FUNC_SIGMOID) {
|
||||
[[unroll]]
|
||||
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
|
||||
const uint expert = i + lane;
|
||||
probs[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? 1.f / (1.f + exp(-probs[i / WARP_SIZE])) : -INFINITY;
|
||||
}
|
||||
}
|
||||
|
||||
float selection_probs[experts_per_thread];
|
||||
if (has_bias != 0) {
|
||||
[[unroll]]
|
||||
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
|
||||
const uint expert = i + lane;
|
||||
selection_probs[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? probs[i / WARP_SIZE] + bias[bias_offset + expert] : -INFINITY;
|
||||
}
|
||||
} else {
|
||||
[[unroll]]
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
selection_probs[i] = probs[i];
|
||||
}
|
||||
}
|
||||
|
||||
// at this point, each thread holds a portion of softmax,
|
||||
|
|
@ -117,14 +150,16 @@ void main() {
|
|||
}
|
||||
|
||||
for (int k = 0; k < n_expert_used; k++) {
|
||||
float max_val = wt[0];
|
||||
float max_val = probs[0];
|
||||
float max_val_s = selection_probs[0];
|
||||
uint max_expert = lane;
|
||||
|
||||
[[unroll]]
|
||||
for (int i = 1; i < experts_per_thread; i++) {
|
||||
const uint expert = lane + i * WARP_SIZE;
|
||||
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && wt[i] > max_val) {
|
||||
max_val = wt[i];
|
||||
for (uint i = WARP_SIZE; i < n_experts; i += WARP_SIZE) {
|
||||
const uint expert = i + lane;
|
||||
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && selection_probs[i / WARP_SIZE] > max_val_s) {
|
||||
max_val = probs[i / WARP_SIZE];
|
||||
max_val_s = selection_probs[i / WARP_SIZE];
|
||||
max_expert = expert;
|
||||
}
|
||||
}
|
||||
|
|
@ -132,9 +167,11 @@ void main() {
|
|||
[[unroll]]
|
||||
for (uint mask = WARP_SIZE / 2; mask > 0; mask /= 2) {
|
||||
const float val = subgroupShuffleXor(max_val, mask);
|
||||
const float val_s = subgroupShuffleXor(max_val_s, mask);
|
||||
const uint expert = subgroupShuffleXor(max_expert, mask);
|
||||
if (val > max_val || (val == max_val && expert < max_expert)) {
|
||||
if (val_s > max_val_s || (val_s == max_val_s && expert < max_expert)) {
|
||||
max_val = val;
|
||||
max_val_s = val_s;
|
||||
max_expert = expert;
|
||||
}
|
||||
}
|
||||
|
|
@ -144,16 +181,14 @@ void main() {
|
|||
}
|
||||
|
||||
if ((max_expert & (WARP_SIZE - 1)) == lane) {
|
||||
wt[max_expert / WARP_SIZE] = -INFINITY;
|
||||
selection_probs[max_expert / WARP_SIZE] = -INFINITY;
|
||||
|
||||
ids[ids_offset + k] = max_expert;
|
||||
if (with_norm) {
|
||||
wt_sum += max_val;
|
||||
}
|
||||
wt_sum += max_val;
|
||||
}
|
||||
}
|
||||
|
||||
if (with_norm) {
|
||||
if (with_norm != 0) {
|
||||
wt_sum = subgroupAdd(wt_sum);
|
||||
wt_sum = clamp(wt_sum, clamp_min, clamp_max);
|
||||
const float inv_sum = 1.0f / wt_sum;
|
||||
|
|
@ -164,7 +199,7 @@ void main() {
|
|||
}
|
||||
}
|
||||
|
||||
if (late_softmax) {
|
||||
if (gating_func == GATING_FUNC_SOFTMAX_WEIGHT) {
|
||||
softmax_warp_inplace(output_weights, n_expert_used, lane, true);
|
||||
}
|
||||
|
||||
|
|
@ -172,7 +207,7 @@ void main() {
|
|||
for (uint i = 0; i < experts_per_thread; ++i) {
|
||||
uint idx = i * WARP_SIZE + lane;
|
||||
if (idx < n_expert_used) {
|
||||
weights[weights_offset + idx] = output_weights[i];
|
||||
weights[weights_offset + idx] = output_scale * output_weights[i] + output_bias;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -396,6 +396,12 @@ struct block_iq1_s {
|
|||
uint16_t qh[QUANT_K_IQ1_S/32];
|
||||
};
|
||||
|
||||
struct block_iq1_s_packed16 {
|
||||
float16_t d;
|
||||
uint16_t qs[QUANT_K_IQ1_S/8/2];
|
||||
uint16_t qh[QUANT_K_IQ1_S/32];
|
||||
};
|
||||
|
||||
#define QUANT_K_IQ1_M 256
|
||||
#define QUANT_R_IQ1_M 1
|
||||
|
||||
|
|
@ -405,6 +411,18 @@ struct block_iq1_m {
|
|||
uint16_t scales[QUANT_K_IQ1_M/64];
|
||||
};
|
||||
|
||||
struct block_iq1_m_packed16 {
|
||||
uint16_t qs[QUANT_K_IQ1_M/8/2];
|
||||
uint16_t qh[QUANT_K_IQ1_M/16/2];
|
||||
uint16_t scales[QUANT_K_IQ1_M/64];
|
||||
};
|
||||
|
||||
struct block_iq1_m_packed32 {
|
||||
uint32_t qs[QUANT_K_IQ1_M/8/4];
|
||||
uint32_t qh[QUANT_K_IQ1_M/16/4];
|
||||
uint32_t scales[QUANT_K_IQ1_M/64/2];
|
||||
};
|
||||
|
||||
struct block_iq1_m_packed64 {
|
||||
uint64_t qs[QUANT_K_IQ1_M/8/8];
|
||||
uint64_t qh[QUANT_K_IQ1_M/16/8];
|
||||
|
|
@ -415,12 +433,15 @@ struct block_iq1_m_packed64 {
|
|||
#define QUANT_K QUANT_K_IQ1_S
|
||||
#define QUANT_R QUANT_R_IQ1_S
|
||||
#define A_TYPE block_iq1_s
|
||||
#define A_TYPE_PACKED16 block_iq1_s_packed16
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_IQ1_M)
|
||||
#define QUANT_K QUANT_K_IQ1_M
|
||||
#define QUANT_R QUANT_R_IQ1_M
|
||||
#define A_TYPE block_iq1_m
|
||||
#define A_TYPE_PACKED16 block_iq1_m_packed16
|
||||
#define A_TYPE_PACKED32 block_iq1_m_packed32
|
||||
#endif
|
||||
|
||||
#if defined(DATA_A_IQ1_S) || defined(DATA_A_IQ1_M)
|
||||
|
|
@ -559,7 +580,270 @@ const uint[1024] iq1s_grid_const = {
|
|||
0x55dd55df, 0x55d555d7, 0x5503550c, 0x557f5501, 0x5577557d, 0x55405575, 0x555d555f, 0x55555557
|
||||
};
|
||||
|
||||
// Same content as iq1s_grid_const except each 2-bit value is expanded to 4-bit
|
||||
// and has 1 added to it (allows packed values to be extracted with & 0x0F0F0F0F
|
||||
// and 0xF0F0F0F0).
|
||||
const uint32_t[2048] iq1s_grid_gpu_const = {
|
||||
0x00000000, 0x00000002, 0x00000101, 0x00000200, 0x00000202, 0x00010001, 0x00010101, 0x00020000,
|
||||
0x00020002, 0x00020200, 0x00020202, 0x01000101, 0x01010001, 0x01010100, 0x01010102, 0x01020101,
|
||||
0x02000000, 0x02000002, 0x02000200, 0x02000202, 0x02010101, 0x02020000, 0x02020002, 0x02020200,
|
||||
0x02020202, 0x00000110, 0x00000111, 0x00010011, 0x00010110, 0x00010112, 0x00010211, 0x00010212,
|
||||
0x00020111, 0x01000011, 0x01000112, 0x01000211, 0x01010012, 0x01010111, 0x01010212, 0x01020011,
|
||||
0x01020110, 0x01020112, 0x01020210, 0x02000111, 0x02010011, 0x02010110, 0x02010112, 0x02020111,
|
||||
0x00000020, 0x00000022, 0x00000220, 0x00000222, 0x00010121, 0x00020020, 0x00020022, 0x00020220,
|
||||
0x00020222, 0x01000121, 0x01010021, 0x01010221, 0x01020120, 0x01020221, 0x02000020, 0x02000022,
|
||||
0x02000220, 0x02000222, 0x02010021, 0x02010121, 0x02010221, 0x02020020, 0x02020022, 0x02020220,
|
||||
0x02020222, 0x00011001, 0x00011100, 0x00011102, 0x00021101, 0x01001001, 0x01001201, 0x01011101,
|
||||
0x01011202, 0x01021100, 0x01021101, 0x02011001, 0x02011201, 0x02021101, 0x00001011, 0x00001110,
|
||||
0x00001111, 0x00001112, 0x00011111, 0x00011210, 0x00011212, 0x00021211, 0x01001010, 0x01001111,
|
||||
0x01001212, 0x01011010, 0x01011011, 0x01011110, 0x01011111, 0x01011112, 0x01011211, 0x01021010,
|
||||
0x01021012, 0x01021111, 0x01021210, 0x01021212, 0x02001011, 0x02011011, 0x02011111, 0x02011210,
|
||||
0x02011212, 0x02021011, 0x02021110, 0x02021111, 0x02021112, 0x02021211, 0x00011120, 0x00011221,
|
||||
0x01001021, 0x01001120, 0x01011020, 0x01011022, 0x01011121, 0x01011220, 0x01021020, 0x01021021,
|
||||
0x01021122, 0x01021221, 0x02001121, 0x02011021, 0x02011120, 0x02011221, 0x00002000, 0x00002002,
|
||||
0x00002200, 0x00002202, 0x00012101, 0x00022000, 0x00022002, 0x00022200, 0x00022202, 0x01002101,
|
||||
0x01012001, 0x01012102, 0x01022101, 0x02002000, 0x02002002, 0x02002200, 0x02002202, 0x02012101,
|
||||
0x02022000, 0x02022002, 0x02022200, 0x02022202, 0x00002111, 0x00012011, 0x00012110, 0x00012211,
|
||||
0x00022110, 0x00022111, 0x01002011, 0x01012010, 0x01012011, 0x01012111, 0x01022011, 0x01022110,
|
||||
0x01022211, 0x02012011, 0x02012110, 0x02012112, 0x02012211, 0x02022111, 0x00002020, 0x00002022,
|
||||
0x00002220, 0x00002222, 0x00012121, 0x00022020, 0x00022022, 0x00022220, 0x00022222, 0x01002121,
|
||||
0x01012021, 0x01012221, 0x01022021, 0x01022121, 0x02002020, 0x02002022, 0x02002121, 0x02002220,
|
||||
0x02002222, 0x02012121, 0x02022020, 0x02022022, 0x02022220, 0x02022222, 0x00110000, 0x00110001,
|
||||
0x00110100, 0x00110201, 0x00120100, 0x00120101, 0x01100001, 0x01100100, 0x01110000, 0x01110101,
|
||||
0x01110200, 0x01120001, 0x01120100, 0x01120101, 0x01120201, 0x02110001, 0x02110100, 0x02110102,
|
||||
0x02120001, 0x02120101, 0x00100011, 0x00100110, 0x00100112, 0x00100211, 0x00110010, 0x00110012,
|
||||
0x00110111, 0x00110210, 0x00120011, 0x00120110, 0x00120211, 0x01100111, 0x01100212, 0x01110010,
|
||||
0x01110011, 0x01110012, 0x01110110, 0x01110111, 0x01110112, 0x01110211, 0x01120010, 0x01120111,
|
||||
0x02100110, 0x02110012, 0x02110111, 0x02120011, 0x02120110, 0x00110021, 0x00110120, 0x00110122,
|
||||
0x00120121, 0x01100020, 0x01100122, 0x01100221, 0x01110022, 0x01110121, 0x01110220, 0x01110222,
|
||||
0x01120120, 0x01120122, 0x02100121, 0x02110021, 0x02110120, 0x02110122, 0x02120121, 0x00101001,
|
||||
0x00101102, 0x00101201, 0x00111100, 0x00111101, 0x00111200, 0x00111201, 0x00121001, 0x00121102,
|
||||
0x01101001, 0x01101101, 0x01101102, 0x01101200, 0x01101202, 0x01111001, 0x01111100, 0x01111101,
|
||||
0x01111102, 0x01111201, 0x01121002, 0x01121101, 0x01121200, 0x02101100, 0x02101201, 0x02111000,
|
||||
0x02111100, 0x02111101, 0x02111200, 0x02111201, 0x02111202, 0x02121001, 0x02121100, 0x02121101,
|
||||
0x02121201, 0x00101012, 0x00101111, 0x00101212, 0x00111011, 0x00111110, 0x00111111, 0x00111112,
|
||||
0x00111211, 0x00121010, 0x00121012, 0x00121111, 0x00121210, 0x00121212, 0x01101011, 0x01101110,
|
||||
0x01101111, 0x01101112, 0x01111011, 0x01111012, 0x01111110, 0x01111111, 0x01111112, 0x01111211,
|
||||
0x01111212, 0x01121011, 0x01121110, 0x01121111, 0x01121112, 0x01121211, 0x02101010, 0x02101012,
|
||||
0x02101110, 0x02101111, 0x02101210, 0x02101212, 0x02111010, 0x02111011, 0x02111110, 0x02111111,
|
||||
0x02111112, 0x02111211, 0x02111212, 0x02121010, 0x02121012, 0x02121111, 0x00101021, 0x00101120,
|
||||
0x00101121, 0x00101122, 0x00111121, 0x00111122, 0x00111220, 0x00111222, 0x00121021, 0x00121122,
|
||||
0x01101020, 0x01101022, 0x01101120, 0x01101121, 0x01101220, 0x01101222, 0x01111021, 0x01111121,
|
||||
0x01111122, 0x01111220, 0x01111221, 0x01121021, 0x01121120, 0x01121121, 0x01121220, 0x01121221,
|
||||
0x01121222, 0x02101122, 0x02101222, 0x02111022, 0x02111121, 0x02121120, 0x02121221, 0x00112001,
|
||||
0x00112102, 0x00122101, 0x01102001, 0x01102100, 0x01102102, 0x01102201, 0x01112000, 0x01112101,
|
||||
0x01112200, 0x01112202, 0x01122000, 0x01122001, 0x01122100, 0x01122102, 0x01122201, 0x02102101,
|
||||
0x02112001, 0x02112100, 0x02122101, 0x00112010, 0x00112012, 0x00112111, 0x00112212, 0x00122011,
|
||||
0x00122111, 0x01102012, 0x01102110, 0x01102111, 0x01102210, 0x01112011, 0x01112110, 0x01112111,
|
||||
0x01112112, 0x01112211, 0x01112212, 0x01122010, 0x01122111, 0x01122212, 0x02102211, 0x02112011,
|
||||
0x02112012, 0x02112111, 0x02112210, 0x02122011, 0x02122112, 0x02122211, 0x00102221, 0x00112122,
|
||||
0x00122120, 0x00122122, 0x01102120, 0x01102122, 0x01102221, 0x01112020, 0x01112022, 0x01112121,
|
||||
0x01112220, 0x01122021, 0x01122122, 0x01122221, 0x02102121, 0x02112021, 0x02112122, 0x02112222,
|
||||
0x00200000, 0x00200002, 0x00200200, 0x00200202, 0x00210101, 0x00220000, 0x00220002, 0x00220101,
|
||||
0x00220200, 0x00220202, 0x01200101, 0x01210001, 0x01210201, 0x01220001, 0x01220101, 0x02200000,
|
||||
0x02200002, 0x02200200, 0x02200202, 0x02210101, 0x02220000, 0x02220002, 0x02220101, 0x02220200,
|
||||
0x02220202, 0x00200111, 0x00210011, 0x00210110, 0x00210211, 0x00220111, 0x01200012, 0x01200110,
|
||||
0x01200211, 0x01210111, 0x01210210, 0x01210212, 0x01220011, 0x01220110, 0x01220111, 0x01220112,
|
||||
0x02200111, 0x02210010, 0x02210112, 0x02210211, 0x02220111, 0x00200021, 0x00200220, 0x00200222,
|
||||
0x00210021, 0x00210121, 0x00220020, 0x00220022, 0x00220220, 0x00220222, 0x01200121, 0x01210021,
|
||||
0x01210122, 0x01210221, 0x01220121, 0x02200021, 0x02200220, 0x02200222, 0x02210021, 0x02210121,
|
||||
0x02220020, 0x02220022, 0x02220220, 0x02220222, 0x00201101, 0x00211100, 0x00211102, 0x00211201,
|
||||
0x00221101, 0x01201100, 0x01201101, 0x01201102, 0x01201201, 0x01211002, 0x01211101, 0x01211200,
|
||||
0x01211202, 0x01221102, 0x02201101, 0x02211001, 0x02211100, 0x02211201, 0x02221001, 0x02221101,
|
||||
0x00201211, 0x00211111, 0x00221011, 0x00221211, 0x01201010, 0x01201111, 0x01201210, 0x01211011,
|
||||
0x01211110, 0x01211111, 0x01211211, 0x01221012, 0x01221111, 0x01221210, 0x02201211, 0x02211010,
|
||||
0x02211110, 0x02211111, 0x02211210, 0x02211212, 0x02221011, 0x02221110, 0x02221112, 0x02221211,
|
||||
0x00201121, 0x00211020, 0x00211022, 0x00211221, 0x00221121, 0x01201021, 0x01201221, 0x01211121,
|
||||
0x01221020, 0x01221021, 0x01221221, 0x02201120, 0x02201122, 0x02211020, 0x02211222, 0x00202000,
|
||||
0x00202002, 0x00202200, 0x00202202, 0x00212101, 0x00222000, 0x00222002, 0x00222200, 0x00222202,
|
||||
0x01202101, 0x01212001, 0x01212100, 0x01222101, 0x02202000, 0x02202002, 0x02202200, 0x02202202,
|
||||
0x02222000, 0x02222002, 0x02222200, 0x02222202, 0x00202211, 0x00212011, 0x00212110, 0x00212211,
|
||||
0x00222111, 0x01202112, 0x01202211, 0x01212012, 0x01212111, 0x01222011, 0x01222110, 0x01222112,
|
||||
0x01222211, 0x02202111, 0x02212010, 0x02212112, 0x02212211, 0x02222110, 0x02222111, 0x00202020,
|
||||
0x00202022, 0x00202220, 0x00202222, 0x00222020, 0x00222022, 0x00222220, 0x00222222, 0x01202121,
|
||||
0x01212021, 0x01212122, 0x01212221, 0x01222121, 0x02202020, 0x02202022, 0x02202220, 0x02202222,
|
||||
0x02212121, 0x02222020, 0x02222022, 0x02222220, 0x02222222, 0x10000101, 0x10010001, 0x10010102,
|
||||
0x10020101, 0x11000201, 0x11010002, 0x11010101, 0x11010200, 0x11010202, 0x11020001, 0x11020100,
|
||||
0x11020102, 0x12010100, 0x12010201, 0x12020001, 0x12020102, 0x10000010, 0x10000011, 0x10000110,
|
||||
0x10000112, 0x10000211, 0x10010012, 0x10010111, 0x10010112, 0x10010210, 0x10010212, 0x10020011,
|
||||
0x10020112, 0x10020211, 0x11000111, 0x11000210, 0x11000212, 0x11010011, 0x11010110, 0x11010111,
|
||||
0x11010112, 0x11010211, 0x11010212, 0x11020111, 0x11020210, 0x11020212, 0x12000011, 0x12000110,
|
||||
