* hexagon: add ARGSORT op
Co-authored-by: Yarden Tal <yardent@qti.qualcomm.com>
* hexagon: argsort reject tensors with huge rows for now
* Adding support for DIV,SQR,SQRT,SUM_ROWS ops in hexagon backend
* hexagon : Add GEGLU op
* hexagon: fix editor config check
* hexagon: rewrite and optimize binary ops ADD/SUB/MUL/DIV/ADD_ID to use DMA
---------
Co-authored-by: Yarden Tal <yardent@qti.qualcomm.com>
Co-authored-by: Manohara Hosakoppa Krishnamurthy <mhosakop@qti.qualcomm.com>
* llama : refactor sampling_info to use buffer_view template
This commit updates the sampling_info struct in llama-context to use a
buffer_view template for the logits, probs, sampled tokens, and
candidates buffers.
The motivation for this is to simplify the code, improve type safety
and readability.
CCCL 3.2 has been released since it was added to llama.cpp as part of
the backend-sampling PR, and it makes sense to update from RC to final
released version.
https://github.com/NVIDIA/cccl/releases/tag/v3.2.0
* Fix memory leaks in shader lib, backend, backend_context, buffer_context, and webgpu_buf_pool
* Free pools
* Cleanup
* More cleanup
* Run clang-format
* Fix arg-parser and tokenizer test errors that free an unallocated buffer
* Fix device lost callback to not print on device teardown
* Fix include and run clang-format
* remove unused unused
* Update binary ops
---------
Co-authored-by: Reese Levine <reeselevine1@gmail.com>
* support qwen3.5 series
* remove deepstack for now, and some code clean
* code clean
* add FULL_ATTENTION_INTERVAL metadata
* code clean
* reorder v heads for linear attention to avoid expensive interleaved repeat
* First working version of GEMM and GEMV
* interleave loads and compute
* Clang-format
* Added missing fallback. Removed tested TODO.
* Swap M and N to be consistent with the repack template convention
using noexcept std::filesystem::directory_entry::is_regular_file
overload prevents abnormal termination upon throwing an error
(as caused by symlinks to non-existent folders on linux)
Resolves: #18560
Implement ggml_cann_mul_mat_id_quant function to support quantized matrix
multiplication for Mixture of Experts (MoE) architectures on CANN backend.
Key features:
- Support Q4_0 and Q8_0 quantized weight formats
- Use IndexSelect to dynamically route expert-specific weights based on indices
- Leverage WeightQuantBatchMatmulV2 for efficient quantized computation
- Handle automatic F16 type conversion for hardware compatibility
- Support both per-expert and broadcast input modes
Implementation details:
- Extract expert weights and scales using CANN IndexSelect operation
- Process each batch and expert combination independently
- Create proper tensor views with correct stride for matmul operations
- Automatic input/output type casting to/from F16 as needed
Testing: All test cases passed for supported types (F32, F16, Q4_0, Q8_0).
* ci : add metal server workflows
* cont : try fix python init
* cont : move to a separate workflow that runs only on master
* cont : fix num jobs
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* ggml-virtgpu: add backend documentation
Assisted-by-AI: Claude Code
* CODEOWNERS: add /docs/backend/GGML-VirtGPU/ -> kpouget
* README: add the link to docs/backend/GGML-VirtGPU/ggml-virt.md
* docs/ggml-virt: add link to testing + configuration
* Revert "CODEOWNERS: add /docs/backend/GGML-VirtGPU/ -> kpouget"
This reverts commit 8ece8e72e2.
* drop the ggml- prefix
* s/ggerganov/ggml-org
* Relocate VirtGPU.md
* reorganize the text
* turn turn the ascii diagram into a mermaid
* README.md: update the link to the main doc