graph : reduce topology branching (#18548)

This commit is contained in:
Georgi Gerganov 2026-01-02 19:01:56 +02:00 committed by GitHub
parent d84a6a98be
commit af1e8e1a6c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 14 additions and 20 deletions

View File

@ -3,12 +3,14 @@
llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
float kq_scale = 1.0f / sqrtf(float(n_embd_head));
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor *inpL, *cur;
ggml_tensor * inpL;
ggml_tensor * cur;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
@ -44,7 +46,7 @@ llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_pa
}
ggml_tensor * inpSA = inpL;
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// build self attention
{

View File

@ -1,7 +1,5 @@
#include "models.h"
llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
@ -12,10 +10,8 @@ llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model,
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();

View File

@ -10,10 +10,9 @@ llm_build_gemma3<iswa>::llm_build_gemma3(const llama_model & model, const llm_gr
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();

View File

@ -1,7 +1,5 @@
#include "models.h"
llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model),
@ -15,10 +13,9 @@ llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
@ -248,7 +245,7 @@ ggml_tensor * llm_build_gemma3n_iswa::view_2d_slice(ggml_tensor * x, int idx) {
// equivalent to get_per_layer_inputs() in python code
// output shape: [n_embd_altup, n_layer, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::get_per_layer_inputs() {
auto inp = std::make_unique<llm_graph_input_embd>();
auto inp = std::make_unique<llm_graph_input_embd>();
ggml_tensor * inp_per_layer;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);