0x12000112, 0x12010010, 0x12010012, 0x12010111, 0x12020010, 0x12020011, 0x12020012, 0x10000121,
|
||||
0x10010021, 0x10010120, 0x10010122, 0x10020121, 0x11000021, 0x11010022, 0x11010121, 0x11010222,
|
||||
0x11020120, 0x11020221, 0x12000221, 0x12010120, 0x12020121, 0x10001001, 0x10011101, 0x10011201,
|
||||
0x10021201, 0x11001101, 0x11001200, 0x11001202, 0x11011001, 0x11011100, 0x11011101, 0x11011102,
|
||||
0x11021001, 0x11021002, 0x11021101, 0x11021200, 0x11021202, 0x12001001, 0x12001102, 0x12001201,
|
||||
0x12011000, 0x12011002, 0x12011101, 0x12021000, 0x12021001, 0x12021201, 0x10001011, 0x10001012,
|
||||
0x10001111, 0x10001212, 0x10011011, 0x10011110, 0x10011111, 0x10011112, 0x10011211, 0x10021010,
|
||||
0x10021111, 0x10021212, 0x11001011, 0x11001110, 0x11001111, 0x11001112, 0x11001211, 0x11011010,
|
||||
0x11011011, 0x11011110, 0x11011111, 0x11011112, 0x11011210, 0x11011211, 0x11021011, 0x11021110,
|
||||
0x11021111, 0x11021112, 0x11021211, 0x12001012, 0x12001110, 0x12001111, 0x12001210, 0x12011011,
|
||||
0x12011110, 0x12011111, 0x12011112, 0x12011211, 0x12011212, 0x12021111, 0x12021210, 0x12021212,
|
||||
0x10001021, 0x10001121, 0x10001221, 0x10011120, 0x10011121, 0x10011220, 0x10011222, 0x10021021,
|
||||
0x10021120, 0x10021221, 0x11001020, 0x11001022, 0x11001121, 0x11001220, 0x11011020, 0x11011021,
|
||||
0x11011022, 0x11011121, 0x11011122, 0x11011221, 0x11021022, 0x11021121, 0x11021220, 0x12001021,
|
||||
0x12001121, 0x12001222, 0x12011120, 0x12011121, 0x12021021, 0x12021120, 0x12021122, 0x10002101,
|
||||
0x10012001, 0x10012101, 0x10012202, 0x10022101, 0x11002002, 0x11002201, 0x11012000, 0x11012101,
|
||||
0x11012200, 0x11022001, 0x11022100, 0x11022102, 0x11022201, 0x12002101, 0x12012001, 0x12012100,
|
||||
0x12012102, 0x12012201, 0x12022101, 0x10002011, 0x10002111, 0x10002112, 0x10002212, 0x10012010,
|
||||
0x10012110, 0x10012111, 0x10012210, 0x10022011, 0x10022110, 0x10022112, 0x11002010, 0x11002111,
|
||||
0x11002212, 0x11012011, 0x11012012, 0x11012110, 0x11012111, 0x11012112, 0x11012211, 0x11022010,
|
||||
0x11022012, 0x11022111, 0x11022112, 0x11022212, 0x12002112, 0x12002211, 0x12012012, 0x12012111,
|
||||
0x12012112, 0x12012210, 0x12022011, 0x12022110, 0x12022112, 0x12022211, 0x10012122, 0x11002120,
|
||||
0x11002122, 0x11002221, 0x11012121, 0x11012220, 0x11012222, 0x11022120, 0x11022221, 0x12012120,
|
||||
0x12022121, 0x10100001, 0x10100100, 0x10100101, 0x10100102, 0x10100201, 0x10110002, 0x10110101,
|
||||
0x10110202, 0x10120001, 0x10120100, 0x10120201, 0x11100000, 0x11100101, 0x11100200, 0x11110001,
|
||||
0x11110100, 0x11110101, 0x11110102, 0x11110201, 0x11120101, 0x11120200, 0x12100102, 0x12100201,
|
||||
0x12110101, 0x12110200, 0x12120000, 0x12120001, 0x12120102, 0x12120201, 0x10100111, 0x10100210,
|
||||
0x10100211, 0x10100212, 0x10110011, 0x10110110, 0x10110111, 0x10110112, 0x10110210, 0x10110211,
|
||||
0x10120010, 0x10120111, 0x10120112, 0x10120210, 0x10120212, 0x11100011, 0x11100110, 0x11100111,
|
||||
0x11100112, 0x11100211, 0x11110010, 0x11110011, 0x11110012, 0x11110110, 0x11110111, 0x11110112,
|
||||
0x11110210, 0x11110211, 0x11110212, 0x11120011, 0x11120110, 0x11120111, 0x11120112, 0x11120211,
|
||||
0x12100012, 0x12100111, 0x12110011, 0x12110110, 0x12110111, 0x12110112, 0x12110211, 0x12120010,
|
||||
0x12120111, 0x12120212, 0x10100021, 0x10100122, 0x10110022, 0x10110121, 0x10110222, 0x10120021,
|
||||
0x10120120, 0x11100022, 0x11100121, 0x11100222, 0x11110021, 0x11110120, 0x11110121, 0x11110122,
|
||||
0x11110221, 0x11120022, 0x11120121, 0x12100121, 0x12110020, 0x12110022, 0x12110121, 0x12110221,
|
||||
0x12110222, 0x12120120, 0x10101100, 0x10101101, 0x10111001, 0x10111100, 0x10111101, 0x10111102,
|
||||
0x10111200, 0x10111201, 0x10121001, 0x10121101, 0x10121200, 0x10121202, 0x11101001, 0x11101100,
|
||||
0x11101101, 0x11101102, 0x11101201, 0x11101202, 0x11111000, 0x11111001, 0x11111100, 0x11111101,
|
||||
0x11111102, 0x11111200, 0x11111201, 0x11111202, 0x11121001, 0x11121002, 0x11121100, 0x11121101,
|
||||
0x11121102, 0x11121201, 0x12101000, 0x12101200, 0x12101202, 0x12111001, 0x12111100, 0x12111101,
|
||||
0x12111102, 0x12111201, 0x12121001, 0x12121100, 0x12121101, 0x12121202, 0x10101011, 0x10101012,
|
||||
0x10101110, 0x10101111, 0x10101112, 0x10101211, 0x10111010, 0x10111011, 0x10111012, 0x10111110,
|
||||
0x10111111, 0x10111112, 0x10111211, 0x10111212, 0x10121011, 0x10121110, 0x10121111, 0x10121112,
|
||||
0x10121211, 0x11101010, 0x11101011, 0x11101012, 0x11101110, 0x11101111, 0x11101112, 0x11101210,
|
||||
0x11101211, 0x11111010, 0x11111011, 0x11111012, 0x11111110, 0x11111111, 0x11111112, 0x11111210,
|
||||
0x11111211, 0x11111212, 0x11121010, 0x11121011, 0x11121110, 0x11121111, 0x11121112, 0x11121210,
|
||||
0x11121211, 0x11121212, 0x12101011, 0x12101110, 0x12101111, 0x12101211, 0x12101212, 0x12111010,
|
||||
0x12111011, 0x12111110, 0x12111111, 0x12111112, 0x12111210, 0x12111211, 0x12121011, 0x12121110,
|
||||
0x12121111, 0x12121112, 0x12121211, 0x10101020, 0x10101021, 0x10101022, 0x10101120, 0x10101122,
|
||||
0x10101220, 0x10101221, 0x10111021, 0x10111120, 0x10111121, 0x10111220, 0x10111221, 0x10121020,
|
||||
0x10121021, 0x10121022, 0x10121120, 0x10121121, 0x10121122, 0x10121220, 0x10121221, 0x11101021,
|
||||
0x11101121, 0x11101122, 0x11101220, 0x11101221, 0x11101222, 0x11111020, 0x11111021, 0x11111022,
|
||||
0x11111120, 0x11111121, 0x11111122, 0x11111220, 0x11111221, 0x11111222, 0x11121021, 0x11121120,
|
||||
0x11121121, 0x11121221, 0x12101022, 0x12101121, 0x12101122, 0x12101220, 0x12101221, 0x12101222,
|
||||
0x12111021, 0x12111121, 0x12111222, 0x12121022, 0x12121121, 0x12121122, 0x12121220, 0x12121221,
|
||||
0x10102100, 0x10102101, 0x10102102, 0x10102201, 0x10112000, 0x10112101, 0x10112200, 0x10122001,
|
||||
0x10122202, 0x11102101, 0x11102200, 0x11102202, 0x11112001, 0x11112100, 0x11112101, 0x11112102,
|
||||
0x11112200, 0x11112201, 0x11122000, 0x11122002, 0x11122100, 0x11122101, 0x12102002, 0x12102201,
|
||||
0x12112000, 0x12112002, 0x12112101, 0x12112200, 0x12122001, 0x12122201, 0x10102011, 0x10102012,
|
||||
0x10102111, 0x10102212, 0x10112011, 0x10112110, 0x10112111, 0x10112112, 0x10112211, 0x10122111,
|
||||
0x11102011, 0x11102110, 0x11102111, 0x11102112, 0x11102211, 0x11112010, 0x11112011, 0x11112012,
|
||||
0x11112110, 0x11112111, 0x11112112, 0x11112210, 0x11112211, 0x11112212, 0x11122011, 0x11122110,
|
||||
0x11122111, 0x11122112, 0x11122211, 0x12102011, 0x12102111, 0x12102211, 0x12112011, 0x12112110,
|
||||
0x12112111, 0x12112112, 0x12112210, 0x12112211, 0x12122111, 0x10102120, 0x10102220, 0x10112121,
|
||||
0x10112222, 0x10122020, 0x10122121, 0x10122122, 0x10122221, 0x11102121, 0x11102220, 0x11102221,
|
||||
0x11112021, 0x11112121, 0x11112122, 0x11112220, 0x11112221, 0x11122022, 0x11122121, 0x11122220,
|
||||
0x11122222, 0x12102021, 0x12102222, 0x12112022, 0x12112121, 0x12112122, 0x12112220, 0x12112222,
|
||||
0x12122021, 0x10200101, 0x10210100, 0x10210102, 0x10210201, 0x10220101, 0x11200100, 0x11210000,
|
||||
0x11210101, 0x11210102, 0x11210200, 0x11210202, 0x11220001, 0x11220100, 0x11220102, 0x11220201,
|
||||
0x12200001, 0x12210102, 0x12220101, 0x10200011, 0x10200110, 0x10200112, 0x10200211, 0x10210012,
|
||||
0x10210111, 0x10220011, 0x10220012, 0x10220112, 0x10220211, 0x11200111, 0x11200211, 0x11210011,
|
||||
0x11210111, 0x11210112, 0x11210211, 0x11220111, 0x11220112, 0x11220212, 0x12200110, 0x12200212,
|
||||
0x12210012, 0x12210111, 0x12220011, 0x12220112, 0x12220211, 0x10210021, 0x10210122, 0x10210221,
|
||||
0x11200020, 0x11200021, 0x11200122, 0x11210121, 0x11210122, 0x11210220, 0x11220020, 0x12200121,
|
||||
0x12210021, 0x12210122, 0x12220121, 0x10211001, 0x10211002, 0x10211101, 0x10211102, 0x10211202,
|
||||
0x10221001, 0x10221102, 0x10221201, 0x11201000, 0x11201002, 0x11201101, 0x11201200, 0x11201202,
|
||||
0x11211001, 0x11211100, 0x11211101, 0x11211102, 0x11211201, 0x11211202, 0x11221000, 0x11221002,
|
||||
0x11221101, 0x12201100, 0x12201101, 0x12201201, 0x12211000, 0x12211002, 0x12211100, 0x12211101,
|
||||
0x12211102, 0x12211200, 0x12211202, 0x12221001, 0x12221100, 0x12221201, 0x10201111, 0x10201210,
|
||||
0x10201212, 0x10211011, 0x10211111, 0x10211112, 0x10211211, 0x11201110, 0x11201111, 0x11201112,
|
||||
0x11201211, 0x11211010, 0x11211011, 0x11211110, 0x11211111, 0x11211112, 0x11211211, 0x11221011,
|
||||
0x11221110, 0x11221111, 0x11221112, 0x11221211, 0x12201112, 0x12201211, 0x12201212, 0x12211011,
|
||||
0x12211111, 0x12211112, 0x12211211, 0x12211212, 0x12221012, 0x12221111, 0x12221112, 0x12221210,
|
||||
0x10201022, 0x10201221, 0x10211121, 0x10221020, 0x10221122, 0x10221220, 0x10221221, 0x11201020,
|
||||
0x11201121, 0x11201220, 0x11201222, 0x11211021, 0x11211120, 0x11211121, 0x11211122, 0x11211220,
|
||||
0x11211222, 0x11221020, 0x11221121, 0x11221220, 0x12201020, 0x12201022, 0x12201121, 0x12201222,
|
||||
0x12211120, 0x12211122, 0x12211220, 0x12211221, 0x12221020, 0x12221120, 0x12221122, 0x12221222,
|
||||
0x10212102, 0x10212201, 0x10222101, 0x11202001, 0x11212002, 0x11212101, 0x11212202, 0x11222001,
|
||||
0x11222201, 0x12202101, 0x12212001, 0x12212200, 0x12222102, 0x10202011, 0x10202110, 0x10212010,
|
||||
0x10212111, 0x10222011, 0x10222110, 0x10222112, 0x10222211, 0x11202010, 0x11202011, 0x11202111,
|
||||
0x11202112, 0x11202210, 0x11212011, 0x11212110, 0x11212111, 0x11212112, 0x11212211, 0x11222010,
|
||||
0x11222111, 0x11222212, 0x12202012, 0x12202110, 0x12202212, 0x12212111, 0x12222011, 0x12222110,
|
||||
0x12222111, 0x12222211, 0x10212021, 0x10212122, 0x10212220, 0x11202021, 0x11202120, 0x11202221,
|
||||
0x11212020, 0x11212121, 0x11212220, 0x11212222, 0x11222120, 0x11222121, 0x11222221, 0x12202122,
|
||||
0x12212120, 0x12212220, 0x12212222, 0x12222122, 0x20000000, 0x20000002, 0x20000200, 0x20000202,
|
||||
0x20020000, 0x20020002, 0x20020200, 0x20020202, 0x21000101, 0x21010000, 0x21010001, 0x21010100,
|
||||
0x21010102, 0x21010201, 0x21020101, 0x22000000, 0x22000002, 0x22000200, 0x22000202, 0x22010101,
|
||||
0x22020000, 0x22020002, 0x22020200, 0x22020202, 0x20000111, 0x20010011, 0x20010110, 0x20010112,
|
||||
0x20010211, 0x20020111, 0x21000011, 0x21000110, 0x21000211, 0x21010010, 0x21010012, 0x21010111,
|
||||
0x21010112, 0x21010210, 0x21010211, 0x21020110, 0x21020112, 0x21020211, 0x22000111, 0x22000211,
|
||||
0x22010110, 0x22010112, 0x22010211, 0x22020111, 0x20000020, 0x20000022, 0x20000220, 0x20000222,
|
||||
0x20010121, 0x20020020, 0x20020022, 0x20020220, 0x20020222, 0x21010021, 0x21010120, 0x21010221,
|
||||
0x21020121, 0x22000020, 0x22000022, 0x22000220, 0x22000222, 0x22010121, 0x22020020, 0x22020022,
|
||||
0x22020220, 0x22020222, 0x20011100, 0x20011201, 0x21001001, 0x21001100, 0x21011001, 0x21011101,
|
||||
0x21011202, 0x21021001, 0x21021100, 0x21021201, 0x22011100, 0x22011201, 0x20001011, 0x20001211,
|
||||
0x20011012, 0x20011111, 0x20011212, 0x20021112, 0x20021211, 0x21001010, 0x21001011, 0x21001111,
|
||||
0x21001210, 0x21011011, 0x21011110, 0x21011111, 0x21011112, 0x21011211, 0x21011212, 0x21021111,
|
||||
0x21021112, 0x21021210, 0x21021212, 0x22001011, 0x22001110, 0x22001112, 0x22001211, 0x22011010,
|
||||
0x22011012, 0x22011111, 0x22011210, 0x22021112, 0x20011021, 0x20011122, 0x20011221, 0x20021121,
|
||||
0x21001021, 0x21001120, 0x21001221, 0x21001222, 0x21011020, 0x21011121, 0x21011221, 0x21011222,
|
||||
0x21021021, 0x21021122, 0x21021222, 0x22001121, 0x22011021, 0x22011222, 0x22021120, 0x20002000,
|
||||
0x20002002, 0x20002200, 0x20002202, 0x20012101, 0x20022000, 0x20022002, 0x20022200, 0x20022202,
|
||||
0x21002001, 0x21002101, 0x21012001, 0x21012100, 0x21012201, 0x21022101, 0x21022201, 0x22002000,
|
||||
0x22002002, 0x22002200, 0x22002202, 0x22012101, 0x22022000, 0x22022002, 0x22022200, 0x22022202,
|
||||
0x20002111, 0x20002112, 0x20012011, 0x20012110, 0x20012112, 0x20022111, 0x21002011, 0x21002110,
|
||||
0x21002112, 0x21002211, 0x21012010, 0x21012012, 0x21012111, 0x21012212, 0x21022011, 0x21022110,
|
||||
0x22002111, 0x22012112, 0x22012211, 0x22022111, 0x20002020, 0x20002022, 0x20002220, 0x20002222,
|
||||
0x20012121, 0x20022020, 0x20022022, 0x20022220, 0x20022222, 0x21002121, 0x21012021, 0x21012120,
|
||||
0x21012122, 0x22002020, 0x22002022, 0x22002220, 0x22002222, 0x22012121, 0x22022020, 0x22022022,
|
||||
0x22022220, 0x22022222, 0x20100101, 0x20110001, 0x20110102, 0x20110200, 0x20110201, 0x20120101,
|
||||
0x21100001, 0x21100102, 0x21100201, 0x21110101, 0x21110200, 0x21110202, 0x21120201, 0x21120202,
|
||||
0x22100101, 0x22110001, 0x22110100, 0x22110102, 0x22110201, 0x22120101, 0x20100011, 0x20100110,
|
||||
0x20100112, 0x20100211, 0x20110010, 0x20110111, 0x20110210, 0x20110212, 0x20120011, 0x20120110,
|
||||
0x20120112, 0x20120211, 0x21100010, 0x21100111, 0x21110010, 0x21110011, 0x21110110, 0x21110111,
|
||||
0x21110112, 0x21110211, 0x21120012, 0x21120111, 0x22100110, 0x22100112, 0x22110012, 0x22110111,
|
||||
0x22110210, 0x22120011, 0x22120110, 0x22120112, 0x22120211, 0x20100121, 0x20110021, 0x20110120,
|
||||
0x20110221, 0x20120121, 0x21100120, 0x21100122, 0x21100221, 0x21110020, 0x21110022, 0x21110121,
|
||||
0x21110220, 0x21120122, 0x21120221, 0x22100121, 0x22110120, 0x22110122, 0x22120221, 0x20101001,
|
||||
0x20101100, 0x20101102, 0x20111000, 0x20111101, 0x20111200, 0x20121102, 0x21101000, 0x21101202,
|
||||
0x21111001, 0x21111100, 0x21111101, 0x21111102, 0x21111200, 0x21111201, 0x21121000, 0x21121001,
|
||||
0x21121002, 0x21121101, 0x22101100, 0x22101102, 0x22111002, 0x22111100, 0x22111101, 0x22111200,
|
||||
0x22121001, 0x22121201, 0x20101010, 0x20101111, 0x20101210, 0x20101212, 0x20111010, 0x20111011,
|
||||
0x20111110, 0x20111111, 0x20111112, 0x20111211, 0x20121011, 0x20121111, 0x20121211, 0x20121212,
|
||||
0x21101011, 0x21101110, 0x21101111, 0x21101112, 0x21101211, 0x21111010, 0x21111011, 0x21111012,
|
||||
0x21111110, 0x21111111, 0x21111112, 0x21111210, 0x21111211, 0x21111212, 0x21121011, 0x21121110,
|
||||
0x21121111, 0x21121112, 0x21121211, 0x22101011, 0x22101111, 0x22101210, 0x22111011, 0x22111012,
|
||||
0x22111110, 0x22111111, 0x22111112, 0x22111211, 0x22111212, 0x22121010, 0x22121012, 0x22121111,
|
||||
0x22121210, 0x22121212, 0x20101021, 0x20101120, 0x20111020, 0x20111121, 0x20111221, 0x20121020,
|
||||
0x20121122, 0x20121221, 0x21101121, 0x21101220, 0x21101221, 0x21111021, 0x21111022, 0x21111121,
|
||||
0x21111122, 0x21111221, 0x21121121, 0x21121220, 0x22101022, 0x22101120, 0x22101221, 0x22101222,
|
||||
0x22111022, 0x22111120, 0x22111121, 0x22121120, 0x22121122, 0x22121221, 0x20102101, 0x20112102,
|
||||
0x20112201, 0x20122101, 0x21102001, 0x21102102, 0x21112000, 0x21112002, 0x21112101, 0x21112102,
|
||||
0x21112202, 0x21122100, 0x21122101, 0x22102101, 0x22112001, 0x22112102, 0x22112201, 0x22122101,
|
||||
0x20102110, 0x20102112, 0x20102211, 0x20112010, 0x20112012, 0x20112111, 0x20112210, 0x20112212,
|
||||
0x20122010, 0x20122011, 0x20122110, 0x20122112, 0x21102010, 0x21102012, 0x21102111, 0x21102210,
|
||||
0x21102212, 0x21112011, 0x21112110, 0x21112111, 0x21112112, 0x21112211, 0x21122012, 0x21122111,
|
||||
0x21122112, 0x21122212, 0x22102011, 0x22102110, 0x22112010, 0x22112012, 0x22112111, 0x22112212,
|
||||
0x22122011, 0x22122112, 0x20102121, 0x20112121, 0x20122121, 0x21102120, 0x21102122, 0x21102221,
|
||||
0x21112020, 0x21112121, 0x21112220, 0x21122021, 0x22102121, 0x22112021, 0x22112120, 0x22112121,
|
||||
0x22112122, 0x20200000, 0x20200002, 0x20200200, 0x20200202, 0x20210101, 0x20220000, 0x20220002,
|
||||
0x20220200, 0x20220202, 0x21200101, 0x21210001, 0x21210100, 0x21210102, 0x21210201, 0x22200000,
|
||||
0x22200002, 0x22200200, 0x22200202, 0x22210101, 0x22220000, 0x22220002, 0x22220200, 0x22220202,
|
||||
0x20200111, 0x20200211, 0x20210011, 0x20210110, 0x20210112, 0x20210211, 0x20210212, 0x21200112,
|
||||
0x21200211, 0x21210011, 0x21210111, 0x21210210, 0x21210212, 0x21220011, 0x21220110, 0x22200111,
|
||||
0x22210010, 0x22210012, 0x22210112, 0x22210211, 0x20200022, 0x20200220, 0x20200222, 0x20210020,
|
||||
0x20210221, 0x20220022, 0x20220220, 0x20220222, 0x21200121, 0x21210021, 0x21210122, 0x21210221,
|
||||
0x21220121, 0x22200020, 0x22200022, 0x22200220, 0x22200222, 0x22210121, 0x22220020, 0x22220022,
|
||||
0x22220220, 0x22220222, 0x20211201, 0x20221101, 0x21201001, 0x21201100, 0x21211000, 0x21211100,
|
||||
0x21211101, 0x21211200, 0x21211202, 0x21221001, 0x21221101, 0x21221102, 0x21221200, 0x21221201,
|
||||
0x22201101, 0x20201112, 0x20201211, 0x20211010, 0x20211012, 0x20211111, 0x20211210, 0x20221112,
|
||||
0x20221211, 0x21201012, 0x21201111, 0x21211011, 0x21211110, 0x21211111, 0x21211112, 0x21211211,
|
||||
0x21221111, 0x21221212, 0x22201011, 0x22201110, 0x22201111, 0x22201112, 0x22201211, 0x22211012,
|
||||
0x22211111, 0x22211210, 0x20201121, 0x20211021, 0x20211122, 0x20211222, 0x20221021, 0x20221121,
|
||||
0x21201120, 0x21201122, 0x21201222, 0x21211022, 0x21211121, 0x21211122, 0x21211220, 0x21221020,
|
||||
0x21221022, 0x22201122, 0x22211020, 0x22211121, 0x22211122, 0x22211221, 0x22221021, 0x22221120,
|
||||
0x22221122, 0x20202000, 0x20202002, 0x20202200, 0x20202202, 0x20222000, 0x20222002, 0x20222200,
|
||||
0x20222202, 0x21212001, 0x21212100, 0x21212102, 0x21212201, 0x22202000, 0x22202002, 0x22202200,
|
||||
0x22202202, 0x22212101, 0x22222000, 0x22222002, 0x22222200, 0x22222202, 0x20202111, 0x20212110,
|
||||
0x20212211, 0x20222011, 0x20222111, 0x21202011, 0x21212010, 0x21212111, 0x21212212, 0x21222011,
|
||||
0x21222112, 0x21222211, 0x22212010, 0x22212112, 0x20202020, 0x20202022, 0x20202220, 0x20202222,
|
||||
0x20222020, 0x20222022, 0x20222220, 0x20222222, 0x21212021, 0x21212120, 0x21212122, 0x22202020,
|
||||
0x22202022, 0x22202220, 0x22202222, 0x22212121, 0x22222020, 0x22222022, 0x22222220, 0x22222222,
|
||||
};
|
||||
|
||||
shared uint16_t iq1s_grid[2048];
|
||||
shared uint32_t iq1s_grid_gpu[2048];
|
||||
|
||||
#define NEEDS_INIT_IQ_SHMEM
|
||||
void init_iq_shmem(uvec3 wgsize)
|
||||
|
|
@ -573,6 +857,12 @@ void init_iq_shmem(uvec3 wgsize)
|
|||
iq1s_grid[2*idx+1] = g.y;
|
||||
}
|
||||
}
|
||||
[[unroll]] for (uint i = 0; i < iq1s_grid_gpu_const.length(); i += wgsize.x) {
|
||||
uint idx = i + gl_LocalInvocationIndex.x;
|
||||
if (iq1s_grid_gpu_const.length() % wgsize.x == 0 || idx < iq1s_grid_gpu_const.length()) {
|
||||
iq1s_grid_gpu[idx] = iq1s_grid_gpu_const[idx];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -685,7 +685,7 @@ void process_shaders() {
|
|||
|
||||
// mul mat vec with integer dot product
|
||||
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
|
||||
if (is_legacy_quant(tname) || tname == "mxfp4" || is_k_quant(tname)) {
|
||||
if (is_legacy_quant(tname) || tname == "mxfp4" || is_k_quant(tname) || tname == "iq1_s" || tname == "iq1_m") {
|
||||
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}}));
|
||||
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}}));
|
||||
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup_no_shmem", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}}));
|
||||
|
|
@ -944,6 +944,8 @@ void process_shaders() {
|
|||
string_to_spv("sum_rows_f32", "sum_rows.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
|
||||
string_to_spv("count_equal_i32", "count_equal.comp", merge_maps(base_dict, {{"A_TYPE", "int"}, {"B_TYPE", "int"}, {"D_TYPE", "int"}}));
|
||||
string_to_spv("cumsum_f32", "cumsum.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
|
||||
string_to_spv("cumsum_multipass1_f32", "cumsum_multipass1.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
|
||||
string_to_spv("cumsum_multipass2_f32", "cumsum_multipass2.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
|
||||
|
||||
string_to_spv("count_experts", "count_experts.comp", merge_maps(base_dict, {{"A_TYPE", "uint"}, {"D_TYPE", "uint"}}));
|
||||
|
||||
|
|
@ -1123,7 +1125,7 @@ void write_output_files() {
|
|||
|
||||
for (const std::string& btype : btypes) {
|
||||
for (const auto& tname : type_names) {
|
||||
if (btype == "q8_1" && !is_legacy_quant(tname) && tname != "mxfp4" && !is_k_quant(tname)) {
|
||||
if (btype == "q8_1" && !is_legacy_quant(tname) && tname != "mxfp4" && !is_k_quant(tname) && tname != "iq1_s" && tname != "iq1_m") {
|
||||
continue;
|
||||
}
|
||||
hdr << "extern const void * arr_dmmv_" << tname << "_" << btype << "_f32_data[3];\n";
|
||||
|
|
|
|||
|
|
@ -294,7 +294,9 @@ class Keys:
|
|||
USE_GELU = "clip.use_gelu"
|
||||
USE_SILU = "clip.use_silu"
|
||||
N_WA_PATTERN = "clip.vision.n_wa_pattern" # used by qwen2.5vl
|
||||
WA_LAYER_INDEXES = "clip.vision.wa_layer_indexes" # used by youtuvl
|
||||
IS_DEEPSTACK_LAYERS = "clip.vision.is_deepstack_layers"
|
||||
WINDOW_SIZE = "clip.vision.window_size"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "clip.vision.attention.head_count"
|
||||
|
|
@ -452,6 +454,7 @@ class MODEL_ARCH(IntEnum):
|
|||
MISTRAL3 = auto()
|
||||
MIMO2 = auto()
|
||||
LLAMA_EMBED = auto()
|
||||
MAINCODER = auto()
|
||||
|
||||
|
||||
class VISION_PROJECTOR_TYPE(IntEnum):
|
||||
|
|
@ -850,6 +853,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.MISTRAL3: "mistral3",
|
||||
MODEL_ARCH.MIMO2: "mimo2",
|
||||
MODEL_ARCH.LLAMA_EMBED: "llama-embed",
|
||||
MODEL_ARCH.MAINCODER: "maincoder",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
|
|
@ -3257,6 +3261,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.MAINCODER: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
|
@ -3492,7 +3512,9 @@ class VisionProjectorType:
|
|||
COGVLM = "cogvlm"
|
||||
JANUS_PRO = "janus_pro"
|
||||
LFM2A = "lfm2a" # audio
|
||||
MUSIC_FLAMINGO = "musicflamingo" # audio
|
||||
GLM4V = "glm4v"
|
||||
YOUTUVL = "youtuvl"
|
||||
|
||||
|
||||
# Items here are (block size, type size)
|
||||
|
|
|
|||
|
|
@ -1129,11 +1129,40 @@ class GGUFWriter:
|
|||
self.add_uint32(Keys.ClipVision.Projector.SCALE_FACTOR, value)
|
||||
|
||||
def add_vision_n_wa_pattern(self, value: int) -> None:
|
||||
"""Add window attention pattern interval for vision models.
|
||||
|
||||
This defines the pattern interval for window attention vs full attention layers.
|
||||
For example, if n_wa_pattern=4, then layers 3, 7, 11, ... use full attention,
|
||||
while other layers use window attention.
|
||||
|
||||
Used by models like Qwen2.5-VL where full attention layers follow a regular pattern.
|
||||
"""
|
||||
self.add_uint32(Keys.ClipVision.N_WA_PATTERN, value)
|
||||
|
||||
def add_vision_wa_layer_indexes(self, layers: Sequence[int]) -> None:
|
||||
"""Add explicit layer indexes that use full attention in vision models.
|
||||
|
||||
This specifies the exact layer indices (0-based) that should use full attention
|
||||
instead of window attention. All other layers will use window attention.
|
||||
|
||||
Args:
|
||||
layers: List of layer indices that use full attention (e.g., [3, 7, 11, 15])
|
||||
|
||||
Used by models like YoutuVL where full attention layers are explicitly specified
|
||||
rather than following a regular pattern.
|
||||
|
||||
Difference from add_vision_n_wa_pattern:
|
||||
- n_wa_pattern: Defines a regular interval pattern (every Nth layer uses full attention)
|
||||
- wa_layer_indexes: Explicitly lists which layers use full attention (irregular pattern)
|
||||
"""
|
||||
self.add_array(Keys.ClipVision.WA_LAYER_INDEXES, layers)
|
||||
|
||||
def add_vision_is_deepstack_layers(self, layers: Sequence[bool]) -> None:
|
||||
self.add_array(Keys.ClipVision.IS_DEEPSTACK_LAYERS, layers)
|
||||
|
||||
def add_vision_window_size(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipVision.WINDOW_SIZE, value)
|
||||
|
||||
# audio models
|
||||
|
||||
def add_audio_projection_dim(self, value: int) -> None:
|
||||
|
|
|
|||
|
|
@ -1221,6 +1221,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.V_MMPROJ: (
|
||||
"multi_modal_projector.linear_{bid}",
|
||||
"visual.merger.mlp.{bid}", # qwen2vl
|
||||
"merger.mlp.{bid}",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MMPROJ_FC: (
|
||||
|
|
@ -1258,6 +1259,7 @@ class TensorNameMap:
|
|||
"visual.patch_embed.proj", # qwen2vl
|
||||
"vision_tower.patch_embed.proj", # kimi-vl
|
||||
"model.vision.patch_embedding.proj", # cogvlm
|
||||
"siglip2.vision_model.embeddings.patch_embedding",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_EMBD_NORM: (
|
||||
|
|
@ -1291,6 +1293,7 @@ class TensorNameMap:
|
|||
"vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
|
||||
"visual.blocks.{bid}.attn.q", # qwen2vl, generated
|
||||
"vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.q_proj", # youtuvl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
|
||||
|
|
@ -1308,6 +1311,7 @@ class TensorNameMap:
|
|||
"vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
|
||||
"visual.blocks.{bid}.attn.k", # qwen2vl, generated
|
||||
"vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.k_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
|
||||
|
|
@ -1325,6 +1329,7 @@ class TensorNameMap:
|
|||
"vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
|
||||
"visual.blocks.{bid}.attn.v", # qwen2vl, generated
|
||||
"vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.v_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_INPUT_NORM: (
|
||||
|
|
@ -1339,6 +1344,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.norm1", # qwen2vl
|
||||
"vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
|
||||
"model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.layer_norm1",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_ATTN_O: (
|
||||
|
|
@ -1354,6 +1360,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.attn.proj", # qwen2vl
|
||||
"vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
|
||||
"model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.self_attn.out_proj", # youtuvl
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
|
||||
|
|
@ -1368,6 +1375,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.norm2", # qwen2vl
|
||||
"vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
|
||||
"model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.layer_norm2",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_UP: (
|
||||
|
|
@ -1383,6 +1391,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
|
||||
"vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
|
||||
"model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.mlp.fc1",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_ENC_FFN_GATE: (
|
||||
|
|
@ -1404,6 +1413,7 @@ class TensorNameMap:
|
|||
"visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
|
||||
"vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
|
||||
"model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
|
||||
"siglip2.vision_model.encoder.layers.{bid}.mlp.fc2",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_LAYER_SCALE_1: (
|
||||
|
|
@ -1430,6 +1440,7 @@ class TensorNameMap:
|
|||
"visual.merger.ln_q", # qwen2vl
|
||||
"vision_tower.encoder.final_layernorm", # kimi-vl
|
||||
"visual.post_layernorm", # glm4v
|
||||
"siglip2.vision_model.post_layernorm",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MM_POST_NORM: (
|
||||
|
|
@ -1446,6 +1457,7 @@ class TensorNameMap:
|
|||
"multi_modal_projector.pre_norm",
|
||||
"pre_mm_projector_norm",
|
||||
"model.vision.linear_proj.norm1", # cogvlm
|
||||
"merger.ln_q",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
|
||||
|
|
|
|||
|
|
@ -150,6 +150,9 @@ You can use GBNF grammars:
|
|||
- in CLI, with [examples/json_schema_to_grammar.py](../examples/json_schema_to_grammar.py)
|
||||
- in JavaScript with [json-schema-to-grammar.mjs](../tools/server/public_legacy/json-schema-to-grammar.mjs) (this is used by the [server](../tools/server)'s Web UI)
|
||||
|
||||
> [!NOTE]
|
||||
> The JSON schema is only used to constrain the model output and is not injected into the prompt. The model has no visibility into the schema, so if you want it to understand the expected structure, describe it explicitly in your prompt. This does not apply to tool calling, where schemas are injected into the prompt.
|
||||
|
||||
Take a look at [tests](../tests/test-json-schema-to-grammar.cpp) to see which features are likely supported (you'll also find usage examples in https://github.com/ggml-org/llama.cpp/pull/5978, https://github.com/ggml-org/llama.cpp/pull/6659 & https://github.com/ggml-org/llama.cpp/pull/6555).
|
||||
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -316,6 +316,11 @@ extern "C" {
|
|||
bool no_alloc; // only load metadata and simulate memory allocations
|
||||
};
|
||||
|
||||
struct llama_sampler_seq_config {
|
||||
llama_seq_id seq_id;
|
||||
struct llama_sampler * sampler;
|
||||
};
|
||||
|
||||
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
|
||||
// https://github.com/ggml-org/llama.cpp/pull/7544
|
||||
struct llama_context_params {
|
||||
|
|
@ -364,6 +369,12 @@ extern "C" {
|
|||
bool kv_unified; // use a unified buffer across the input sequences when computing the attention
|
||||
// try to disable when n_seq_max > 1 for improved performance when the sequences do not share a large prefix
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14363
|
||||
|
||||
// [EXPERIMENTAL]
|
||||
// backend sampler chain configuration (make sure the caller keeps the sampler chains alive)
|
||||
// note: the samplers must be sampler chains (i.e. use llama_sampler_chain_init)
|
||||
struct llama_sampler_seq_config * samplers;
|
||||
size_t n_samplers;
|
||||
};
|
||||
|
||||
// model quantization parameters
|
||||
|
|
@ -992,6 +1003,32 @@ extern "C" {
|
|||
// otherwise: float[n_embd] (1-dimensional)
|
||||
LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
|
||||
|
||||
//
|
||||
// backend sampling API [EXPERIMENTAL]
|
||||
// note: use only if the llama_context was created with at least one llama_sampler_seq_config
|
||||
//
|
||||
|
||||
// Get the backend sampled token for the ith token.
|
||||
// Returns LLAMA_TOKEN_NULL if no token was sampled.
|
||||
LLAMA_API llama_token llama_get_sampled_token_ith(struct llama_context * ctx, int32_t i);
|
||||
|
||||
// Get the backend sampled probabilites for the ith token
|
||||
// The index matches llama_get_sampled_token_ith().
|
||||
// Returns NULL if no probabilites were generated.
|
||||
LLAMA_API float * llama_get_sampled_probs_ith (struct llama_context * ctx, int32_t i);
|
||||
LLAMA_API uint32_t llama_get_sampled_probs_count_ith(struct llama_context * ctx, int32_t i);
|
||||
|
||||
// Get the backend sampled logits for the ith token
|
||||
// Returns NULL if no logits were sampled.
|
||||
LLAMA_API float * llama_get_sampled_logits_ith (struct llama_context * ctx, int32_t i);
|
||||
LLAMA_API uint32_t llama_get_sampled_logits_count_ith(struct llama_context * ctx, int32_t i);
|
||||
|
||||
// Get the backend sampled candidates (token ids) for the ith token
|
||||
// These are needed to map probability/logit indices to vocab token ids.
|
||||
// Returns NULL if no candidates were sampled.
|
||||
LLAMA_API llama_token * llama_get_sampled_candidates_ith (struct llama_context * ctx, int32_t i);
|
||||
LLAMA_API uint32_t llama_get_sampled_candidates_count_ith(struct llama_context * ctx, int32_t i);
|
||||
|
||||
//
|
||||
// Vocab
|
||||
//
|
||||
|
|
@ -1163,11 +1200,16 @@ extern "C" {
|
|||
//
|
||||
// llama_sampler_free(smpl);
|
||||
//
|
||||
// TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
|
||||
//
|
||||
|
||||
typedef void * llama_sampler_context_t;
|
||||
|
||||
struct llama_sampler_data {
|
||||
struct ggml_tensor * logits;
|
||||
struct ggml_tensor * probs;
|
||||
struct ggml_tensor * sampled;
|
||||
struct ggml_tensor * candidates;
|
||||
};
|
||||
|
||||
// user code can implement the interface below in order to create custom llama_sampler
|
||||
struct llama_sampler_i {
|
||||
const char * (*name) (const struct llama_sampler * smpl); // can be NULL
|
||||
|
|
@ -1177,17 +1219,45 @@ extern "C" {
|
|||
struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
|
||||
void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
|
||||
|
||||
// TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
|
||||
//void (*apply_ggml) (struct llama_sampler * smpl, ...);
|
||||
// [EXPERIMENTAL]
|
||||
// backend sampling interface:
|
||||
|
||||
// return true if the backend supports all ops needed by the sampler
|
||||
// note: call once per sampler
|
||||
bool (*backend_init)(struct llama_sampler * smpl, ggml_backend_buffer_type_t buft);
|
||||
|
||||
// call after .backend_apply()
|
||||
void (*backend_accept)(
|
||||
struct llama_sampler * smpl,
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * selected_token);
|
||||
|
||||
// call after .backend_init()
|
||||
void (*backend_apply)(
|
||||
struct llama_sampler * smpl,
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * gf,
|
||||
struct llama_sampler_data * data);
|
||||
|
||||
// called before graph execution to set inputs for the current ubatch
|
||||
void (*backend_set_input)(struct llama_sampler * smpl);
|
||||
};
|
||||
|
||||
struct llama_sampler {
|
||||
const struct llama_sampler_i * iface;
|
||||
llama_sampler_context_t ctx;
|
||||
struct llama_sampler_i * iface;
|
||||
|
||||
llama_sampler_context_t ctx;
|
||||
};
|
||||
|
||||
// [EXPERIMENTAL]
|
||||
// attach a sampler to the context
|
||||
// note: prefer initializing the context with llama_context_params.samplers when possible
|
||||
// note: changing the samplers of a context can cause graph reallocations and degraded performance
|
||||
LLAMA_API bool llama_set_sampler(struct llama_context * ctx, llama_seq_id seq_id, struct llama_sampler * smpl);
|
||||
|
||||
// mirror of llama_sampler_i:
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init (const struct llama_sampler_i * iface, llama_sampler_context_t ctx);
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init ( struct llama_sampler_i * iface, llama_sampler_context_t ctx);
|
||||
LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
|
||||
LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
|
||||
LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
|
||||
|
|
@ -1203,7 +1273,15 @@ extern "C" {
|
|||
|
||||
// important: takes ownership of the sampler object and will free it when llama_sampler_free is called
|
||||
LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
|
||||
LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
|
||||
|
||||
// return NULL if:
|
||||
// - the sampler is NULL
|
||||
// - the sampler is not a llama_sampler_chain
|
||||
// - the index is out of bounds, unless i == -1
|
||||
// - if i == -1, returns the chain itself (can be used to check if the sampler is a chain)
|
||||
LLAMA_API struct llama_sampler * llama_sampler_chain_get( struct llama_sampler * chain, int32_t i);
|
||||
|
||||
// the total number of samplers in the chain
|
||||
LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
|
||||
|
||||
// after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
130bc125a88bb57664b88932c48c38a1cb316fac
|
||||
ebc3a0f4a56be1c9424a89fbec09962ac34fde85
|
||||
|
|
|
|||
|
|
@ -87,6 +87,7 @@ add_library(llama
|
|||
models/llada.cpp
|
||||
models/llama-iswa.cpp
|
||||
models/llama.cpp
|
||||
models/maincoder.cpp
|
||||
models/mamba.cpp
|
||||
models/mimo2-iswa.cpp
|
||||
models/minicpm3.cpp
|
||||
|
|
|
|||
|
|
@ -118,6 +118,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_MISTRAL3, "mistral3" },
|
||||
{ LLM_ARCH_MIMO2, "mimo2" },
|
||||
{ LLM_ARCH_LLAMA_EMBED, "llama-embed" },
|
||||
{ LLM_ARCH_MAINCODER, "maincoder" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
|
|
@ -2234,6 +2235,23 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
|
|||
return {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
};
|
||||
case LLM_ARCH_MAINCODER:
|
||||
return {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
LLM_TENSOR_OUTPUT_NORM,
|
||||
LLM_TENSOR_OUTPUT,
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_Q,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_ATTN_V,
|
||||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
};
|
||||
default:
|
||||
GGML_ABORT("unknown architecture for tensor mapping");
|
||||
}
|
||||
|
|
|
|||
|
|
@ -122,6 +122,7 @@ enum llm_arch {
|
|||
LLM_ARCH_MISTRAL3,
|
||||
LLM_ARCH_MIMO2,
|
||||
LLM_ARCH_LLAMA_EMBED,
|
||||
LLM_ARCH_MAINCODER,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -74,6 +74,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
|||
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
|
||||
{ "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
|
||||
{ "pangu-embedded", LLM_CHAT_TEMPLATE_PANGU_EMBED },
|
||||
{ "solar-open", LLM_CHAT_TEMPLATE_SOLAR_OPEN },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
|
|
@ -216,6 +217,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
|||
return LLM_CHAT_TEMPLATE_GROK_2;
|
||||
} else if (tmpl_contains(LU8("[unused9]系统:[unused10]"))) {
|
||||
return LLM_CHAT_TEMPLATE_PANGU_EMBED;
|
||||
} else if (tmpl_contains("<|begin|>") && tmpl_contains("<|end|>") && tmpl_contains("<|content|>")) {
|
||||
return LLM_CHAT_TEMPLATE_SOLAR_OPEN;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
|
@ -845,6 +848,14 @@ int32_t llm_chat_apply_template(
|
|||
if (add_ass) {
|
||||
ss << "[unused9]助手:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_SOLAR_OPEN) {
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|begin|>" << role << "<|content|>" << message->content << "<|end|>";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|begin|>assistant";
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
|
|
|
|||
|
|
@ -54,6 +54,7 @@ enum llm_chat_template {
|
|||
LLM_CHAT_TEMPLATE_SEED_OSS,
|
||||
LLM_CHAT_TEMPLATE_GROK_2,
|
||||
LLM_CHAT_TEMPLATE_PANGU_EMBED,
|
||||
LLM_CHAT_TEMPLATE_SOLAR_OPEN,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -60,6 +60,25 @@ llama_context::llama_context(
|
|||
cparams.cb_eval = params.cb_eval;
|
||||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||
|
||||
// Initialize backend samplers here so they are part of the sampling graph
|
||||
// before the reserve passes run later in this function. This avoids a later
|
||||
// re-reserve when graph nodes change.
|
||||
if (params.samplers != nullptr && params.n_samplers > 0) {
|
||||
for (size_t i = 0; i < params.n_samplers; ++i) {
|
||||
const auto & config = params.samplers[i];
|
||||
|
||||
if (llama_sampler_chain_get(config.sampler, -1) == nullptr) {
|
||||
throw std::runtime_error("the backend samplers must be of type llama_sampler_chain");
|
||||
}
|
||||
|
||||
if (set_sampler(config.seq_id, config.sampler)) {
|
||||
const int n_samplers = llama_sampler_chain_n(config.sampler);
|
||||
|
||||
LLAMA_LOG_INFO("%s: setting backend sampler for seq_id %d (n = %d)\n", __func__, config.seq_id, n_samplers);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto rope_scaling_type = params.rope_scaling_type;
|
||||
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
|
||||
rope_scaling_type = hparams.rope_scaling_type_train;
|
||||
|
|
@ -231,7 +250,10 @@ llama_context::llama_context(
|
|||
// graph outputs buffer
|
||||
{
|
||||
// resized during inference when a batch uses more outputs
|
||||
if (output_reserve(params.n_seq_max) < params.n_seq_max) {
|
||||
// Create a dummy batch for initialization.
|
||||
llama_batch dummy_batch = {};
|
||||
dummy_batch.n_tokens = 0;
|
||||
if (output_reserve(params.n_seq_max, dummy_batch) < params.n_seq_max) {
|
||||
throw std::runtime_error("failed to reserve initial output buffer");
|
||||
}
|
||||
|
||||
|
|
@ -456,6 +478,16 @@ llama_context::llama_context(
|
|||
LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg);
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize the full vocabulary token ids for backend samplers.
|
||||
{
|
||||
const int n_vocab = model.vocab.n_tokens();
|
||||
|
||||
sampling.token_ids_full_vocab.resize(n_vocab);
|
||||
for (int i = 0; i < n_vocab; ++i) {
|
||||
sampling.token_ids_full_vocab[i] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_context::~llama_context() {
|
||||
|
|
@ -616,6 +648,35 @@ float * llama_context::get_logits() {
|
|||
return logits;
|
||||
}
|
||||
|
||||
int64_t llama_context::output_resolve_row(int32_t i) const {
|
||||
int64_t j = -1;
|
||||
|
||||
// support negative indices (last output row)
|
||||
if (i < 0) {
|
||||
j = n_outputs + i;
|
||||
if (j < 0) {
|
||||
throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs));
|
||||
}
|
||||
} else if ((size_t) i >= output_ids.size()) {
|
||||
throw std::runtime_error(format("out of range [0, %zu)", output_ids.size()));
|
||||
} else {
|
||||
// use output_ids to translate the batch token index into a row number
|
||||
// that holds this token's data.
|
||||
j = output_ids[i];
|
||||
}
|
||||
|
||||
if (j < 0) {
|
||||
// the batch token was not configured to output anything
|
||||
throw std::runtime_error(format("batch.logits[%d] != true", i));
|
||||
}
|
||||
|
||||
if (j >= n_outputs) {
|
||||
throw std::runtime_error(format("corrupt output buffer (j=%" PRId64 ", n_outputs=%d)", j, n_outputs));
|
||||
}
|
||||
|
||||
return j;
|
||||
}
|
||||
|
||||
float * llama_context::get_logits_ith(int32_t i) {
|
||||
int64_t j = -1;
|
||||
|
||||
|
|
@ -626,6 +687,7 @@ float * llama_context::get_logits_ith(int32_t i) {
|
|||
throw std::runtime_error("no logits");
|
||||
}
|
||||
|
||||
// TODO: use output_resolve_row()
|
||||
if (i < 0) {
|
||||
j = n_outputs + i;
|
||||
if (j < 0) {
|
||||
|
|
@ -662,6 +724,10 @@ float * llama_context::get_embeddings() {
|
|||
return embd;
|
||||
}
|
||||
|
||||
llama_token * llama_context::get_sampled_tokens() const{
|
||||
return sampling.sampled;
|
||||
}
|
||||
|
||||
float * llama_context::get_embeddings_ith(int32_t i) {
|
||||
int64_t j = -1;
|
||||
|
||||
|
|
@ -672,6 +738,7 @@ float * llama_context::get_embeddings_ith(int32_t i) {
|
|||
throw std::runtime_error("no embeddings");
|
||||
}
|
||||
|
||||
// TODO: use output_resolve_row()
|
||||
if (i < 0) {
|
||||
j = n_outputs + i;
|
||||
if (j < 0) {
|
||||
|
|
@ -711,6 +778,136 @@ float * llama_context::get_embeddings_seq(llama_seq_id seq_id) {
|
|||
return it->second.data();
|
||||
}
|
||||
|
||||
llama_token llama_context::get_sampled_token_ith(int32_t idx) {
|
||||
output_reorder();
|
||||
|
||||
if (sampling.sampled == nullptr) {
|
||||
return LLAMA_TOKEN_NULL;
|
||||
}
|
||||
|
||||
try {
|
||||
const int64_t row = output_resolve_row(idx);
|
||||
GGML_ASSERT(row < (int64_t) sampling.sampled_size);
|
||||
return sampling.sampled[row];
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid backend sampled token id %d, reason: %s\n", __func__, idx, err.what());
|
||||
return LLAMA_TOKEN_NULL;
|
||||
}
|
||||
}
|
||||
|
||||
float * llama_context::get_sampled_probs_ith(int32_t idx) {
|
||||
output_reorder();
|
||||
|
||||
if (sampling.probs == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
try {
|
||||
const int64_t row = output_resolve_row(idx);
|
||||
if ((size_t) row >= sampling.probs_count.size() || sampling.probs_count[row] == 0) {
|
||||
return nullptr;
|
||||
}
|
||||
return sampling.probs + row*model.vocab.n_tokens();
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid backend sampled probs id %d, reason: %s\n", __func__, idx, err.what());
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
float * llama_context::get_sampled_logits_ith(int32_t idx) {
|
||||
output_reorder();
|
||||
|
||||
if (sampling.logits == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
try {
|
||||
const int64_t row = output_resolve_row(idx);
|
||||
if ((size_t) row >= sampling.logits_count.size() || sampling.logits_count[row] == 0) {
|
||||
return nullptr;
|
||||
}
|
||||
return sampling.logits + row*model.vocab.n_tokens();
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid backend sampled logits id %d, reason: %s\n", __func__, idx, err.what());
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
const llama_token * llama_context::get_sampled_candidates_ith(int32_t idx) {
|
||||
output_reorder();
|
||||
|
||||
try {
|
||||
const int64_t row = output_resolve_row(idx);
|
||||
if (sampling.candidates != nullptr &&
|
||||
(size_t) row < sampling.candidates_count.size() &&
|
||||
sampling.candidates_count[row] > 0) {
|
||||
return sampling.candidates + row*model.vocab.n_tokens();
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
// fallback to full vocab list
|
||||
}
|
||||
|
||||
return sampling.token_ids_full_vocab.data();
|
||||
}
|
||||
|
||||
size_t llama_context::get_sampled_candidates_count(int32_t idx) {
|
||||
output_reorder();
|
||||
|
||||
if (sampling.candidates == nullptr) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
try {
|
||||
const int64_t row = output_resolve_row(idx);
|
||||
if ((size_t) row >= sampling.candidates_count.size()) {
|
||||
return 0;
|
||||
}
|
||||
return sampling.candidates_count[row];
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid backend sampled candidates count id %d, reason: %s\n", __func__, idx, err.what());
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
size_t llama_context::get_sampled_logits_count(int32_t idx) {
|
||||
output_reorder();
|
||||
|
||||
if (sampling.logits == nullptr) {
|
||||
return model.vocab.n_tokens();
|
||||
}
|
||||
|
||||
try {
|
||||
const int64_t row = output_resolve_row(idx);
|
||||
if ((size_t) row >= sampling.logits_count.size()) {
|
||||
return 0;
|
||||
}
|
||||
return sampling.logits_count[row];
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid backend sampled logits count id %d, reason: %s\n", __func__, idx, err.what());
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
size_t llama_context::get_sampled_probs_count(int32_t idx) {
|
||||
output_reorder();
|
||||
|
||||
if (sampling.probs == nullptr) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
try {
|
||||
const int64_t row = output_resolve_row(idx);
|
||||
if ((size_t) row >= sampling.probs_count.size()) {
|
||||
return 0;
|
||||
}
|
||||
return sampling.probs_count[row];
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: invalid backend sampled probs count id %d, reason: %s\n", __func__, idx, err.what());
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void llama_context::attach_threadpool(
|
||||
ggml_threadpool_t threadpool,
|
||||
ggml_threadpool_t threadpool_batch) {
|
||||
|
|
@ -767,6 +964,42 @@ void llama_context::set_warmup(bool value) {
|
|||
cparams.warmup = value;
|
||||
}
|
||||
|
||||
bool llama_context::set_sampler(llama_seq_id seq_id, llama_sampler * sampler) {
|
||||
LLAMA_LOG_DEBUG("%s: seq_id = %d, sampler = %p\n", __func__, (int) seq_id, (void *) sampler);
|
||||
|
||||
const bool can_offload =
|
||||
sampler &&
|
||||
sampler->iface->backend_init &&
|
||||
sampler->iface->backend_apply &&
|
||||
llama_sampler_chain_n(sampler) > 0;
|
||||
|
||||
if (sampler && can_offload) {
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_dev_buffer_type(model.dev_output());
|
||||
auto * host_buft = ggml_backend_dev_host_buffer_type(model.dev_output());
|
||||
if (host_buft) {
|
||||
buft = host_buft;
|
||||
}
|
||||
|
||||
sampler->iface->backend_init(sampler, buft);
|
||||
|
||||
sampling.samplers[seq_id] = sampler;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
if (sampler && !can_offload) {
|
||||
LLAMA_LOG_WARN("%s: sampler '%s' for seq_id = %d, cannot be offloaded to the backend\n", __func__, llama_sampler_name(sampler), seq_id);
|
||||
|
||||
sampling.samplers.erase(seq_id);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
sampling.samplers.erase(seq_id);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void llama_context::set_adapter_lora(
|
||||
llama_adapter_lora * adapter,
|
||||
float scale) {
|
||||
|
|
@ -907,7 +1140,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
|
|||
n_queued_tokens += n_tokens;
|
||||
|
||||
// reserve output buffer
|
||||
if (output_reserve(n_tokens) < n_tokens) {
|
||||
if (output_reserve(n_tokens, batch_inp) < n_tokens) {
|
||||
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
|
||||
return -2;
|
||||
};
|
||||
|
|
@ -1031,6 +1264,112 @@ int llama_context::encode(const llama_batch & batch_inp) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
static std::map<llama_seq_id, uint32_t> build_seq_to_output_row(const llama_ubatch & ubatch, uint32_t row_offset) {
|
||||
std::map<llama_seq_id, uint32_t> seq_to_row;
|
||||
// how many output tokens we have seen so far for this ubatch.
|
||||
uint32_t local = 0;
|
||||
for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
|
||||
// skip tokens that are not output.
|
||||
if (!ubatch.output[i]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const llama_seq_id seq_id = ubatch.seq_id[i][0];
|
||||
// row_offset is the number of output tokens before this ubatch.
|
||||
seq_to_row[seq_id] = row_offset + local;
|
||||
++local;
|
||||
}
|
||||
return seq_to_row;
|
||||
}
|
||||
|
||||
static void copy_tensor_async_ints(
|
||||
const std::map<llama_seq_id, ggml_tensor*> & tensor_map,
|
||||
llama_token * sampled,
|
||||
size_t sampled_size,
|
||||
const std::map<llama_seq_id, uint32_t> & seq_to_row,
|
||||
ggml_backend_sched_t sched) {
|
||||
if (sampled == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (const auto & [seq_id, tensor] : tensor_map) {
|
||||
auto it = seq_to_row.find(seq_id);
|
||||
if (it == seq_to_row.end()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const uint32_t row = it->second;
|
||||
GGML_ASSERT(row < sampled_size);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "sampled tokens tensor must be contiguous for async copy");
|
||||
|
||||
ggml_backend_t backend = ggml_backend_sched_get_tensor_backend(sched, tensor);
|
||||
ggml_backend_tensor_get_async(backend, tensor, sampled + row, 0, sizeof(sampled[row]));
|
||||
}
|
||||
}
|
||||
|
||||
static void copy_tensor_async_floats(
|
||||
const std::map<llama_seq_id, ggml_tensor*> & tensor_map,
|
||||
float * dst,
|
||||
size_t stride,
|
||||
std::vector<uint32_t> & counts,
|
||||
const std::map<llama_seq_id, uint32_t> & seq_to_row,
|
||||
ggml_backend_sched_t sched) {
|
||||
if (dst == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (const auto & [seq_id, tensor] : tensor_map) {
|
||||
auto it = seq_to_row.find(seq_id);
|
||||
if (it == seq_to_row.end()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const uint32_t row = it->second;
|
||||
GGML_ASSERT(row < counts.size());
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "logits/probs tensor must be contiguous for async copy");
|
||||
|
||||
ggml_backend_t backend = ggml_backend_sched_get_tensor_backend(sched, tensor);
|
||||
float * row_ptr = dst + (size_t) row * stride;
|
||||
ggml_backend_tensor_get_async(backend, tensor, row_ptr, 0, ggml_nbytes(tensor));
|
||||
|
||||
// Update the actual number of logits/probabilities that were written for this row.
|
||||
counts[row] = ggml_nelements(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
static void copy_tensor_async_candidates(
|
||||
const std::map<llama_seq_id, ggml_tensor*> & tensor_map,
|
||||
llama_token * dst,
|
||||
size_t stride,
|
||||
std::vector<uint32_t> & counts,
|
||||
const std::map<llama_seq_id, uint32_t> & seq_to_row,
|
||||
ggml_backend_sched_t sched) {
|
||||
if (dst == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (const auto & [seq_id, tensor] : tensor_map) {
|
||||
auto it = seq_to_row.find(seq_id);
|
||||
if (it == seq_to_row.end()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const uint32_t row = it->second;
|
||||
GGML_ASSERT(row < counts.size());
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor) && "candidates tensor must be contiguous for async copy");
|
||||
|
||||
ggml_backend_t backend = ggml_backend_sched_get_tensor_backend(sched, tensor);
|
||||
llama_token * row_ptr = dst + (size_t) row * stride;
|
||||
ggml_backend_tensor_get_async(backend, tensor, row_ptr, 0, ggml_nbytes(tensor));
|
||||
|
||||
// Update the actual number of candidates that were written.
|
||||
counts[row] = ggml_nelements(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
int llama_context::decode(const llama_batch & batch_inp) {
|
||||
GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)); // NOLINT
|
||||
|
||||
|
|
@ -1051,9 +1390,36 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|||
const int64_t n_embd = hparams.n_embd_inp();
|
||||
|
||||
// when computing embeddings, all tokens are output
|
||||
const bool output_all = cparams.embeddings;
|
||||
const bool output_all = cparams.embeddings;
|
||||
const bool has_samplers = !sampling.samplers.empty();
|
||||
|
||||
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, output_all)) {
|
||||
const uint32_t n_seq_max = cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max;
|
||||
|
||||
// TODO: avoid this workaround in the future
|
||||
if (has_samplers && batch_inp.logits) {
|
||||
std::vector<int32_t> seq_output_count(n_seq_max, 0);
|
||||
|
||||
for (int32_t i = 0; i < batch_inp.n_tokens; ++i) {
|
||||
if (batch_inp.logits[i] == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const int ns = batch_inp.n_seq_id ? batch_inp.n_seq_id[i] : 1;
|
||||
|
||||
for (int32_t s = 0; s < ns; ++s) {
|
||||
const llama_seq_id seq_id = batch_inp.seq_id ? batch_inp.seq_id[i][s] : 0;
|
||||
|
||||
seq_output_count[seq_id]++;
|
||||
if (seq_output_count[seq_id] > 1) {
|
||||
LLAMA_LOG_ERROR("%s: backend sampling requires at most one output token per sequence (seq_id %d had %d)\n",
|
||||
__func__, seq_id, seq_output_count[seq_id]);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, n_seq_max, output_all)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
|
|
@ -1134,7 +1500,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|||
}
|
||||
|
||||
// reserve output buffer
|
||||
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
||||
if (output_reserve(n_outputs_all, balloc->get_batch()) < n_outputs_all) {
|
||||
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %d outputs\n", __func__, n_outputs_all);
|
||||
return -2;
|
||||
};
|
||||
|
|
@ -1207,7 +1573,10 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|||
}
|
||||
|
||||
// extract logits
|
||||
if (t_logits && n_outputs > 0) {
|
||||
// For multi-sequence batches that mix backend samplers and CPU sampler
|
||||
// this is currently inefficient as we copy all logits even for the
|
||||
// backend sampled tokens.
|
||||
if (logits && t_logits && n_outputs > 0) {
|
||||
ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits);
|
||||
GGML_ASSERT(backend_res != nullptr);
|
||||
GGML_ASSERT(logits != nullptr);
|
||||
|
|
@ -1222,7 +1591,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|||
}
|
||||
|
||||
// extract embeddings
|
||||
if (t_embd && n_outputs > 0) {
|
||||
if (embd && t_embd && n_outputs > 0) {
|
||||
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
|
||||
GGML_ASSERT(backend_embd != nullptr);
|
||||
|
||||
|
|
@ -1276,6 +1645,22 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|||
}
|
||||
}
|
||||
|
||||
// This flag indicates whether a backend sampler has actually sampled a specific
|
||||
// token, or if it has produced probabilites. If true, we can skip the normal copying of logits and embeddings.
|
||||
const bool has_sampled = !res->t_sampled.empty() || !res->t_sampled_probs.empty() || !res->t_sampled_logits.empty();
|
||||
|
||||
if (has_samplers && has_sampled) {
|
||||
const auto seq_to_output_row = build_seq_to_output_row(ubatch, n_outputs_prev);
|
||||
const auto stride = n_vocab;
|
||||
|
||||
// async copy the sampling data from the backend to the host
|
||||
copy_tensor_async_ints(res->t_sampled, sampling.sampled, sampling.sampled_size, seq_to_output_row, sched.get());
|
||||
|
||||
copy_tensor_async_floats (res->t_sampled_logits, sampling.logits, stride, sampling.logits_count, seq_to_output_row, sched.get());
|
||||
copy_tensor_async_floats (res->t_sampled_probs, sampling.probs, stride, sampling.probs_count, seq_to_output_row, sched.get());
|
||||
copy_tensor_async_candidates(res->t_candidates, sampling.candidates, stride, sampling.candidates_count, seq_to_output_row, sched.get());
|
||||
}
|
||||
|
||||
n_outputs_prev += n_outputs;
|
||||
} while (mctx->next());
|
||||
|
||||
|
|
@ -1339,7 +1724,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|||
// output
|
||||
//
|
||||
|
||||
uint32_t llama_context::output_reserve(int32_t n_outputs) {
|
||||
uint32_t llama_context::output_reserve(int32_t n_outputs, const llama_batch & batch) {
|
||||
const auto & hparams = model.hparams;
|
||||
const auto & vocab = model.vocab;
|
||||
|
||||
|
|
@ -1358,8 +1743,53 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
|
|||
has_embd = true;
|
||||
}
|
||||
|
||||
logits_size = has_logits ? n_vocab*n_outputs_max : 0;
|
||||
embd_size = has_embd ? n_embd*n_outputs_max : 0;
|
||||
// Check which sampling modes are needed for the current batch.
|
||||
// TODO: avoid this branching by working with the worst-case
|
||||
bool has_sampling = false;
|
||||
bool cpu_logits = false;
|
||||
|
||||
if (batch.logits) {
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
if (!batch.logits[i]) {
|
||||
continue;
|
||||
}
|
||||
for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
|
||||
llama_seq_id seq_id = batch.seq_id[i][j];
|
||||
if (sampling.samplers.find(seq_id) != sampling.samplers.end()) {
|
||||
has_sampling = true;
|
||||
} else {
|
||||
cpu_logits = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// When batch.logits is nullptr (when loading state with a dummy batch),
|
||||
// allocate CPU logits.
|
||||
cpu_logits = true;
|
||||
}
|
||||
|
||||
size_t backend_float_count = 0;
|
||||
size_t backend_token_count = 0;
|
||||
|
||||
// Allocate CPU logits buffer only if needed by sequences in this batch
|
||||
logits_size = (has_logits && cpu_logits) ? n_vocab*n_outputs_max : 0;
|
||||
embd_size = has_embd ? n_embd*n_outputs_max : 0;
|
||||
|
||||
// TODO: avoid this branching by working with the worst-case
|
||||
if (!has_sampling) {
|
||||
sampling.logits_size = 0;
|
||||
sampling.probs_size = 0;
|
||||
sampling.sampled_size = 0;
|
||||
sampling.candidates_size = 0;
|
||||
} else {
|
||||
sampling.logits_size = n_vocab*n_outputs_max;
|
||||
sampling.probs_size = n_vocab*n_outputs_max;
|
||||
sampling.sampled_size = n_outputs_max;
|
||||
sampling.candidates_size = n_vocab*n_outputs_max;
|
||||
|
||||
backend_float_count = sampling.logits_size + sampling.probs_size;
|
||||
backend_token_count = sampling.sampled_size + sampling.candidates_size;
|
||||
}
|
||||
|
||||
if (output_ids.empty()) {
|
||||
// init, never resized afterwards
|
||||
|
|
@ -1367,7 +1797,9 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
|
|||
}
|
||||
|
||||
const size_t prev_size = buf_output ? ggml_backend_buffer_get_size(buf_output.get()) : 0;
|
||||
const size_t new_size = (logits_size + embd_size) * sizeof(float);
|
||||
const size_t new_size =
|
||||
(logits_size + embd_size + backend_float_count) * sizeof(float) +
|
||||
( backend_token_count) * sizeof(llama_token);
|
||||
|
||||
// alloc only when more than the current capacity is required
|
||||
// TODO: also consider shrinking the buffer
|
||||
|
|
@ -1375,9 +1807,11 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
|
|||
if (buf_output) {
|
||||
#ifndef NDEBUG
|
||||
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
|
||||
LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_DEBUG("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
#endif
|
||||
synchronize();
|
||||
|
||||
// TODO: not needed?
|
||||
buf_output = nullptr;
|
||||
logits = nullptr;
|
||||
embd = nullptr;
|
||||
|
|
@ -1399,8 +1833,49 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
|
|||
|
||||
float * output_base = (float *) ggml_backend_buffer_get_base(buf_output.get());
|
||||
|
||||
logits = has_logits ? output_base : nullptr;
|
||||
embd = has_embd ? output_base + logits_size : nullptr;
|
||||
logits = nullptr;
|
||||
embd = nullptr;
|
||||
|
||||
size_t offset = 0;
|
||||
uint8_t * base = (uint8_t *) output_base;
|
||||
|
||||
logits = (has_logits && cpu_logits) ? output_base : nullptr;
|
||||
offset += logits_size * sizeof(float);
|
||||
|
||||
embd = has_embd ? (float *) (base + offset) : nullptr;
|
||||
offset += embd_size * sizeof(float);
|
||||
|
||||
sampling.logits = nullptr;
|
||||
sampling.probs = nullptr;
|
||||
sampling.sampled = nullptr;
|
||||
sampling.candidates = nullptr;
|
||||
|
||||
if (has_sampling) {
|
||||
sampling.logits = (float *) (base + offset);
|
||||
offset += sampling.logits_size * sizeof(float);
|
||||
|
||||
sampling.probs = (float *) (base + offset);
|
||||
offset += sampling.probs_size * sizeof(float);
|
||||
|
||||
sampling.sampled = (llama_token *) (base + offset);
|
||||
offset += sampling.sampled_size * sizeof(llama_token);
|
||||
|
||||
sampling.candidates = (llama_token *) (base + offset);
|
||||
offset += sampling.candidates_size * sizeof(llama_token);
|
||||
|
||||
// The count vectors keep track of the actual number of logits/probs/candidates
|
||||
// copied from the backend for each output row.
|
||||
|
||||
sampling.logits_count.resize(n_outputs_max);
|
||||
sampling.probs_count.resize(n_outputs_max);
|
||||
sampling.candidates_count.resize(n_outputs_max);
|
||||
|
||||
std::fill(sampling.logits_count.begin(), sampling.logits_count.end(), 0);
|
||||
std::fill(sampling.probs_count.begin(), sampling.probs_count.end(), 0);
|
||||
std::fill(sampling.candidates_count.begin(), sampling.candidates_count.end(), 0);
|
||||
|
||||
std::fill_n(sampling.sampled, sampling.sampled_size, LLAMA_TOKEN_NULL);
|
||||
}
|
||||
|
||||
// set all ids as invalid (negative)
|
||||
std::fill(output_ids.begin(), output_ids.end(), -1);
|
||||
|
|
@ -1429,6 +1904,40 @@ void llama_context::output_reorder() {
|
|||
std::swap(embd[i0*n_embd + k], embd[i1*n_embd + k]);
|
||||
}
|
||||
}
|
||||
|
||||
if (sampling.logits && sampling.logits_size > 0) {
|
||||
for (uint64_t k = 0; k < n_vocab; ++k) {
|
||||
std::swap(sampling.logits[i0*n_vocab + k], sampling.logits[i1*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
|
||||
if (sampling.probs && sampling.probs_size > 0) {
|
||||
for (uint64_t k = 0; k < n_vocab; ++k) {
|
||||
std::swap(sampling.probs[i0*n_vocab + k], sampling.probs[i1*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
|
||||
if (sampling.candidates && sampling.candidates_size > 0) {
|
||||
for (uint64_t k = 0; k < n_vocab; ++k) {
|
||||
std::swap(sampling.candidates[i0*n_vocab + k], sampling.candidates[i1*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
|
||||
if (sampling.sampled && sampling.sampled_size > 0) {
|
||||
std::swap(sampling.sampled[i0], sampling.sampled[i1]);
|
||||
}
|
||||
|
||||
if (!sampling.logits_count.empty()) {
|
||||
std::swap(sampling.logits_count[i0], sampling.logits_count[i1]);
|
||||
}
|
||||
|
||||
if (!sampling.probs_count.empty()) {
|
||||
std::swap(sampling.probs_count[i0], sampling.probs_count[i1]);
|
||||
}
|
||||
|
||||
if (!sampling.candidates_count.empty()) {
|
||||
std::swap(sampling.candidates_count[i0], sampling.candidates_count[i1]);
|
||||
}
|
||||
}
|
||||
|
||||
output_swaps.clear();
|
||||
|
|
@ -1458,7 +1967,7 @@ ggml_cgraph * llama_context::graph_reserve(
|
|||
|
||||
if (n_tokens % n_seqs != 0) {
|
||||
n_tokens = ((n_tokens + (n_seqs - 1)) / n_seqs) * n_seqs; // round to next multiple of n_seqs
|
||||
n_outputs = std::min(n_outputs, n_tokens);
|
||||
n_outputs = std::max(n_outputs, n_tokens);
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: making n_tokens a multiple of n_seqs - n_tokens = %u, n_seqs = %u, n_outputs = %u\n", __func__, n_tokens, n_seqs, n_outputs);
|
||||
}
|
||||
|
|
@ -1477,6 +1986,15 @@ ggml_cgraph * llama_context::graph_reserve(
|
|||
llama_batch_allocr balloc(model.hparams.n_pos_per_embd());
|
||||
llama_ubatch ubatch = balloc.ubatch_reserve(n_tokens/n_seqs, n_seqs);
|
||||
|
||||
// set one output token per sequence in order to activate all backend samplers
|
||||
std::vector<llama_seq_id> seq_ids(n_seqs);
|
||||
for (uint32_t i = 0; i < n_seqs; ++i) {
|
||||
seq_ids[i] = i;
|
||||
ubatch.n_seq_id[i] = 1;
|
||||
ubatch.seq_id[i] = &seq_ids[i];
|
||||
ubatch.output[i] = true;
|
||||
}
|
||||
|
||||
auto * res = gf_res_reserve.get();
|
||||
|
||||
const auto gparams = graph_params(res, ubatch, mctx, LLM_GRAPH_TYPE_DEFAULT);
|
||||
|
|
@ -1507,7 +2025,7 @@ llm_graph_params llama_context::graph_params(
|
|||
llm_graph_result * res,
|
||||
const llama_ubatch & ubatch,
|
||||
const llama_memory_context_i * mctx,
|
||||
llm_graph_type gtype) const {
|
||||
llm_graph_type gtype) const {
|
||||
return {
|
||||
/*.arch =*/ model.arch,
|
||||
/*.hparams =*/ model.hparams,
|
||||
|
|
@ -1520,6 +2038,7 @@ llm_graph_params llama_context::graph_params(
|
|||
/*.loras =*/ &loras,
|
||||
/*.mctx =*/ mctx,
|
||||
/*.cross =*/ &cross,
|
||||
/*.samplers =*/ sampling.samplers,
|
||||
/*.n_outputs =*/ n_outputs,
|
||||
/*.cb =*/ graph_get_cb(),
|
||||
/*.res =*/ res,
|
||||
|
|
@ -1975,6 +2494,9 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
|||
}
|
||||
}
|
||||
|
||||
// TODO: handle sampling buffers and samplers state ?
|
||||
// https://github.com/ggml-org/llama.cpp/pull/17004
|
||||
|
||||
if (memory != nullptr) {
|
||||
LLAMA_LOG_DEBUG("%s: - writing memory module\n", __func__);
|
||||
memory->state_write(io);
|
||||
|
|
@ -2007,7 +2529,10 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
|
|||
auto n_outputs = this->n_outputs;
|
||||
io.read_to(&n_outputs, sizeof(n_outputs));
|
||||
|
||||
if (n_outputs > output_reserve(n_outputs)) {
|
||||
// Create a dummy batch for state loading.
|
||||
llama_batch dummy_batch = {};
|
||||
dummy_batch.n_tokens = 0;
|
||||
if (n_outputs > output_reserve(n_outputs, dummy_batch)) {
|
||||
throw std::runtime_error("could not reserve outputs");
|
||||
}
|
||||
|
||||
|
|
@ -2061,6 +2586,9 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
|
|||
}
|
||||
}
|
||||
|
||||
// TODO: handle sampling buffers and samplers state ?
|
||||
// https://github.com/ggml-org/llama.cpp/pull/17004
|
||||
|
||||
if (memory) {
|
||||
LLAMA_LOG_DEBUG("%s: - reading memory module\n", __func__);
|
||||
|
||||
|
|
@ -2249,7 +2777,7 @@ void llama_context::opt_epoch_iter(
|
|||
}
|
||||
|
||||
// reserve output buffer
|
||||
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
||||
if (output_reserve(n_outputs_all, balloc->get_batch()) < n_outputs_all) {
|
||||
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %d outputs\n", __func__, n_outputs_all);
|
||||
GGML_ABORT("TODO: handle this error");
|
||||
};
|
||||
|
|
@ -2394,6 +2922,8 @@ llama_context_params llama_context_default_params() {
|
|||
/*.op_offload =*/ true,
|
||||
/*.swa_full =*/ true,
|
||||
/*.kv_unified =*/ false,
|
||||
/*.sampler =*/ nullptr,
|
||||
/*.n_sampler =*/ 0,
|
||||
};
|
||||
|
||||
return result;
|
||||
|
|
@ -2553,7 +3083,15 @@ float * llama_get_logits(llama_context * ctx) {
|
|||
float * llama_get_logits_ith(llama_context * ctx, int32_t i) {
|
||||
ctx->synchronize();
|
||||
|
||||
return ctx->get_logits_ith(i);
|
||||
float * res = nullptr;
|
||||
|
||||
res = ctx->get_sampled_logits_ith(i);
|
||||
|
||||
if (!res) {
|
||||
res = ctx->get_logits_ith(i);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
float * llama_get_embeddings(llama_context * ctx) {
|
||||
|
|
@ -2574,6 +3112,52 @@ float * llama_get_embeddings_seq(llama_context * ctx, llama_seq_id seq_id) {
|
|||
return ctx->get_embeddings_seq(seq_id);
|
||||
}
|
||||
|
||||
bool llama_set_sampler(llama_context * ctx, llama_seq_id seq_id, llama_sampler * smpl) {
|
||||
return ctx->set_sampler(seq_id, smpl);
|
||||
}
|
||||
|
||||
llama_token llama_get_sampled_token_ith(llama_context * ctx, int32_t i) {
|
||||
ctx->synchronize();
|
||||
|
||||
return ctx->get_sampled_token_ith(i);
|
||||
}
|
||||
|
||||
float * llama_get_sampled_probs_ith(llama_context * ctx, int32_t i) {
|
||||
ctx->synchronize();
|
||||
|
||||
return ctx->get_sampled_probs_ith(i);
|
||||
}
|
||||
|
||||
float * llama_get_sampled_logits_ith(llama_context * ctx, int32_t i) {
|
||||
ctx->synchronize();
|
||||
|
||||
return ctx->get_sampled_logits_ith(i);
|
||||
}
|
||||
|
||||
llama_token * llama_get_sampled_candidates_ith(llama_context * ctx, int32_t i) {
|
||||
ctx->synchronize();
|
||||
|
||||
return const_cast<llama_token *>(ctx->get_sampled_candidates_ith(i));
|
||||
}
|
||||
|
||||
uint32_t llama_get_sampled_candidates_count_ith(llama_context * ctx, int32_t i) {
|
||||
ctx->synchronize();
|
||||
|
||||
return static_cast<uint32_t>(ctx->get_sampled_candidates_count(i));
|
||||
}
|
||||
|
||||
uint32_t llama_get_sampled_logits_count_ith(llama_context * ctx, int32_t i) {
|
||||
ctx->synchronize();
|
||||
|
||||
return static_cast<uint32_t>(ctx->get_sampled_logits_count(i));
|
||||
}
|
||||
|
||||
uint32_t llama_get_sampled_probs_count_ith(llama_context * ctx, int32_t i) {
|
||||
ctx->synchronize();
|
||||
|
||||
return static_cast<uint32_t>(ctx->get_sampled_probs_count(i));
|
||||
}
|
||||
|
||||
// llama adapter API
|
||||
|
||||
int32_t llama_set_adapter_lora(
|
||||
|
|
|
|||
|
|
@ -70,6 +70,18 @@ struct llama_context {
|
|||
float * get_embeddings_ith(int32_t i);
|
||||
float * get_embeddings_seq(llama_seq_id seq_id);
|
||||
|
||||
llama_token * get_sampled_tokens() const;
|
||||
llama_token get_sampled_token_ith(int32_t idx);
|
||||
|
||||
float * get_sampled_logits_ith(int32_t idx);
|
||||
size_t get_sampled_logits_count(int32_t idx);
|
||||
|
||||
float * get_sampled_probs_ith(int32_t idx);
|
||||
size_t get_sampled_probs_count(int32_t idx);
|
||||
|
||||
const llama_token * get_sampled_candidates_ith(int32_t idx);
|
||||
size_t get_sampled_candidates_count(int32_t idx);
|
||||
|
||||
void attach_threadpool(
|
||||
ggml_threadpool_t threadpool,
|
||||
ggml_threadpool_t threadpool_batch);
|
||||
|
|
@ -192,10 +204,13 @@ private:
|
|||
|
||||
// Make sure enough space is available for outputs.
|
||||
// Returns max number of outputs for which space was reserved.
|
||||
uint32_t output_reserve(int32_t n_outputs);
|
||||
uint32_t output_reserve(int32_t n_outputs, const llama_batch & batch);
|
||||
|
||||
void output_reorder();
|
||||
|
||||
// map the output row index `i` to batch index
|
||||
int64_t output_resolve_row(int32_t i) const;
|
||||
|
||||
//
|
||||
// graph
|
||||
//
|
||||
|
|
@ -213,6 +228,8 @@ public:
|
|||
ggml_cgraph * graph_reserve(
|
||||
uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only = false, size_t * sizes = nullptr);
|
||||
|
||||
bool set_sampler(llama_seq_id seq_id, llama_sampler * sampler);
|
||||
|
||||
private:
|
||||
llm_graph_params graph_params(
|
||||
llm_graph_result * res,
|
||||
|
|
@ -252,6 +269,31 @@ private:
|
|||
size_t embd_size = 0; // capacity (of floats) for embeddings
|
||||
float * embd = nullptr;
|
||||
|
||||
// TODO: simplify
|
||||
struct sampling_info {
|
||||
std::map<llama_seq_id, llama_sampler *> samplers;
|
||||
|
||||
float * logits = nullptr;
|
||||
size_t logits_size = 0;
|
||||
|
||||
llama_token * sampled = nullptr;
|
||||
size_t sampled_size = 0;
|
||||
|
||||
float * probs = nullptr;
|
||||
size_t probs_size = 0;
|
||||
|
||||
llama_token * candidates = nullptr;
|
||||
size_t candidates_size = 0;
|
||||
|
||||
std::vector<uint32_t> logits_count;
|
||||
std::vector<uint32_t> probs_count;
|
||||
std::vector<uint32_t> candidates_count;
|
||||
|
||||
std::vector<llama_token> token_ids_full_vocab;
|
||||
};
|
||||
|
||||
sampling_info sampling;
|
||||
|
||||
// sequence embeddings output (map of [n_embd] vectors)
|
||||
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
|
||||
std::map<llama_seq_id, std::vector<float>> embd_seq;
|
||||
|
|
|
|||
|
|
@ -369,6 +369,44 @@ static void print_rule(
|
|||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
//
|
||||
// Regex utilities
|
||||
//
|
||||
|
||||
size_t llama_grammar_trigger_pattern::find(const std::string & input) const {
|
||||
auto find_start_pos = [](const std::smatch & match) {
|
||||
// get from the first matched capturing group to the end of the string
|
||||
size_t start = std::string::npos;
|
||||
for (auto i = 1u; i < match.size(); i++) {
|
||||
if (match.length(i) > 0) {
|
||||
start = match.position(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (start == std::string::npos) {
|
||||
start = match.position(0);
|
||||
}
|
||||
return start;
|
||||
};
|
||||
|
||||
if (!pattern.empty() && pattern.front() == '^' && pattern.back() == '$') {
|
||||
// match against the entire input
|
||||
std::smatch match;
|
||||
if (std::regex_match(input, match, regex)) {
|
||||
return find_start_pos(match);
|
||||
}
|
||||
}
|
||||
|
||||
// search anywhere
|
||||
std::smatch match;
|
||||
if (std::regex_search(input, match, regex)) {
|
||||
return find_start_pos(match);
|
||||
}
|
||||
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// implementation
|
||||
//
|
||||
|
|
@ -1312,21 +1350,10 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
|||
grammar.trigger_buffer_positions.push_back(std::make_pair(token, position));
|
||||
grammar.trigger_buffer += piece;
|
||||
|
||||
std::smatch match;
|
||||
for (const auto & trigger_pattern : grammar.trigger_patterns) {
|
||||
if (std::regex_match(grammar.trigger_buffer, match, trigger_pattern.regex)) {
|
||||
auto start = trigger_pattern.find(grammar.trigger_buffer);
|
||||
if (start != std::string::npos) {
|
||||
grammar.awaiting_trigger = false;
|
||||
// get from the first matched capturing group to the end of the string
|
||||
size_t start = std::string::npos;
|
||||
for (auto i = 1u; i < match.size(); i++) {
|
||||
if (match.length(i) > 0) {
|
||||
start = match.position(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (start == std::string::npos) {
|
||||
start = match.position(0);
|
||||
}
|
||||
|
||||
// replay tokens that overlap with [start, end)
|
||||
for (const auto & [tok, tok_pos] : grammar.trigger_buffer_positions) {
|
||||
|
|
|
|||
|
|
@ -119,6 +119,8 @@ struct llama_grammar_parser {
|
|||
struct llama_grammar_trigger_pattern {
|
||||
std::string pattern;
|
||||
std::regex regex;
|
||||
|
||||
size_t find(const std::string & input) const;
|
||||
};
|
||||
|
||||
struct llama_grammar {
|
||||
|
|
|
|||
|
|
@ -12,6 +12,7 @@
|
|||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <unordered_set>
|
||||
|
||||
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
|
||||
if (ubatch->token) {
|
||||
|
|
@ -32,7 +33,7 @@ bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
|
|||
bool res = true;
|
||||
|
||||
res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
|
||||
res &= (!embd && !params.ubatch.embd) || (embd && embd->ne[0] == params.ubatch.n_tokens);
|
||||
res &= (!embd && !params.ubatch.embd) || (embd && embd->ne[1] == params.ubatch.n_tokens);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
|
@ -62,7 +63,7 @@ void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
|
|||
bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
|
||||
bool res = true;
|
||||
|
||||
res &= pos->ne[0] == params.ubatch.n_tokens;
|
||||
res &= pos->ne[0] == params.ubatch.n_tokens*n_pos_per_embd;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
|
@ -521,6 +522,43 @@ bool llm_graph_input_mem_hybrid::can_reuse(const llm_graph_params & params) {
|
|||
return res;
|
||||
}
|
||||
|
||||
void llm_graph_input_sampling::set_input(const llama_ubatch * ubatch) {
|
||||
// set the inputs only for the active samplers in the current ubatch
|
||||
std::unordered_set<llama_seq_id> active_samplers;
|
||||
for (uint32_t i = 0; i < ubatch->n_tokens; i++) {
|
||||
if (ubatch->output[i]) {
|
||||
llama_seq_id seq_id = ubatch->seq_id[i][0];
|
||||
active_samplers.insert(seq_id);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto seq_id : active_samplers) {
|
||||
if (samplers.find(seq_id) == samplers.end()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto & sampler = samplers[seq_id];
|
||||
|
||||
if (sampler->iface->backend_set_input) {
|
||||
sampler->iface->backend_set_input(sampler);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool llm_graph_input_sampling::can_reuse(const llm_graph_params & params) {
|
||||
if (samplers.size() != params.samplers.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (const auto & [seq_id, sampler] : params.samplers) {
|
||||
if (samplers[seq_id] != sampler) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// llm_graph_result
|
||||
//
|
||||
|
|
@ -541,6 +579,10 @@ void llm_graph_result::reset() {
|
|||
t_logits = nullptr;
|
||||
t_embd = nullptr;
|
||||
t_embd_pooled = nullptr;
|
||||
t_sampled.clear();
|
||||
t_sampled_probs.clear();
|
||||
t_sampled_logits.clear();
|
||||
t_candidates.clear();
|
||||
|
||||
params = {};
|
||||
|
||||
|
|
@ -565,6 +607,38 @@ void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
|
|||
}
|
||||
}
|
||||
|
||||
void llm_graph_result::set_outputs() {
|
||||
if (t_logits != nullptr) {
|
||||
ggml_set_output(t_logits);
|
||||
}
|
||||
if (t_embd != nullptr) {
|
||||
ggml_set_output(t_embd);
|
||||
}
|
||||
if (t_embd_pooled != nullptr) {
|
||||
ggml_set_output(t_embd_pooled);
|
||||
}
|
||||
for (auto & [seq_id, t] : t_sampled) {
|
||||
if (t != nullptr) {
|
||||
ggml_set_output(t);
|
||||
}
|
||||
}
|
||||
for (auto & [seq_id, t] : t_sampled_probs) {
|
||||
if (t != nullptr) {
|
||||
ggml_set_output(t);
|
||||
}
|
||||
}
|
||||
for (auto & [seq_id, t] : t_sampled_logits) {
|
||||
if (t != nullptr) {
|
||||
ggml_set_output(t);
|
||||
}
|
||||
}
|
||||
for (auto & [seq_id, t] : t_candidates) {
|
||||
if (t != nullptr) {
|
||||
ggml_set_output(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool llm_graph_result::can_reuse(const llm_graph_params & params) {
|
||||
if (!this->params.allow_reuse(params)) {
|
||||
if (debug > 1) {
|
||||
|
|
@ -646,6 +720,7 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
|
|||
loras (params.loras),
|
||||
mctx (params.mctx),
|
||||
cross (params.cross),
|
||||
samplers (params.samplers),
|
||||
cb_func (params.cb),
|
||||
res (params.res),
|
||||
ctx0 (res->get_ctx()),
|
||||
|
|
@ -1251,6 +1326,10 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
|||
|
||||
res->add_input(std::move(inp));
|
||||
|
||||
// make sure the produced embeddings are immediately materialized in the ggml graph
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/18599
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
|
|
@ -1834,8 +1913,10 @@ llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const
|
|||
|
||||
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
|
||||
ggml_set_input(inp->self_kq_mask);
|
||||
ggml_set_name(inp->self_kq_mask, "self_kq_mask");
|
||||
|
||||
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
|
||||
ggml_set_name(inp->self_kq_mask_cnv, "self_kq_mask_cnv");
|
||||
}
|
||||
|
||||
{
|
||||
|
|
@ -1848,8 +1929,10 @@ llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const
|
|||
|
||||
inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
|
||||
ggml_set_input(inp->self_kq_mask_swa);
|
||||
ggml_set_name(inp->self_kq_mask_swa, "self_kq_mask_swa");
|
||||
|
||||
inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
|
||||
ggml_set_name(inp->self_kq_mask_swa_cnv, "self_kq_mask_swa_cnv");
|
||||
}
|
||||
|
||||
return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
|
||||
|
|
@ -2086,6 +2169,87 @@ void llm_graph_context::build_pooling(
|
|||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
void llm_graph_context::build_sampling() const {
|
||||
if (samplers.empty() || !res->t_logits) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto inp_sampling = std::make_unique<llm_graph_input_sampling>(samplers);
|
||||
res->add_input(std::move(inp_sampling));
|
||||
|
||||
std::map<llama_seq_id, int32_t> seq_to_logit_row;
|
||||
int32_t logit_row_idx = 0;
|
||||
|
||||
for (uint32_t i = 0; i < ubatch.n_tokens; i++) {
|
||||
if (ubatch.output[i]) {
|
||||
llama_seq_id seq_id = ubatch.seq_id[i][0];
|
||||
seq_to_logit_row[seq_id] = logit_row_idx;
|
||||
logit_row_idx++;
|
||||
}
|
||||
}
|
||||
|
||||
// res->t_logits will contain logits for all tokens that want the logits calculated (logits=1 or output=1)
|
||||
GGML_ASSERT(res->t_logits != nullptr && "missing t_logits tensor");
|
||||
|
||||
// add a dummy row of logits
|
||||
// this trick makes the graph static, regardless of which samplers are activated
|
||||
// this is important in order to minimize graph reallocations
|
||||
// TODO: use `ggml_build_forward_select()` when available (https://github.com/ggml-org/llama.cpp/pull/18550)
|
||||
ggml_tensor * logits_t = ggml_pad(ctx0, res->t_logits, 0, 1, 0, 0);
|
||||
|
||||
for (const auto & [seq_id, sampler] : samplers) {
|
||||
const auto it = seq_to_logit_row.find(seq_id);
|
||||
|
||||
// inactive samplers always work on the first row
|
||||
const auto row_idx = seq_to_logit_row.find(seq_id) != seq_to_logit_row.end() ? it->second : 0;
|
||||
|
||||
ggml_tensor * logits_seq = ggml_view_1d(ctx0, logits_t, logits_t->ne[0], row_idx * logits_t->nb[1]);
|
||||
ggml_format_name(logits_seq, "logits_seq_%d", seq_id);
|
||||
|
||||
struct llama_sampler_data data = {
|
||||
/*.logits =*/ logits_seq,
|
||||
/*.probs =*/ nullptr,
|
||||
/*.sampled =*/ nullptr,
|
||||
/*.candidates =*/ nullptr,
|
||||
};
|
||||
|
||||
assert(sampler->iface->backend_apply);
|
||||
sampler->iface->backend_apply(sampler, ctx0, gf, &data);
|
||||
|
||||
if (data.sampled != nullptr) {
|
||||
res->t_sampled[seq_id] = data.sampled;
|
||||
ggml_build_forward_expand(gf, data.sampled);
|
||||
}
|
||||
|
||||
if (data.probs != nullptr) {
|
||||
res->t_sampled_probs[seq_id] = data.probs;
|
||||
ggml_build_forward_expand(gf, data.probs);
|
||||
}
|
||||
|
||||
if (data.logits != nullptr) {
|
||||
res->t_sampled_logits[seq_id] = data.logits;
|
||||
ggml_build_forward_expand(gf, data.logits);
|
||||
}
|
||||
|
||||
if (data.candidates != nullptr) {
|
||||
res->t_candidates[seq_id] = data.candidates;
|
||||
ggml_build_forward_expand(gf, data.candidates);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Call llama_sampler_accept_ggml after all samplers have been applied.
|
||||
/*
|
||||
for (const auto & [seq_id, sampler] : samplers) {
|
||||
if (auto it = res->t_sampled.find(seq_id); it != res->t_sampled.end()) {
|
||||
ggml_tensor * selected_token = it->second;
|
||||
if (selected_token != nullptr) {
|
||||
llama_sampler_accept_ggml(sampler, ctx0, gf, selected_token);
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
|
||||
// TODO move to hparams if a T5 variant appears that uses a different value
|
||||
const int64_t max_distance = 128;
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@
|
|||
#include <memory>
|
||||
#include <set>
|
||||
#include <functional>
|
||||
#include <map>
|
||||
|
||||
struct ggml_cgraph;
|
||||
struct ggml_context;
|
||||
|
|
@ -396,6 +397,18 @@ public:
|
|||
const llama_memory_hybrid_context * mctx;
|
||||
};
|
||||
|
||||
class llm_graph_input_sampling : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_sampling(std::map<llama_seq_id, llama_sampler *> samplers) :
|
||||
samplers(std::move(samplers)) { }
|
||||
virtual ~llm_graph_input_sampling() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
bool can_reuse(const llm_graph_params & params) override;
|
||||
|
||||
std::map<llama_seq_id, llama_sampler *> samplers;
|
||||
};
|
||||
|
||||
//
|
||||
// llm_graph_result
|
||||
//
|
||||
|
|
@ -429,6 +442,23 @@ struct llm_graph_params {
|
|||
const llama_memory_context_i * mctx;
|
||||
const llama_cross * cross;
|
||||
|
||||
std::map<llama_seq_id, llama_sampler *> samplers;
|
||||
|
||||
static bool samplers_equal(
|
||||
const std::map<llama_seq_id, llama_sampler *> & lhs,
|
||||
const std::map<llama_seq_id, llama_sampler *> & rhs) {
|
||||
if (lhs.size() != rhs.size()) {
|
||||
return false;
|
||||
}
|
||||
for (const auto & [seq_id, sampler] : lhs) {
|
||||
auto it = rhs.find(seq_id);
|
||||
if (it == rhs.end() || it->second != sampler) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
uint32_t n_outputs;
|
||||
|
||||
llm_graph_cb cb;
|
||||
|
|
@ -468,15 +498,36 @@ struct llm_graph_params {
|
|||
return false;
|
||||
}
|
||||
|
||||
if (n_outputs != other.n_outputs) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!samplers_equal(samplers, other.samplers)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (samplers.size() > 0) {
|
||||
if (!ubatch.data || !other.ubatch.data) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// check that the outputs are the same for all samplers
|
||||
for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
|
||||
if (ubatch.output[i] != other.ubatch.output[i] ||
|
||||
ubatch.seq_id[i][0] != other.ubatch.seq_id[i][0]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
cparams.embeddings == other.cparams.embeddings &&
|
||||
cparams.causal_attn == other.cparams.causal_attn &&
|
||||
arch == other.arch &&
|
||||
gtype == other.gtype &&
|
||||
cvec == other.cvec &&
|
||||
loras == other.loras &&
|
||||
cross == other.cross &&
|
||||
n_outputs == other.n_outputs;
|
||||
arch == other.arch &&
|
||||
gtype == other.gtype &&
|
||||
cvec == other.cvec &&
|
||||
loras == other.loras &&
|
||||
cross == other.cross;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -499,6 +550,7 @@ public:
|
|||
void reset();
|
||||
|
||||
void set_inputs(const llama_ubatch * ubatch);
|
||||
void set_outputs();
|
||||
|
||||
// try to update the existing graph result using the new graph parameters in order to reuse it
|
||||
// this can only be done if we determine that the resulting graph using the new graph parameters
|
||||
|
|
@ -517,6 +569,11 @@ public:
|
|||
ggml_tensor * t_embd = nullptr;
|
||||
ggml_tensor * t_embd_pooled = nullptr;
|
||||
|
||||
std::map<llama_seq_id, ggml_tensor*> t_sampled_logits;
|
||||
std::map<llama_seq_id, ggml_tensor*> t_candidates;
|
||||
std::map<llama_seq_id, ggml_tensor*> t_sampled;
|
||||
std::map<llama_seq_id, ggml_tensor*> t_sampled_probs;
|
||||
|
||||
std::vector<llm_graph_input_ptr> inputs;
|
||||
|
||||
ggml_context_ptr ctx_compute;
|
||||
|
|
@ -592,6 +649,8 @@ struct llm_graph_context {
|
|||
const llama_memory_context_i * mctx;
|
||||
const llama_cross * cross;
|
||||
|
||||
std::map<llama_seq_id, llama_sampler *> samplers;
|
||||
|
||||
const llm_graph_cb & cb_func;
|
||||
|
||||
llm_graph_result * res;
|
||||
|
|
@ -832,6 +891,12 @@ struct llm_graph_context {
|
|||
ggml_tensor * cls_out,
|
||||
ggml_tensor * cls_out_b) const;
|
||||
|
||||
//
|
||||
// sampling (backend sampling)
|
||||
//
|
||||
|
||||
void build_sampling() const;
|
||||
|
||||
//
|
||||
// dense (out)
|
||||
//
|
||||
|
|
|
|||
|
|
@ -105,9 +105,9 @@ struct llama_hparams {
|
|||
|
||||
float rope_attn_factor = 1.0f;
|
||||
float rope_freq_base_train;
|
||||
float rope_freq_base_train_swa;
|
||||
float rope_freq_base_train_swa = 10000.0f;
|
||||
float rope_freq_scale_train;
|
||||
float rope_freq_scale_train_swa;
|
||||
float rope_freq_scale_train_swa = 1.0f;
|
||||
|
||||
uint32_t n_ctx_orig_yarn;
|
||||
float rope_yarn_log_mul = 0.0f;
|
||||
|
|
|
|||
|
|
@ -240,9 +240,10 @@ struct llama_file::impl {
|
|||
throw std::runtime_error("unexpectedly reached end of file");
|
||||
}
|
||||
} else {
|
||||
bool successful = false;
|
||||
while (!successful) {
|
||||
off_t ret = read(fd, ptr, len);
|
||||
size_t bytes_read = 0;
|
||||
while (bytes_read < len) {
|
||||
const size_t to_read = len - bytes_read;
|
||||
ssize_t ret = ::read(fd, reinterpret_cast<char *>(ptr) + bytes_read, to_read);
|
||||
|
||||
if (ret == -1) {
|
||||
if (errno == EINTR) {
|
||||
|
|
@ -251,10 +252,16 @@ struct llama_file::impl {
|
|||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
}
|
||||
if (ret == 0) {
|
||||
// EOF: allow if this read was only pulling alignment padding past file end
|
||||
off_t pos = lseek(fd, 0, SEEK_CUR);
|
||||
if (pos != -1 && (size_t) pos == size) {
|
||||
std::memset(reinterpret_cast<char *>(ptr) + bytes_read, 0, len - bytes_read);
|
||||
return;
|
||||
}
|
||||
throw std::runtime_error("unexpectedly reached end of file");
|
||||
}
|
||||
|
||||
successful = true;
|
||||
bytes_read += (size_t) ret;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -126,6 +126,7 @@ const char * llm_type_name(llm_type type) {
|
|||
case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
|
||||
case LLM_TYPE_80B_A3B: return "80B.A3B";
|
||||
case LLM_TYPE_100B_A6B: return "100B.A6B";
|
||||
case LLM_TYPE_102B_A12B: return "102B.A12B";
|
||||
case LLM_TYPE_106B_A12B: return "106B.A12B";
|
||||
case LLM_TYPE_230B_A10B: return "230B.A10B";
|
||||
case LLM_TYPE_235B_A22B: return "235B.A22B";
|
||||
|
|
@ -577,6 +578,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
|
||||
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
|
||||
|
||||
// TODO: Handle SWA metadata similarly when models start implementing it
|
||||
// rope_freq_scale (inverse of the kv) is optional
|
||||
float ropescale = 0.0f;
|
||||
if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
|
||||
|
|
@ -585,10 +587,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
}
|
||||
hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
|
||||
|
||||
// by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
|
||||
|
||||
// non-transformer models do not have attention heads
|
||||
|
|
@ -676,6 +674,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.f_attn_temp_scale = 0.1f;
|
||||
hparams.f_attn_temp_offset = 1.0f;
|
||||
hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
|
||||
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
}
|
||||
|
||||
switch (hparams.n_expert) {
|
||||
|
|
@ -721,6 +723,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
if (hparams.n_swa > 0) {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.set_swa_pattern(4);
|
||||
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
} else {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
}
|
||||
|
|
@ -1109,6 +1115,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MAINCODER:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 32: type = LLM_TYPE_1B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN3VL:
|
||||
{
|
||||
ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
|
||||
|
|
@ -1234,7 +1248,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
if (found_swa && hparams.n_swa > 0) {
|
||||
uint32_t swa_period = 8;
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.rope_freq_scale_train_swa = 1.0f;
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
|
||||
ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, swa_period, false);
|
||||
hparams.set_swa_pattern(swa_period);
|
||||
|
|
@ -1300,7 +1313,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.n_swa = 4096; // default value of gemma 2
|
||||
hparams.set_swa_pattern(2);
|
||||
hparams.attn_soft_cap = true;
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
|
||||
|
|
@ -1325,8 +1341,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.set_swa_pattern(6);
|
||||
|
||||
hparams.rope_freq_base_train_swa = 10000.0f;
|
||||
hparams.rope_freq_scale_train_swa = 1.0f;
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
} else {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
}
|
||||
|
|
@ -1356,10 +1371,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.set_swa_pattern(5);
|
||||
|
||||
hparams.n_layer_kv_from_start = 20;
|
||||
hparams.rope_freq_base_train_swa = 10000.0f;
|
||||
hparams.rope_freq_scale_train_swa = 1.0f;
|
||||
hparams.f_attention_scale = 1.0f;
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
|
|
@ -1375,9 +1389,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.set_swa_pattern(6);
|
||||
|
||||
hparams.causal_attn = false; // embeddings do not use causal attention
|
||||
hparams.rope_freq_base_train_swa = 10000.0f;
|
||||
hparams.rope_freq_scale_train_swa = 1.0f;
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
|
||||
|
|
@ -1516,7 +1529,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
{
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.set_swa_pattern(4);
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
|
||||
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
|
|
@ -1555,6 +1571,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
if (found_swa && hparams.n_swa > 0) {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.set_swa_pattern(4);
|
||||
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = 1.0; // See olmo2.cpp
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
} else {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
}
|
||||
|
|
@ -1682,7 +1702,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
||||
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
||||
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
|
||||
|
|
@ -1778,6 +1798,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
|
||||
switch (hparams.n_layer) {
|
||||
case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
|
||||
case 48: type = LLM_TYPE_102B_A12B; break; // Solar Open
|
||||
case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
|
|
@ -1896,6 +1917,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.n_swa = 4096;
|
||||
hparams.set_swa_pattern(4);
|
||||
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
}
|
||||
|
||||
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
|
|
@ -2198,6 +2223,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.set_swa_pattern(2);
|
||||
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 24: type = LLM_TYPE_20B; break;
|
||||
case 36: type = LLM_TYPE_120B; break;
|
||||
|
|
@ -2242,6 +2271,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.n_swa = 4096;
|
||||
hparams.set_swa_pattern(4, true);
|
||||
|
||||
hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
|
||||
hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa, false);
|
||||
} else {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
hparams.n_no_rope_layer_step = hparams.n_layer;
|
||||
|
|
@ -3320,7 +3353,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
|
||||
|
||||
const auto tn_ffn_up_weight = tn(LLM_TENSOR_FFN_UP, "weight", i);
|
||||
ggml_tensor * t_ffn_up = ml.get_tensor_meta(tn_ffn_up_weight.str().c_str());
|
||||
const int64_t n_ffn_up = t_ffn_up ? t_ffn_up->ne[1] : n_ff;
|
||||
|
||||
GGML_ASSERT(n_ffn_up == n_ff || n_ffn_up == n_ff * 2);
|
||||
layer.ffn_up = create_tensor(tn_ffn_up_weight, {n_embd, n_ffn_up}, 0);
|
||||
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ffn_up}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
||||
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
|
||||
|
|
@ -4776,7 +4816,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
||||
// try to load output.weight, if not found, use token_embd (tied embeddings)
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
if (!output) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
|
@ -4839,7 +4883,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
||||
// try to load output.weight, if not found, use token_embd (tied embeddings)
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
if (!output) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
|
@ -5206,9 +5254,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
|
||||
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);
|
||||
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, TENSOR_NOT_REQUIRED | flags);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, TENSOR_NOT_REQUIRED | flags);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, TENSOR_NOT_REQUIRED | flags);
|
||||
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
|
||||
|
||||
|
|
@ -6761,6 +6809,37 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MAINCODER:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
||||
|
||||
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
|
||||
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
|
|
@ -7042,6 +7121,10 @@ void llama_model::print_info() const {
|
|||
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
|
||||
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
|
||||
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
|
||||
if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
|
||||
LLAMA_LOG_INFO("%s: freq_base_swa = %.1f\n", __func__, hparams.rope_freq_base_train_swa);
|
||||
LLAMA_LOG_INFO("%s: freq_scale_swa = %g\n", __func__, hparams.rope_freq_scale_train_swa);
|
||||
}
|
||||
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
|
||||
LLAMA_LOG_INFO("%s: rope_yarn_log_mul= %.4f\n", __func__, hparams.rope_yarn_log_mul);
|
||||
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
|
||||
|
|
@ -7406,6 +7489,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
{
|
||||
llm = std::make_unique<llm_build_llama<true>>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_MAINCODER:
|
||||
{
|
||||
llm = std::make_unique<llm_build_maincoder>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
llm = std::make_unique<llm_build_deci>(*this, params);
|
||||
|
|
@ -7440,7 +7527,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
} break;
|
||||
case LLM_ARCH_MODERN_BERT:
|
||||
{
|
||||
llm = std::make_unique<llm_build_modern_bert<true>>(*this, params);
|
||||
llm = std::make_unique<llm_build_modern_bert>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
{
|
||||
|
|
@ -7850,12 +7937,17 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
// add on pooling layer
|
||||
llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
|
||||
|
||||
// add backend sampling layers (if any)
|
||||
llm->build_sampling();
|
||||
|
||||
// if the gguf model was converted with --sentence-transformers-dense-modules
|
||||
// there will be two additional dense projection layers
|
||||
// dense linear projections are applied after pooling
|
||||
// TODO: move reranking logic here and generalize
|
||||
llm->build_dense_out(dense_2_out_layers, dense_3_out_layers);
|
||||
|
||||
llm->res->set_outputs();
|
||||
|
||||
return llm->res->get_gf();
|
||||
}
|
||||
|
||||
|
|
@ -8014,6 +8106,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
case LLM_ARCH_ERNIE4_5_MOE:
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
case LLM_ARCH_LLAMA_EMBED:
|
||||
case LLM_ARCH_MAINCODER:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
|
|
|
|||
|
|
@ -119,6 +119,7 @@ enum llm_type {
|
|||
LLM_TYPE_31B_A3_5B,
|
||||
LLM_TYPE_80B_A3B, // Qwen3 Next
|
||||
LLM_TYPE_100B_A6B,
|
||||
LLM_TYPE_102B_A12B, // Solar-Open
|
||||
LLM_TYPE_106B_A12B, // GLM-4.5-Air
|
||||
LLM_TYPE_230B_A10B, // Minimax M2
|
||||
LLM_TYPE_235B_A22B,
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -14,7 +14,16 @@ struct llama_grammar;
|
|||
struct llama_sampler_chain {
|
||||
llama_sampler_chain_params params;
|
||||
|
||||
std::vector<struct llama_sampler *> samplers;
|
||||
// has .backend_init() been called?
|
||||
bool is_init = false;
|
||||
|
||||
struct info {
|
||||
bool is_backend;
|
||||
|
||||
llama_sampler * ptr;
|
||||
};
|
||||
|
||||
std::vector<info> samplers;
|
||||
|
||||
// pre-allocated buffer for llama_sampler_sample to avoid repeated allocations
|
||||
std::vector<llama_token_data> cur;
|
||||
|
|
@ -27,9 +36,9 @@ struct llama_sampler_chain {
|
|||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_dry_testing(
|
||||
int32_t context_size,
|
||||
float dry_multiplier,
|
||||
float dry_base,
|
||||
int32_t dry_allowed_length,
|
||||
int32_t dry_penalty_last_n,
|
||||
const std::vector<std::vector<llama_token>>& seq_breakers);
|
||||
int32_t context_size,
|
||||
float dry_multiplier,
|
||||
float dry_base,
|
||||
int32_t dry_allowed_length,
|
||||
int32_t dry_penalty_last_n,
|
||||
const std::vector<std::vector<llama_token>> & seq_breakers);
|
||||
|
|
|
|||
|
|
@ -314,6 +314,12 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|||
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_YOUTU:
|
||||
regex_exprs = {
|
||||
"[가-힣ㄱ-ㆎ]+|[!…“”‘’—:;,、-〿︰-﹏]+|[ㄅ-ㄯ]+|[一-龥-ゟ゠-ヿ]+",
|
||||
"[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
||||
regex_exprs = {
|
||||
"[\r\n]",
|
||||
|
|
@ -355,6 +361,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|||
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_HUNYUAN:
|
||||
case LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN:
|
||||
regex_exprs = {
|
||||
// original regex from tokenizer.json
|
||||
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
|
|
@ -1860,6 +1867,11 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
tokenizer_pre == "deepseek-v3") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "youtu") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_YOUTU;
|
||||
clean_spaces = false;
|
||||
ignore_merges = true;
|
||||
} else if (
|
||||
tokenizer_pre == "falcon") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
|
||||
|
|
@ -2015,6 +2027,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
tokenizer_pre == "minimax-m2") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "solar-open") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
}
|
||||
|
|
@ -2187,6 +2203,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
// for now, we apply this workaround to find the tokens based on their text
|
||||
|
||||
for (const auto & t : token_to_id) {
|
||||
auto & attr = id_to_token[t.second].attr;
|
||||
|
||||
// find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
|
||||
if (special_eot_id == LLAMA_TOKEN_NULL) {
|
||||
if (false
|
||||
|
|
@ -2202,10 +2220,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<end_of_utterance>" // smoldocling
|
||||
) {
|
||||
special_eot_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2216,10 +2234,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|eom_id|>"
|
||||
) {
|
||||
special_eom_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2236,10 +2254,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|code_prefix|>" // GLM-4.5
|
||||
) {
|
||||
special_fim_pre_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2256,10 +2274,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|code_suffix|>" // GLM-4.5
|
||||
) {
|
||||
special_fim_suf_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2276,10 +2294,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|code_middle|>" // GLM-4.5
|
||||
) {
|
||||
special_fim_mid_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2293,10 +2311,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<PAD>"
|
||||
) {
|
||||
special_fim_pad_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2311,10 +2329,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<reponame>" // Granite
|
||||
) {
|
||||
special_fim_rep_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2325,15 +2343,41 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|file_sep|>" // Qwen
|
||||
) {
|
||||
special_fim_sep_id = t.second;
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// auto-detect unused tokens: e.g. control tokens with the word "unused"
|
||||
// ideally, these tokens should be marked as unused during conversion
|
||||
{
|
||||
uint32_t n_unused = 0;
|
||||
|
||||
for (const auto & t : token_to_id) {
|
||||
auto & attr = id_to_token[t.second].attr;
|
||||
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((attr & LLAMA_TOKEN_ATTR_UNUSED) == 0) {
|
||||
if (strstr(t.first.c_str(), "unused") != NULL) {
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_UNUSED);
|
||||
}
|
||||
}
|
||||
|
||||
if (attr & LLAMA_TOKEN_ATTR_UNUSED) {
|
||||
n_unused++;
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: %u unused tokens\n", __func__, n_unused);
|
||||
}
|
||||
|
||||
// maintain a list of tokens that cause end-of-generation
|
||||
// this is currently determined based on the token text, which is obviously not ideal
|
||||
// ref: https://github.com/ggerganov/llama.cpp/issues/9606
|
||||
|
|
@ -2352,12 +2396,16 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
}
|
||||
|
||||
for (const auto & t : token_to_id) {
|
||||
auto & attr = id_to_token[t.second].attr;
|
||||
|
||||
if (false
|
||||
|| t.first == "<|eot_id|>"
|
||||
|| t.first == "<|im_end|>"
|
||||
|| t.first == "<|end|>"
|
||||
|| t.first == "<|return|>" // o200k_harmony
|
||||
|| t.first == "<|call|>" // o200k_harmony
|
||||
|| t.first == "<|flush|>" // solar-open
|
||||
|| t.first == "<|calls|>" // solar-open
|
||||
|| t.first == "<end_of_turn>"
|
||||
|| t.first == "<|endoftext|>"
|
||||
|| t.first == "<|eom_id|>"
|
||||
|
|
@ -2367,24 +2415,28 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<end_of_utterance>" // smoldocling
|
||||
) {
|
||||
special_eog_ids.insert(t.second);
|
||||
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
|
||||
}
|
||||
} else {
|
||||
// token is control, but not marked as EOG -> print a debug log
|
||||
if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
|
||||
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
if (attr & LLAMA_TOKEN_ATTR_CONTROL && !(attr & LLAMA_TOKEN_ATTR_UNUSED)) {
|
||||
// token is control, but not marked as EOG -> print a debug log
|
||||
if (special_eog_ids.count(t.second) == 0) {
|
||||
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// @ngxson : quick hack for gpt-oss, always render these tokens
|
||||
for (const auto & t : token_to_id) {
|
||||
auto & attr = id_to_token[t.second].attr;
|
||||
|
||||
if (t.first == "<|channel|>" || t.first == "<|message|>" || t.first == "<|start|>" || t.first == "<|constrain|>") {
|
||||
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_USER_DEFINED);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -2404,34 +2456,42 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||||
}
|
||||
|
||||
// TODO: workaround for o200k_harmony tokenizer: the "<|end|>" token should not be EOG
|
||||
// we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens,
|
||||
// TODO: workaround for o200k_harmony and solar-open tokenizer: the "<|end|>" token should not be EOG
|
||||
// we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens ("<|calls|>" and "<|flush|>" for solar-open),
|
||||
// we remove the "<|end|>" token from the EOG list
|
||||
{
|
||||
bool has_return = false;
|
||||
bool has_call = false;
|
||||
bool has_end = false;
|
||||
bool has_flush = false;
|
||||
|
||||
llama_token end_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
LLAMA_LOG_INFO("%s: printing all EOG tokens:\n", __func__);
|
||||
for (auto tid : special_eog_ids) {
|
||||
LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, id_to_token[tid].text.c_str());
|
||||
auto & text = id_to_token[tid].text;
|
||||
|
||||
if (id_to_token[tid].text == "<|return|>") {
|
||||
LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, text.c_str());
|
||||
|
||||
if (text == "<|return|>") {
|
||||
has_return = true;
|
||||
} else if (id_to_token[tid].text == "<|call|>") {
|
||||
} else if (text == "<|call|>" || text == "<|calls|>") {
|
||||
has_call = true;
|
||||
} else if (id_to_token[tid].text == "<|end|>") {
|
||||
} else if (text == "<|flush|>") {
|
||||
has_flush = true;
|
||||
} else if (text == "<|end|>") {
|
||||
has_end = true;
|
||||
end_id = tid;
|
||||
}
|
||||
}
|
||||
|
||||
if (has_return && has_call && has_end) {
|
||||
if ((has_return && has_call && has_end) || (has_call && has_flush && has_end)) {
|
||||
special_eog_ids.erase(end_id);
|
||||
id_to_token[end_id].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
|
||||
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
|
||||
|
||||
auto & attr = id_to_token[end_id].attr;
|
||||
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_USER_DEFINED);
|
||||
|
||||
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>', or '<|calls|>' and '<|flush|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -51,6 +51,8 @@ enum llama_vocab_pre_type {
|
|||
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
|
||||
LLAMA_VOCAB_PRE_TYPE_AFMOE = 42,
|
||||
LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN = 43,
|
||||
LLAMA_VOCAB_PRE_TYPE_YOUTU = 44,
|
||||
};
|
||||
|
||||
struct LLM_KV;
|
||||
|
|
|
|||
|
|
@ -713,7 +713,7 @@ enum llama_params_fit_status llama_params_fit(
|
|||
|
||||
struct llama_sampler_chain_params llama_sampler_chain_default_params() {
|
||||
struct llama_sampler_chain_params result = {
|
||||
/*.no_perf =*/ true,
|
||||
/*.no_perf =*/ true,
|
||||
};
|
||||
|
||||
return result;
|
||||
|
|
|
|||
|
|
@ -22,8 +22,15 @@ llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_para
|
|||
const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const float freq_base_l = model.get_rope_freq_base (cparams, il);
|
||||
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
||||
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
|
||||
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
|
||||
(il + 1) % hparams.n_no_rope_layer_step != 0;
|
||||
|
||||
// dual attention normalization (pre)
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
|
|
@ -56,19 +63,16 @@ llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_para
|
|||
cb(Qcur, "Qcur_normed", il);
|
||||
cb(Kcur, "Kcur_normed", il);
|
||||
|
||||
// RoPE only for sliding_attention layers
|
||||
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
|
||||
((il + 1) % hparams.n_no_rope_layer_step) != 0;
|
||||
if (use_rope) {
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
cb(Qcur, "Qcur_rope", il);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
cb(Kcur, "Kcur_rope", il);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -142,11 +142,13 @@ llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params
|
|||
LLM_FFN_GELU, LLM_FFN_SEQ, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
|
||||
const bool up_contains_gate = !model.layers[il].ffn_gate && model.layers[il].ffn_up->ne[1] != hparams.n_ff();
|
||||
auto type_op = up_contains_gate ? LLM_FFN_GEGLU : LLM_FFN_GELU;
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
|
||||
model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
|
||||
type_op, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
cur = build_ffn(cur,
|
||||
|
|
|
|||
|
|
@ -3,12 +3,14 @@
|
|||
llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
float kq_scale = 1.0f / sqrtf(float(n_embd_head));
|
||||
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor *inpL, *cur;
|
||||
ggml_tensor * inpL;
|
||||
ggml_tensor * cur;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
|
@ -44,7 +46,7 @@ llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_pa
|
|||
}
|
||||
|
||||
ggml_tensor * inpSA = inpL;
|
||||
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
|
||||
// build self attention
|
||||
{
|
||||
|
|
|
|||
|
|
@ -21,6 +21,9 @@ llm_build_cohere2_iswa::llm_build_cohere2_iswa(const llama_model & model, const
|
|||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const bool is_swa = hparams.is_swa(il);
|
||||
// UNUSED:
|
||||
// const float freq_base_l = model.get_rope_freq_base (cparams, il);
|
||||
// const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
|
||||
|
|
|
|||
|
|
@ -215,7 +215,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
|
|||
model.layers[il].ffn_exp_probs_b,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, hparams.expert_weights_norm,
|
||||
true, hparams.expert_weights_scale,
|
||||
hparams.expert_weights_scale, hparams.expert_weights_scale,
|
||||
(llama_expert_gating_func_type) hparams.expert_gating_func,
|
||||
il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
|
|
|||
|
|
@ -1,7 +1,5 @@
|
|||
#include "models.h"
|
||||
|
||||
|
||||
|
||||
llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_k;
|
||||
|
|
@ -12,10 +10,8 @@ llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model,
|
|||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
|
||||
if (ubatch.token) {
|
||||
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
}
|
||||
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
|
|
|||
|
|
@ -19,6 +19,9 @@ llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const ll
|
|||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const float freq_base_l = model.get_rope_freq_base (cparams, il);
|
||||
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
|
|
@ -43,12 +46,12 @@ llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const ll
|
|||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
|
|
|||
|
|
@ -10,10 +10,9 @@ llm_build_gemma3<iswa>::llm_build_gemma3(const llama_model & model, const llm_gr
|
|||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
|
||||
if (ubatch.token) {
|
||||
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
}
|
||||
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,5 @@
|
|||
#include "models.h"
|
||||
|
||||
|
||||
|
||||
llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context(params),
|
||||
model(model),
|
||||
|
|
@ -15,10 +13,9 @@ llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const
|
|||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
|
||||
if (ubatch.token) {
|
||||
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
}
|
||||
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
|
|
@ -248,7 +245,7 @@ ggml_tensor * llm_build_gemma3n_iswa::view_2d_slice(ggml_tensor * x, int idx) {
|
|||
// equivalent to get_per_layer_inputs() in python code
|
||||
// output shape: [n_embd_altup, n_layer, n_tokens]
|
||||
ggml_tensor * llm_build_gemma3n_iswa::get_per_layer_inputs() {
|
||||
auto inp = std::make_unique<llm_graph_input_embd>();
|
||||
auto inp = std::make_unique<llm_graph_input_embd>();
|
||||
ggml_tensor * inp_per_layer;
|
||||
if (ubatch.token) {
|
||||
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
|
||||
|
|
|
|||
|
|
@ -25,8 +25,12 @@ llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_
|
|||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const float freq_base_l = model.get_rope_freq_base (cparams, il);
|
||||
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
||||
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
|
||||
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
|
||||
(il + 1) % hparams.n_no_rope_layer_step != 0;
|
||||
|
||||
|
|
@ -67,13 +71,13 @@ llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_
|
|||
if (use_rope) {
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
} else if (inp_attn_scale) {
|
||||
|
|
|
|||
|
|
@ -0,0 +1,117 @@
|
|||
#include "models.h"
|
||||
|
||||
llm_build_maincoder::llm_build_maincoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv();
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(Qcur, "Qcur_normed", il);
|
||||
|
||||
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(Kcur, "Kcur_normed", il);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
||||
}
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue