models : support qwen3.5 series (#19468)
* support qwen3.5 series * remove deepstack for now, and some code clean * code clean * add FULL_ATTENTION_INTERVAL metadata * code clean * reorder v heads for linear attention to avoid expensive interleaved repeat
This commit is contained in:
parent
9a96352729
commit
fc0fe40049
|
|
@ -1261,6 +1261,9 @@ class TextModel(ModelBase):
|
|||
if chkhsh == "6c81ce329e0802883b22eabab0d3fa48357337ef1ecb45443828bf1f6254833f":
|
||||
# ref: https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B
|
||||
res = "exaone-moe"
|
||||
if chkhsh == "d30d75d9059f1aa2c19359de71047b3ae408c70875e8a3ccf8c5fba56c9d8af4":
|
||||
# ref: https://huggingface.co/Qwen/Qwen3.5-9B-Instruct
|
||||
res = "qwen35"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
|
|
@ -4287,6 +4290,7 @@ class Qwen3NextModel(Qwen2MoeModel):
|
|||
self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
|
||||
self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
|
||||
self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
|
||||
self.gguf_writer.add_full_attention_interval(self.hparams.get("full_attention_interval", 4))
|
||||
if (rope_dim := self.hparams.get("head_dim")) is None:
|
||||
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
|
||||
|
|
@ -4351,7 +4355,7 @@ class RND1Model(Qwen2MoeModel):
|
|||
self.gguf_writer.add_mask_token_id(mask_token_id)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
|
||||
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration", "Qwen3_5ForConditionalGeneration", "Qwen3_5MoeForConditionalGeneration")
|
||||
class Qwen3VLVisionModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
|
@ -4397,6 +4401,10 @@ class Qwen3VLVisionModel(MmprojModel):
|
|||
if name.startswith("model.language_model.") or name.startswith("lm_head."):
|
||||
return
|
||||
|
||||
# Skip MTP tensors
|
||||
if name.startswith("mtp."):
|
||||
return
|
||||
|
||||
if name.startswith("model.visual."):
|
||||
name = name.replace("model.visual.", "visual.", 1)
|
||||
|
||||
|
|
@ -4559,6 +4567,93 @@ class Qwen3VLMoeTextModel(Qwen3MoeModel):
|
|||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
class _LinearAttentionVReorderBase(Qwen3NextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3NEXT # overridden by subclasses
|
||||
"""reorders V heads from grouped to tiled order for ggml broadcast
|
||||
|
||||
see https://github.com/ggml-org/llama.cpp/pull/19468#discussion_r2786394306
|
||||
|
||||
Linear attention may has num_k_heads < num_v_heads. The HF weights store
|
||||
V heads grouped by K head: [G0_v0..v{r-1}, G1_v0..v{r-1}, ...].
|
||||
ggml binary ops use tiled broadcast: [K0, K1, ..., K0, K1, ...].
|
||||
We reorder V heads to tiled order so ggml_repeat can replace the expensive
|
||||
interleaved repeat: [G0_v0, G1_v0, ..., G0_v1, G1_v1, ...].
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def _reorder_v_heads(tensor: Tensor, dim: int, num_k_heads: int, num_v_per_k: int, head_dim: int) -> Tensor:
|
||||
"""Reorder V heads from grouped (by K head) to tiled order along the given dimension."""
|
||||
shape = list(tensor.shape)
|
||||
if dim < 0:
|
||||
dim += len(shape)
|
||||
new_shape = shape[:dim] + [num_k_heads, num_v_per_k, head_dim] + shape[dim + 1:]
|
||||
tensor = tensor.reshape(*new_shape)
|
||||
perm = list(range(len(new_shape)))
|
||||
perm[dim], perm[dim + 1] = perm[dim + 1], perm[dim]
|
||||
return tensor.permute(*perm).contiguous().reshape(*shape)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
num_k_heads = self.hparams.get("linear_num_key_heads", 0)
|
||||
num_v_heads = self.hparams.get("linear_num_value_heads", 0)
|
||||
|
||||
if num_k_heads > 0 and num_v_heads > 0 and num_k_heads != num_v_heads and "linear_attn." in name:
|
||||
head_k_dim = self.hparams["linear_key_head_dim"]
|
||||
head_v_dim = self.hparams["linear_value_head_dim"]
|
||||
num_v_per_k = num_v_heads // num_k_heads
|
||||
|
||||
if ".in_proj_qkv." in name:
|
||||
# QKV weight: reorder only the V rows
|
||||
q_dim = head_k_dim * num_k_heads
|
||||
k_dim = head_k_dim * num_k_heads
|
||||
q = data_torch[:q_dim]
|
||||
k = data_torch[q_dim:q_dim + k_dim]
|
||||
v = data_torch[q_dim + k_dim:]
|
||||
v = self._reorder_v_heads(v, 0, num_k_heads, num_v_per_k, head_v_dim)
|
||||
data_torch = torch.cat([q, k, v], dim=0)
|
||||
|
||||
elif ".in_proj_z." in name:
|
||||
# Z gate weight: reorder rows (num_v_heads * head_v_dim)
|
||||
data_torch = self._reorder_v_heads(data_torch, 0, num_k_heads, num_v_per_k, head_v_dim)
|
||||
|
||||
elif ".in_proj_b." in name or ".in_proj_a." in name:
|
||||
# Beta/Alpha weight: reorder rows (num_v_heads, head_dim=1)
|
||||
data_torch = self._reorder_v_heads(data_torch, 0, num_k_heads, num_v_per_k, 1)
|
||||
|
||||
elif ".A_log" in name or ".dt_bias" in name or ".dt_proj" in name:
|
||||
# A_log / dt_bias: 1D parameters with num_v_heads elements
|
||||
if data_torch.ndim == 1:
|
||||
data_torch = self._reorder_v_heads(
|
||||
data_torch.unsqueeze(-1), 0, num_k_heads, num_v_per_k, 1
|
||||
).squeeze(-1)
|
||||
else:
|
||||
data_torch = self._reorder_v_heads(data_torch, -1, num_k_heads, num_v_per_k, 1)
|
||||
|
||||
elif ".conv1d" in name:
|
||||
# Conv1d kernel: reorder only the V channel portion
|
||||
data = data_torch.squeeze()
|
||||
qk_channels = head_k_dim * num_k_heads * 2
|
||||
qk_part = data[:qk_channels]
|
||||
v_part = data[qk_channels:]
|
||||
v_part = self._reorder_v_heads(v_part, 0, num_k_heads, num_v_per_k, head_v_dim)
|
||||
data_torch = torch.cat([qk_part, v_part], dim=0)
|
||||
|
||||
elif ".out_proj." in name:
|
||||
# Out projection weight: reorder columns (input dimension)
|
||||
data_torch = self._reorder_v_heads(data_torch, 1, num_k_heads, num_v_per_k, head_v_dim)
|
||||
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3_5ForConditionalGeneration")
|
||||
class Qwen3_5TextModel(_LinearAttentionVReorderBase):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN35
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3_5MoeForConditionalGeneration")
|
||||
class Qwen3_5MoeTextModel(_LinearAttentionVReorderBase):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN35MOE
|
||||
|
||||
|
||||
@ModelBase.register("GPT2LMHeadModel")
|
||||
class GPT2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.GPT2
|
||||
|
|
|
|||
|
|
@ -148,6 +148,7 @@ models = [
|
|||
{"name": "youtu", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Youtu-LLM-2B", },
|
||||
{"name": "solar-open", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/upstage/Solar-Open-100B", },
|
||||
{"name": "exaone-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B", },
|
||||
{"name": "qwen35", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3.5-9B-Instruct", }
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
|
|
|
|||
|
|
@ -142,6 +142,7 @@ class Keys:
|
|||
EMBEDDING_SCALE = "{arch}.embedding_scale"
|
||||
TOKEN_SHIFT_COUNT = "{arch}.token_shift_count"
|
||||
INTERLEAVE_MOE_LAYER_STEP = "{arch}.interleave_moe_layer_step"
|
||||
FULL_ATTENTION_INTERVAL = "{arch}.full_attention_interval"
|
||||
ACTIVATION_SPARSITY_SCALE = "{arch}.activation_sparsity_scale"
|
||||
ALTUP_ACTIVE_IDX = "{arch}.altup.active_idx"
|
||||
ALTUP_NUM_INPUTS = "{arch}.altup.num_inputs"
|
||||
|
|
@ -384,6 +385,8 @@ class MODEL_ARCH(IntEnum):
|
|||
QWEN3NEXT = auto()
|
||||
QWEN3VL = auto()
|
||||
QWEN3VLMOE = auto()
|
||||
QWEN35 = auto()
|
||||
QWEN35MOE = auto()
|
||||
PHI2 = auto()
|
||||
PHI3 = auto()
|
||||
PHIMOE = auto()
|
||||
|
|
@ -557,13 +560,14 @@ class MODEL_TENSOR(IntEnum):
|
|||
SSM_D = auto()
|
||||
SSM_NORM = auto()
|
||||
SSM_OUT = auto()
|
||||
SSM_ALPHA = auto() # qwen3.5
|
||||
SSM_BETA_ALPHA = auto() # qwen3next
|
||||
SSM_CONV1D_Q = auto() # Kimi Linear
|
||||
SSM_CONV1D_K = auto() # Kimi Linear
|
||||
SSM_CONV1D_V = auto() # Kimi Linear
|
||||
SSM_F_A = auto() # Kimi Linear
|
||||
SSM_F_B = auto() # Kimi Linear
|
||||
SSM_BETA = auto() # Kimi Linear
|
||||
SSM_BETA = auto() # Kimi Linear qwen3.5
|
||||
SSM_G_A = auto() # Kimi Linear
|
||||
SSM_G_B = auto() # Kimi Linear
|
||||
TIME_MIX_W0 = auto()
|
||||
|
|
@ -814,6 +818,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.QWEN3NEXT: "qwen3next",
|
||||
MODEL_ARCH.QWEN3VL: "qwen3vl",
|
||||
MODEL_ARCH.QWEN3VLMOE: "qwen3vlmoe",
|
||||
MODEL_ARCH.QWEN35: "qwen35",
|
||||
MODEL_ARCH.QWEN35MOE: "qwen35moe",
|
||||
MODEL_ARCH.PHI2: "phi2",
|
||||
MODEL_ARCH.PHI3: "phi3",
|
||||
MODEL_ARCH.PHIMOE: "phimoe",
|
||||
|
|
@ -985,13 +991,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
||||
MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm",
|
||||
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
||||
MODEL_TENSOR.SSM_ALPHA: "blk.{bid}.ssm_alpha", # qwen3.5
|
||||
MODEL_TENSOR.SSM_BETA_ALPHA: "blk.{bid}.ssm_ba",
|
||||
MODEL_TENSOR.SSM_CONV1D_Q: "blk.{bid}.ssm_conv1d_q", # Kimi Linear
|
||||
MODEL_TENSOR.SSM_CONV1D_K: "blk.{bid}.ssm_conv1d_k", # Kimi Linear
|
||||
MODEL_TENSOR.SSM_CONV1D_V: "blk.{bid}.ssm_conv1d_v", # Kimi Linear
|
||||
MODEL_TENSOR.SSM_F_A: "blk.{bid}.ssm_f_a", # Kimi Linear
|
||||
MODEL_TENSOR.SSM_F_B: "blk.{bid}.ssm_f_b", # Kimi Linear
|
||||
MODEL_TENSOR.SSM_BETA: "blk.{bid}.ssm_beta", # Kimi Linear
|
||||
MODEL_TENSOR.SSM_BETA: "blk.{bid}.ssm_beta", # Kimi Linear qwen3.5
|
||||
MODEL_TENSOR.SSM_G_A: "blk.{bid}.ssm_g_a", # Kimi Linear
|
||||
MODEL_TENSOR.SSM_G_B: "blk.{bid}.ssm_g_b", # Kimi Linear
|
||||
MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0",
|
||||
|
|
@ -1818,6 +1825,61 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.QWEN35: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.ATTN_GATE,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_NORM,
|
||||
MODEL_TENSOR.SSM_BETA,
|
||||
MODEL_TENSOR.SSM_ALPHA,
|
||||
MODEL_TENSOR.SSM_OUT
|
||||
],
|
||||
MODEL_ARCH.QWEN35MOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.ATTN_GATE,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_NORM,
|
||||
MODEL_TENSOR.SSM_BETA,
|
||||
MODEL_TENSOR.SSM_ALPHA,
|
||||
MODEL_TENSOR.SSM_OUT
|
||||
],
|
||||
MODEL_ARCH.PLAMO: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
|
|
|||
|
|
@ -708,6 +708,9 @@ class GGUFWriter:
|
|||
def add_leading_dense_block_count(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
|
||||
|
||||
def add_full_attention_interval(self, interval: int) -> None:
|
||||
self.add_uint32(Keys.LLM.FULL_ATTENTION_INTERVAL.format(arch=self.arch), interval)
|
||||
|
||||
def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
|
||||
if isinstance(length, int):
|
||||
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
|
|
|||
|
|
@ -228,6 +228,7 @@ class TensorNameMap:
|
|||
"transformer_encoder.{bid}.qkv", # neobert
|
||||
"layers.{bid}.attn.Wqkv", # modern-bert
|
||||
"model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
|
||||
"model.layers.{bid}.linear_attn.in_proj_qkv", # qwen3.5
|
||||
),
|
||||
|
||||
# Attention query
|
||||
|
|
@ -359,6 +360,7 @@ class TensorNameMap:
|
|||
|
||||
MODEL_TENSOR.ATTN_GATE: (
|
||||
"model.layers.{bid}.self_attn.gate_proj", # afmoe
|
||||
"model.layers.{bid}.linear_attn.in_proj_z", # qwen3.5
|
||||
"model.layers.{bid}.self_attn.g_proj", # step3.5 head-wise attention gate
|
||||
),
|
||||
|
||||
|
|
@ -823,6 +825,10 @@ class TensorNameMap:
|
|||
"model.layers.layers.{bid}.mixer.out_proj", # plamo2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_ALPHA: (
|
||||
"model.layers.{bid}.linear_attn.in_proj_a", # qwen3.5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_BETA_ALPHA: (
|
||||
"model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
|
||||
),
|
||||
|
|
@ -844,7 +850,8 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.self_attn.f_b_proj",
|
||||
),
|
||||
MODEL_TENSOR.SSM_BETA: (
|
||||
"model.layers.{bid}.self_attn.b_proj",
|
||||
"model.layers.{bid}.linear_attn.in_proj_b", # qwen3.5
|
||||
"model.layers.{bid}.self_attn.b_proj", # Kimi Linear
|
||||
),
|
||||
MODEL_TENSOR.SSM_G_A: (
|
||||
"model.layers.{bid}.self_attn.g_a_proj",
|
||||
|
|
|
|||
|
|
@ -122,6 +122,8 @@ add_library(llama
|
|||
models/qwen3vl-moe.cpp
|
||||
models/qwen3moe.cpp
|
||||
models/qwen3next.cpp
|
||||
models/qwen35.cpp
|
||||
models/qwen35moe.cpp
|
||||
models/refact.cpp
|
||||
models/rnd1.cpp
|
||||
models/rwkv6-base.cpp
|
||||
|
|
|
|||
|
|
@ -37,6 +37,8 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_QWEN3NEXT, "qwen3next" },
|
||||
{ LLM_ARCH_QWEN3VL, "qwen3vl" },
|
||||
{ LLM_ARCH_QWEN3VLMOE, "qwen3vlmoe" },
|
||||
{ LLM_ARCH_QWEN35, "qwen35" },
|
||||
{ LLM_ARCH_QWEN35MOE, "qwen35moe" },
|
||||
{ LLM_ARCH_PHI2, "phi2" },
|
||||
{ LLM_ARCH_PHI3, "phi3" },
|
||||
{ LLM_ARCH_PHIMOE, "phimoe" },
|
||||
|
|
@ -195,6 +197,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|||
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
|
||||
{ LLM_KV_TOKEN_SHIFT_COUNT, "%s.token_shift_count" },
|
||||
{ LLM_KV_INTERLEAVE_MOE_LAYER_STEP, "%s.interleave_moe_layer_step" },
|
||||
{ LLM_KV_FULL_ATTENTION_INTERVAL, "%s.full_attention_interval" },
|
||||
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
|
|
@ -366,6 +369,7 @@ static const std::map<llm_tensor, const char *> LLM_TENSOR_NAMES = {
|
|||
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||||
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||||
{ LLM_TENSOR_SSM_BETA_ALPHA, "blk.%d.ssm_ba" },
|
||||
{ LLM_TENSOR_SSM_ALPHA, "blk.%d.ssm_alpha" },
|
||||
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
|
||||
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
|
||||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||
|
|
@ -968,7 +972,6 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
|
|||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_ATTN_QKV,
|
||||
LLM_TENSOR_ATTN_GATE,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_EXPS,
|
||||
LLM_TENSOR_FFN_DOWN_EXPS,
|
||||
|
|
@ -985,6 +988,63 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
|
|||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
};
|
||||
case LLM_ARCH_QWEN35:
|
||||
return {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
LLM_TENSOR_OUTPUT_NORM,
|
||||
LLM_TENSOR_OUTPUT,
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_Q,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_ATTN_V,
|
||||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_ATTN_QKV,
|
||||
LLM_TENSOR_ATTN_GATE,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
LLM_TENSOR_SSM_A_NOSCAN,
|
||||
LLM_TENSOR_SSM_CONV1D,
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_BETA,
|
||||
LLM_TENSOR_SSM_ALPHA,
|
||||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
};
|
||||
case LLM_ARCH_QWEN35MOE:
|
||||
return {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
LLM_TENSOR_OUTPUT_NORM,
|
||||
LLM_TENSOR_OUTPUT,
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_Q,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_ATTN_V,
|
||||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_ATTN_QKV,
|
||||
LLM_TENSOR_ATTN_GATE,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_EXPS,
|
||||
LLM_TENSOR_FFN_DOWN_EXPS,
|
||||
LLM_TENSOR_FFN_UP_EXPS,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_GATE_SHEXP,
|
||||
LLM_TENSOR_FFN_DOWN_SHEXP,
|
||||
LLM_TENSOR_FFN_UP_SHEXP,
|
||||
LLM_TENSOR_SSM_A_NOSCAN,
|
||||
LLM_TENSOR_SSM_CONV1D,
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_BETA,
|
||||
LLM_TENSOR_SSM_ALPHA,
|
||||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
};
|
||||
case LLM_ARCH_QWEN3VL:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
case LLM_ARCH_HUNYUAN_DENSE:
|
||||
|
|
@ -2456,6 +2516,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
|||
{LLM_TENSOR_SSM_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_SSM_DT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_SSM_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_SSM_ALPHA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_SSM_BETA_ALPHA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_TIME_MIX_W1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_TIME_MIX_W2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
|
|
@ -2675,6 +2736,8 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
|
|||
case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
case LLM_ARCH_QWEN3NEXT:
|
||||
case LLM_ARCH_KIMI_LINEAR:
|
||||
case LLM_ARCH_QWEN35:
|
||||
case LLM_ARCH_QWEN35MOE:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
|
|
|||
|
|
@ -41,6 +41,8 @@ enum llm_arch {
|
|||
LLM_ARCH_QWEN3NEXT,
|
||||
LLM_ARCH_QWEN3VL,
|
||||
LLM_ARCH_QWEN3VLMOE,
|
||||
LLM_ARCH_QWEN35,
|
||||
LLM_ARCH_QWEN35MOE,
|
||||
LLM_ARCH_PHI2,
|
||||
LLM_ARCH_PHI3,
|
||||
LLM_ARCH_PHIMOE,
|
||||
|
|
@ -199,6 +201,7 @@ enum llm_kv {
|
|||
LLM_KV_EMBEDDING_SCALE,
|
||||
LLM_KV_TOKEN_SHIFT_COUNT,
|
||||
LLM_KV_INTERLEAVE_MOE_LAYER_STEP,
|
||||
LLM_KV_FULL_ATTENTION_INTERVAL,
|
||||
|
||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||
|
|
@ -404,13 +407,14 @@ enum llm_tensor {
|
|||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next
|
||||
LLM_TENSOR_SSM_ALPHA, // qwen3.5
|
||||
// Kimi Linear KDA (using SSM_ prefix for consistency)
|
||||
LLM_TENSOR_SSM_CONV1D_Q, // kimi: Q conv1d weight
|
||||
LLM_TENSOR_SSM_CONV1D_K, // kimi: K conv1d weight
|
||||
LLM_TENSOR_SSM_CONV1D_V, // kimi: V conv1d weight
|
||||
LLM_TENSOR_SSM_F_A, // kimi: forget gate projection A
|
||||
LLM_TENSOR_SSM_F_B, // kimi: forget gate projection B
|
||||
LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient
|
||||
LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient and qwen3.5
|
||||
LLM_TENSOR_SSM_G_A, // kimi: output gate projection A
|
||||
LLM_TENSOR_SSM_G_B, // kimi: output gate projection B
|
||||
LLM_TENSOR_TIME_MIX_W0,
|
||||
|
|
|
|||
|
|
@ -2013,7 +2013,7 @@ void llama_context::output_reorder() {
|
|||
//
|
||||
|
||||
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
|
||||
if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR) {
|
||||
if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR || model.arch == LLM_ARCH_QWEN35 || model.arch == LLM_ARCH_QWEN35MOE) {
|
||||
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
|
||||
}
|
||||
uint32_t res = std::max<uint32_t>(1024u, 8u*model.n_tensors());
|
||||
|
|
|
|||
|
|
@ -125,6 +125,7 @@ const char * llm_type_name(llm_type type) {
|
|||
case LLM_TYPE_21B_A3B: return "21B.A3B";
|
||||
case LLM_TYPE_30B_A3B: return "30B.A3B";
|
||||
case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
|
||||
case LLM_TYPE_35B_A3B: return "35B.A3B";
|
||||
case LLM_TYPE_48B_A3B: return "48B.A3B";
|
||||
case LLM_TYPE_80B_A3B: return "80B.A3B";
|
||||
case LLM_TYPE_100B_A6B: return "100B.A6B";
|
||||
|
|
@ -2403,8 +2404,12 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
|
||||
|
||||
// Mark recurrent layers (linear attention layers)
|
||||
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
|
||||
hparams.recurrent_layer_arr[i] = ((i + 1) % 4 != 0); // TODO: extract the magic 4 from "full_attention_interval"
|
||||
{
|
||||
uint32_t full_attn_interval = 4;
|
||||
ml.get_key(LLM_KV_FULL_ATTENTION_INTERVAL, full_attn_interval, false);
|
||||
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
|
||||
hparams.recurrent_layer_arr[i] = ((i + 1) % full_attn_interval != 0);
|
||||
}
|
||||
}
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
|
|
@ -2412,6 +2417,62 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN35:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
|
||||
|
||||
// Load linear attention (gated delta net) parameters
|
||||
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||||
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||||
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
||||
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
||||
ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
|
||||
|
||||
// Mark recurrent layers (linear attention layers)
|
||||
{
|
||||
uint32_t full_attn_interval = 4;
|
||||
ml.get_key(LLM_KV_FULL_ATTENTION_INTERVAL, full_attn_interval, false);
|
||||
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
|
||||
hparams.recurrent_layer_arr[i] = ((i + 1) % full_attn_interval != 0);
|
||||
}
|
||||
}
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 24: type = LLM_TYPE_2B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN35MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
|
||||
|
||||
// Load linear attention (gated delta net) parameters
|
||||
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||||
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||||
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
||||
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
||||
ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
|
||||
|
||||
// Mark recurrent layers (linear attention layers)
|
||||
{
|
||||
uint32_t full_attn_interval = 4;
|
||||
ml.get_key(LLM_KV_FULL_ATTENTION_INTERVAL, full_attn_interval, false);
|
||||
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
|
||||
hparams.recurrent_layer_arr[i] = ((i + 1) % full_attn_interval != 0);
|
||||
}
|
||||
}
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 28: type = LLM_TYPE_35B_A3B; break;
|
||||
case 48: type = LLM_TYPE_80B_A3B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
|
@ -7101,6 +7162,131 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN35MOE:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
||||
|
||||
// Calculate dimensions from hyperparameters
|
||||
const int64_t head_k_dim = hparams.ssm_d_state;
|
||||
const int64_t head_v_dim = hparams.ssm_d_state;
|
||||
const int64_t n_k_heads = hparams.ssm_n_group;
|
||||
const int64_t n_v_heads = hparams.ssm_dt_rank;
|
||||
const int64_t key_dim = head_k_dim * n_k_heads;
|
||||
const int64_t value_dim = head_v_dim * n_v_heads;
|
||||
const int64_t conv_dim = key_dim * 2 + value_dim;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
|
||||
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
if (!hparams.is_recurrent(i)) {
|
||||
// Attention layers
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
|
||||
|
||||
// Q/K normalization for attention layers
|
||||
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
|
||||
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
|
||||
} else {
|
||||
// Linear attention (gated delta net) specific tensors
|
||||
// Create tensors with calculated dimensions
|
||||
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, key_dim * 2 + value_dim }, TENSOR_NOT_REQUIRED);
|
||||
layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), { n_embd, value_dim }, TENSOR_NOT_REQUIRED);
|
||||
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
|
||||
layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN, i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_beta = create_tensor(tn(LLM_TENSOR_SSM_BETA, "weight", i), { n_embd, n_v_heads }, 0);
|
||||
layer.ssm_alpha = create_tensor(tn(LLM_TENSOR_SSM_ALPHA, "weight", i), { n_embd, n_v_heads }, 0);
|
||||
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
|
||||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
|
||||
}
|
||||
|
||||
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
|
||||
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
|
||||
|
||||
// Shared experts
|
||||
const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
|
||||
|
||||
layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
|
||||
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, 0);
|
||||
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, 0);
|
||||
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN35:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
// Calculate dimensions from hyperparameters
|
||||
const int64_t head_k_dim = hparams.ssm_d_state;
|
||||
const int64_t head_v_dim = hparams.ssm_d_state;
|
||||
const int64_t n_k_heads = hparams.ssm_n_group;
|
||||
const int64_t n_v_heads = hparams.ssm_dt_rank;
|
||||
const int64_t key_dim = head_k_dim * n_k_heads;
|
||||
const int64_t value_dim = head_v_dim * n_v_heads;
|
||||
const int64_t conv_dim = key_dim * 2 + value_dim;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
|
||||
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
if (!hparams.is_recurrent(i)) {
|
||||
// Attention layers
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
|
||||
|
||||
// Q/K normalization for attention layers
|
||||
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
|
||||
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
|
||||
} else {
|
||||
// Linear attention (gated delta net) specific tensors
|
||||
// Create tensors with calculated dimensions
|
||||
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, key_dim * 2 + value_dim }, TENSOR_NOT_REQUIRED);
|
||||
layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), { n_embd, value_dim }, TENSOR_NOT_REQUIRED);
|
||||
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
|
||||
layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN, i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_beta = create_tensor(tn(LLM_TENSOR_SSM_BETA, "weight", i), { n_embd, n_v_heads }, 0);
|
||||
layer.ssm_alpha = create_tensor(tn(LLM_TENSOR_SSM_ALPHA, "weight", i), { n_embd, n_v_heads }, 0);
|
||||
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
|
||||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
|
||||
}
|
||||
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MIMO2:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
|
@ -7545,6 +7731,8 @@ void llama_model::print_info() const {
|
|||
arch == LLM_ARCH_PLAMO2 ||
|
||||
arch == LLM_ARCH_GRANITE_HYBRID ||
|
||||
arch == LLM_ARCH_QWEN3NEXT ||
|
||||
arch == LLM_ARCH_QWEN35 ||
|
||||
arch == LLM_ARCH_QWEN35MOE ||
|
||||
arch == LLM_ARCH_NEMOTRON_H ||
|
||||
arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
||||
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
||||
|
|
@ -8343,6 +8531,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
{
|
||||
llm = std::make_unique<llm_build_qwen3next>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_QWEN35:
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen35>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_QWEN35MOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen35moe>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
{
|
||||
llm = std::make_unique<llm_build_mistral3>(*this, params);
|
||||
|
|
@ -8611,6 +8807,8 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
return LLAMA_ROPE_TYPE_MROPE;
|
||||
case LLM_ARCH_QWEN3VL:
|
||||
case LLM_ARCH_QWEN3VLMOE:
|
||||
case LLM_ARCH_QWEN35:
|
||||
case LLM_ARCH_QWEN35MOE:
|
||||
return LLAMA_ROPE_TYPE_IMROPE;
|
||||
|
||||
case LLM_ARCH_GLM4:
|
||||
|
|
|
|||
|
|
@ -118,6 +118,7 @@ enum llm_type {
|
|||
LLM_TYPE_21B_A3B, // Ernie MoE small
|
||||
LLM_TYPE_30B_A3B,
|
||||
LLM_TYPE_31B_A3_5B,
|
||||
LLM_TYPE_35B_A3B, // Qwen3.5
|
||||
LLM_TYPE_48B_A3B, // Kimi Linear
|
||||
LLM_TYPE_80B_A3B, // Qwen3 Next
|
||||
LLM_TYPE_100B_A6B,
|
||||
|
|
@ -322,6 +323,9 @@ struct llama_layer {
|
|||
// qwen3next
|
||||
struct ggml_tensor * ssm_beta_alpha = nullptr;
|
||||
|
||||
// qwen3.5
|
||||
struct ggml_tensor * ssm_alpha = nullptr;
|
||||
|
||||
// rwkv
|
||||
struct ggml_tensor * time_mix_w1 = nullptr;
|
||||
struct ggml_tensor * time_mix_w2 = nullptr;
|
||||
|
|
|
|||
|
|
@ -368,6 +368,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_QWEN35:
|
||||
regex_exprs = {
|
||||
// original regex from tokenizer.json
|
||||
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?[\\p{L}\\p{M}]+|\\p{N}| ?[^\\s\\p{L}\\p{M}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?[\\p{L}\\p{M}]+|\\p{N}| ?[^\\s\\p{L}\\p{M}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_PORO:
|
||||
case LLAMA_VOCAB_PRE_TYPE_BLOOM:
|
||||
case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
|
||||
|
|
@ -1926,6 +1933,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
tokenizer_pre == "kormo") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "qwen35") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN35;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "stablelm2") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
|
||||
|
|
|
|||
|
|
@ -54,6 +54,7 @@ enum llama_vocab_pre_type {
|
|||
LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN = 43,
|
||||
LLAMA_VOCAB_PRE_TYPE_YOUTU = 44,
|
||||
LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE = 45,
|
||||
LLAMA_VOCAB_PRE_TYPE_QWEN35 = 46,
|
||||
};
|
||||
|
||||
struct LLM_KV;
|
||||
|
|
|
|||
|
|
@ -476,6 +476,7 @@ struct llm_build_qwen3vl : public llm_graph_context {
|
|||
struct llm_build_qwen3vlmoe : public llm_graph_context {
|
||||
llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
struct llm_build_qwen3next : public llm_graph_context_mamba {
|
||||
llm_build_qwen3next(const llama_model & model, const llm_graph_params & params);
|
||||
private:
|
||||
|
|
@ -534,6 +535,124 @@ private:
|
|||
const llama_model & model;
|
||||
};
|
||||
|
||||
struct llm_build_qwen35 : public llm_graph_context_mamba {
|
||||
llm_build_qwen35(const llama_model & model, const llm_graph_params & params);
|
||||
private:
|
||||
ggml_tensor * build_layer_attn(
|
||||
llm_graph_input_attn_kv * inp_attn,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * inp_pos,
|
||||
int * sections,
|
||||
int il);
|
||||
|
||||
ggml_tensor * build_layer_attn_linear(
|
||||
llm_graph_input_rs * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il);
|
||||
|
||||
ggml_tensor * build_layer_ffn(
|
||||
ggml_tensor * cur,
|
||||
int il);
|
||||
|
||||
// returns pair of output and new state
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il);
|
||||
|
||||
// returns pair of output and new state
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
int il);
|
||||
|
||||
ggml_tensor * build_norm_gated(
|
||||
ggml_tensor * input,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * gate,
|
||||
int layer);
|
||||
|
||||
// returns pair of qkv, z
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_qkvz(
|
||||
ggml_tensor * input,
|
||||
int il);
|
||||
|
||||
const llama_model & model;
|
||||
};
|
||||
|
||||
struct llm_build_qwen35moe : public llm_graph_context_mamba {
|
||||
llm_build_qwen35moe(const llama_model & model, const llm_graph_params & params);
|
||||
private:
|
||||
ggml_tensor * build_layer_attn(
|
||||
llm_graph_input_attn_kv * inp_attn,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * inp_pos,
|
||||
int * sections,
|
||||
int il);
|
||||
|
||||
ggml_tensor * build_layer_attn_linear(
|
||||
llm_graph_input_rs * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il);
|
||||
|
||||
ggml_tensor * build_layer_ffn(
|
||||
ggml_tensor * cur,
|
||||
int il);
|
||||
|
||||
// returns pair of output and new state
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il);
|
||||
|
||||
// returns pair of output and new state
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
int il);
|
||||
|
||||
ggml_tensor * build_norm_gated(
|
||||
ggml_tensor * input,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * gate,
|
||||
int layer);
|
||||
|
||||
// returns pair of qkv, z
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_qkvz(
|
||||
ggml_tensor * input,
|
||||
int il);
|
||||
|
||||
const llama_model & model;
|
||||
};
|
||||
|
||||
struct llm_build_qwen : public llm_graph_context {
|
||||
llm_build_qwen(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
|
|
|||
|
|
@ -0,0 +1,740 @@
|
|||
#include "ggml.h"
|
||||
#include "models.h"
|
||||
|
||||
#define CHUNK_SIZE 64
|
||||
|
||||
llm_build_qwen35::llm_build_qwen35(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context_mamba(params), model(model) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
int sections[4];
|
||||
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
cb(inpL, "model.input_embed", -1);
|
||||
|
||||
auto * inp = build_inp_mem_hybrid();
|
||||
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
ggml_tensor * causal_mask =
|
||||
ggml_tri(ctx0, ggml_fill(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
|
||||
GGML_TRI_TYPE_LOWER);
|
||||
|
||||
ggml_tensor * identity = ggml_diag(ctx0, ggml_fill(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
|
||||
ggml_tensor * diag_mask = ggml_add(ctx0, causal_mask, identity);
|
||||
|
||||
ggml_build_forward_expand(gf, causal_mask);
|
||||
ggml_build_forward_expand(gf, identity);
|
||||
ggml_build_forward_expand(gf, diag_mask);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// Determine layer type and build appropriate attention mechanism
|
||||
if (hparams.is_recurrent(il)) {
|
||||
// Linear attention layer (gated delta net)
|
||||
cur = build_layer_attn_linear(inp->get_recr(), cur, causal_mask, identity, diag_mask, il);
|
||||
} else {
|
||||
// Full attention layer
|
||||
cur = build_layer_attn(inp->get_attn(), cur, inp_pos, sections, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
// Residual connection
|
||||
cur = ggml_add(ctx0, cur, inpSA);
|
||||
cb(cur, "attn_residual", il);
|
||||
|
||||
// Save the tensor before post-attention norm for residual connection
|
||||
ggml_tensor * ffn_residual = cur;
|
||||
|
||||
// Post-attention norm
|
||||
ggml_tensor * attn_post_norm = build_norm(cur, model.layers[il].attn_post_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(attn_post_norm, "attn_post_norm", il);
|
||||
|
||||
// Dense FFN layer - without residual connection
|
||||
cur = build_layer_ffn(attn_post_norm, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
// Residual connection for FFN - add to the tensor from before post_attention_layernorm
|
||||
cur = ggml_add(ctx0, cur, ffn_residual);
|
||||
cb(cur, "post_ffn", il);
|
||||
|
||||
// Input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
cur = inpL;
|
||||
|
||||
// Final norm
|
||||
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// LM head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
// utility to get one slice from the third dimension
|
||||
// input dim: [x, y, c, b]
|
||||
// output dim: [x, y, 1, b]
|
||||
static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) {
|
||||
return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3],
|
||||
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35::build_delta_net_chunking(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il) {
|
||||
const int64_t S_k = q->ne[0];
|
||||
const int64_t H_k = q->ne[1];
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
const int64_t n_seqs = q->ne[3];
|
||||
|
||||
const int64_t S_v = v->ne[0];
|
||||
const int64_t H_v = v->ne[1];
|
||||
|
||||
GGML_ASSERT(v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
||||
|
||||
const float eps_norm = hparams.f_norm_rms_eps;
|
||||
|
||||
q = ggml_l2_norm(ctx0, q, eps_norm);
|
||||
k = ggml_l2_norm(ctx0, k, eps_norm);
|
||||
|
||||
const float scale = 1.0f / sqrtf(S_v);
|
||||
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
cb(k, "k_in", il);
|
||||
cb(v, "v_in", il);
|
||||
cb(beta, "beta_in", il);
|
||||
cb(g, "g_in", il);
|
||||
|
||||
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
|
||||
|
||||
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
|
||||
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
||||
|
||||
cb(q, "q_perm", il);
|
||||
cb(k, "k_perm", il);
|
||||
cb(v, "v_perm", il);
|
||||
cb(beta, "beta_perm", il);
|
||||
cb(g, "g_perm", il);
|
||||
cb(state, "state_in", il);
|
||||
|
||||
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
|
||||
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
|
||||
|
||||
// Do padding
|
||||
const int64_t chunk_size = CHUNK_SIZE;
|
||||
|
||||
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
|
||||
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
|
||||
|
||||
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
|
||||
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
|
||||
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
|
||||
g = ggml_pad(ctx0, g, pad, 0, 0, 0);
|
||||
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
|
||||
|
||||
cb(q, "q_pad", il);
|
||||
cb(k, "k_pad", il);
|
||||
cb(v, "v_pad", il);
|
||||
cb(beta, "beta_pad", il);
|
||||
cb(g, "g_pad", il);
|
||||
|
||||
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
|
||||
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
|
||||
|
||||
cb(v_beta, "v_beta", il);
|
||||
cb(k_beta, "k_beta", il);
|
||||
|
||||
q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
||||
v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
|
||||
beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
|
||||
|
||||
ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
|
||||
cb(g_cumsum, "g_cumsum", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * gcs_i = g_cumsum; // ggml_reshape_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs);
|
||||
ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
ggml_tensor * gcs_j_broadcast =
|
||||
ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
|
||||
cb(decay_mask, "decay_mask", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
decay_mask = ggml_exp(ctx0, decay_mask);
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
|
||||
ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
|
||||
|
||||
ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
|
||||
ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
|
||||
cb(attn, "attn_pre_solve", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
|
||||
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
|
||||
|
||||
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
|
||||
attn = ggml_mul(ctx0, lin_solve, causal_mask);
|
||||
attn = ggml_add(ctx0, attn, identity);
|
||||
cb(attn, "attn_solved", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
|
||||
|
||||
ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
|
||||
ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t);
|
||||
|
||||
ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
|
||||
cb(kbeta_gexp, "kbeta_gexp", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * k_cumdecay =
|
||||
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
|
||||
cb(k_cumdecay, "k_cumdecay", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * attn_kq = ggml_mul_mat(ctx0, k, q);
|
||||
attn_kq = ggml_mul(ctx0, attn_kq, decay_mask);
|
||||
attn_kq = ggml_mul(ctx0, attn_kq, diag_mask);
|
||||
cb(attn_kq, "attn_kq", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
|
||||
// vectorized calculation of key_gdiff
|
||||
// improved from the chunked version:
|
||||
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
|
||||
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
|
||||
// key_gdiff = key * g_diff.unsqueeze(-1)
|
||||
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
||||
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
||||
|
||||
// get last element in g_cumsum along chunk_size dimension (ne0)
|
||||
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
|
||||
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cumsum, 1, 1, g_cumsum->ne[2], g_cumsum->ne[3],
|
||||
g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3],
|
||||
(g_cumsum->ne[0] - 1) * ggml_element_size(g_cumsum));
|
||||
g_last = ggml_cont(ctx0, g_last);
|
||||
cb(g_last, "g_last", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
|
||||
cb(g_last_exp, "g_last_exp", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last));
|
||||
cb(g_diff, "g_diff", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
|
||||
ggml_tensor * g_diff_exp_t = ggml_reshape_4d(ctx0, g_diff_exp,
|
||||
1, chunk_size, n_chunks, g_diff_exp->ne[3]);
|
||||
|
||||
ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp_t);
|
||||
cb(key_gdiff, "key_gdiff", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * key_gdiff_t = ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff));
|
||||
cb(key_gdiff_t, "key_gdiff_t", il); // shape: (chunk_size, S_k, n_chunks, H_v * n_seqs)
|
||||
|
||||
// state to be updated per chunk
|
||||
ggml_tensor * new_state = state; // ggml_dup(ctx0, state);
|
||||
cb(new_state, "new_state", il); // shape: (S_v, S_v, H_v, n_seqs)
|
||||
|
||||
// shape after loop of chunks: (S_v, chunk_size, n_chunks, H_v * n_seqs)
|
||||
ggml_tensor * core_attn_out = nullptr;
|
||||
|
||||
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
|
||||
// shape: (S_k, chunk_size, 1, H_k * n_seqs)
|
||||
ggml_tensor * q_chunk = get_slice_2d(ctx0, q, chunk); // (no cont), next op: ggml_mul
|
||||
|
||||
// shape: (S_v, chunk_size, 1, H_v * n_seqs)
|
||||
ggml_tensor * v_chunk = get_slice_2d(ctx0, v, chunk); // (no cont), next op: ggml_repeat
|
||||
|
||||
// shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
ggml_tensor * gexp_chunk = get_slice_2d(ctx0, gexp, chunk); // (no cont), next op: ggml_mul
|
||||
|
||||
// shape: (chunk_size, 1, H_v * n_seqs)
|
||||
ggml_tensor * k_cumdecay_chunk = get_slice_2d(ctx0, k_cumdecay, chunk); // (no cont), next op: ggml_mul_mat
|
||||
|
||||
// attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
|
||||
// replaced by precomputed attn_kq
|
||||
ggml_tensor * attn_chunk = get_slice_2d(ctx0, attn_kq, chunk);
|
||||
cb(attn_chunk, "attn_chunk", il);
|
||||
|
||||
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
|
||||
|
||||
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
|
||||
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
|
||||
cb(v_prime, "v_prime_chunk", il); // shape: (S_v, 1, H_v * n_seqs)
|
||||
|
||||
// v_new = v_i - v_prime
|
||||
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
|
||||
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
|
||||
cb(v_new, "v_new_chunk", il);
|
||||
|
||||
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
|
||||
ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk);
|
||||
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
|
||||
cb(attn_inter, "attn_inter_chunk", il);
|
||||
|
||||
// core_attn_out[:, :, i] = attn_inter + attn @ v_new
|
||||
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn_chunk);
|
||||
cb(v_attn, "v_attn_chunk", il);
|
||||
|
||||
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
|
||||
cb(core_attn_out_chunk, "core_attn_out_chunk", il); // shape: (S_v, chunk_size, 1, H_v * n_seqs)
|
||||
|
||||
core_attn_out = core_attn_out == nullptr
|
||||
? core_attn_out_chunk
|
||||
: ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2);
|
||||
|
||||
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
||||
ggml_tensor * k_gdiff_t = get_slice_2d(ctx0, key_gdiff_t, chunk);
|
||||
//ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, k_gdiff, v_new); // this is slower on metal, why?
|
||||
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, k_gdiff_t);
|
||||
|
||||
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
||||
ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk));
|
||||
new_state = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last_chunk, gexp_last_chunk->ne[0], gexp_last_chunk->ne[1], H_v, n_seqs)),
|
||||
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
|
||||
}
|
||||
|
||||
// truncate padded tokens
|
||||
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
|
||||
S_v, n_tokens, H_v, n_seqs,
|
||||
ggml_row_size(core_attn_out->type, S_v),
|
||||
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
|
||||
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
|
||||
output_tokens = ggml_cont(ctx0, output_tokens);
|
||||
cb(output_tokens, "output_tokens", il);
|
||||
|
||||
// permute back to (S_v, H_v, n_tokens, n_seqs)
|
||||
output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
|
||||
output_tokens = ggml_cont(ctx0, output_tokens);
|
||||
|
||||
return {output_tokens, new_state};
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35::build_delta_net_autoregressive(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
int il) {
|
||||
const int64_t S_k = q->ne[0];
|
||||
const int64_t H_k = q->ne[1];
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
const int64_t n_seqs = q->ne[3];
|
||||
|
||||
const int64_t S_v = v->ne[0];
|
||||
const int64_t H_v = v->ne[1];
|
||||
|
||||
GGML_ASSERT(n_tokens == 1); // This function is optimized for single token processing
|
||||
GGML_ASSERT(v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
||||
|
||||
const float eps_norm = hparams.f_norm_rms_eps;
|
||||
|
||||
q = ggml_l2_norm(ctx0, q, eps_norm);
|
||||
k = ggml_l2_norm(ctx0, k, eps_norm);
|
||||
|
||||
const float scale = 1.0f / sqrtf(S_v);
|
||||
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
cb(k, "k_in", il);
|
||||
cb(v, "v_in", il);
|
||||
cb(beta, "beta_in", il);
|
||||
cb(g, "g_in", il);
|
||||
|
||||
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
||||
|
||||
ggml_tensor * g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs);
|
||||
ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
|
||||
|
||||
// Apply exponential to g_t
|
||||
g_t = ggml_exp(ctx0, g_t);
|
||||
|
||||
// Apply the gated delta rule for the single timestep
|
||||
// last_recurrent_state = last_recurrent_state * g_t
|
||||
state = ggml_mul(ctx0, state, g_t);
|
||||
|
||||
// kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2)
|
||||
ggml_tensor * k_t_unsqueezed = ggml_reshape_4d(ctx0, k, 1, S_v, H_v, n_seqs);
|
||||
ggml_tensor * kv_mem = ggml_mul(ctx0, state, k_t_unsqueezed);
|
||||
// we need to sum over dim=-2, so we transpose, sum, then transpose again
|
||||
kv_mem = ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kv_mem))));
|
||||
|
||||
// v_t = v.unsqueeze(2) (we insert the singleton dimension after n_seqs and H_v)
|
||||
ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
|
||||
// delta = (v_t - kv_mem) * beta_t
|
||||
ggml_tensor * v_diff = ggml_sub(ctx0, v_t, kv_mem); // both should be [S_v, 1, H_v, n_seqs]
|
||||
ggml_tensor * delta = ggml_mul(ctx0, v_diff, beta_t);
|
||||
|
||||
// last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta
|
||||
ggml_tensor * k_t_delta = ggml_mul(ctx0, ggml_repeat_4d(ctx0, k_t_unsqueezed, S_v, S_v, H_v, n_seqs), delta);
|
||||
state = ggml_add(ctx0, state, k_t_delta);
|
||||
|
||||
// Compute the attention output
|
||||
// core_attn_out = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2)
|
||||
ggml_tensor * q_t_unsqueezed = ggml_reshape_4d(ctx0, q, 1, S_v, H_v, n_seqs); // unsqueeze q_t
|
||||
ggml_tensor * state_q = ggml_mul(ctx0, state, q_t_unsqueezed);
|
||||
// again, since it's over dim = -2, transpose, sum, transpose back
|
||||
ggml_tensor * core_attn_out =
|
||||
ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, state_q))));
|
||||
|
||||
// core_attn_out should be [S_v, 1, H_v, n_seqs] after this
|
||||
cb(core_attn_out, "output_tokens", il);
|
||||
cb(state, "new_state", il);
|
||||
|
||||
return {core_attn_out, state};
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35::build_qkvz(
|
||||
ggml_tensor * input,
|
||||
int il) {
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
ggml_tensor * qkv_mixed = build_lora_mm(model.layers[il].wqkv, input);
|
||||
qkv_mixed = ggml_reshape_3d(ctx0, qkv_mixed, qkv_mixed->ne[0], n_seq_tokens, n_seqs);
|
||||
cb(qkv_mixed, "linear_attn_qkv_mixed", il);
|
||||
|
||||
ggml_tensor * z = build_lora_mm(model.layers[il].wqkv_gate, input);
|
||||
cb(z, "z", il);
|
||||
|
||||
return { qkv_mixed, z };
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen35::build_norm_gated(
|
||||
ggml_tensor * input,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * gate,
|
||||
int layer) {
|
||||
ggml_tensor * normalized = build_norm(input, weights, nullptr, LLM_NORM_RMS, layer);
|
||||
ggml_tensor * gated_silu = ggml_silu(ctx0, gate);
|
||||
|
||||
return ggml_mul(ctx0, normalized, gated_silu);
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen35::build_layer_attn(
|
||||
llm_graph_input_attn_kv * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * inp_pos,
|
||||
int * sections,
|
||||
int il) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
// Order: joint QG projection, QG split, Q norm, KV projection, K norm, RoPE, attention
|
||||
|
||||
// Qwen3Next uses a single Q projection that outputs query + gate
|
||||
ggml_tensor * Qcur_full = build_lora_mm(model.layers[il].wq, cur); // [ (n_embd_head * 2) * n_head, n_tokens ]
|
||||
cb(Qcur_full, "Qcur_full", il);
|
||||
|
||||
ggml_tensor * Qcur = ggml_view_3d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2 * n_head, 0);
|
||||
cb(Qcur, "Qcur_reshaped", il);
|
||||
|
||||
// Apply Q normalization
|
||||
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(Qcur, "Qcur_normed", il);
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
// Apply K normalization
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(Kcur, "Kcur_normed", il);
|
||||
|
||||
ggml_tensor * gate = ggml_view_3d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2 * n_head,
|
||||
ggml_element_size(Qcur_full) * n_embd_head);
|
||||
gate = ggml_cont_2d(ctx0, gate, n_embd_head * n_head, n_tokens);
|
||||
cb(gate, "gate_reshaped", il);
|
||||
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
// Apply MRoPE
|
||||
Qcur = ggml_rope_multi(
|
||||
ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_multi(
|
||||
ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
// Attention computation
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
|
||||
cur = build_attn(inp,
|
||||
nullptr, nullptr,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_pregate", il);
|
||||
|
||||
ggml_tensor * gate_sigmoid = ggml_sigmoid(ctx0, gate);
|
||||
cb(gate_sigmoid, "gate_sigmoid", il);
|
||||
|
||||
cur = ggml_mul(ctx0, cur, gate_sigmoid);
|
||||
cb(cur, "attn_gated", il);
|
||||
|
||||
cur = build_lora_mm(model.layers[il].wo, cur);
|
||||
cb(cur, "attn_output", il);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen35::build_layer_attn_linear(
|
||||
llm_graph_input_rs * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il) {
|
||||
const auto * mctx_cur = inp->mctx;
|
||||
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
const int64_t head_k_dim = hparams.ssm_d_state;
|
||||
const int64_t num_k_heads = hparams.ssm_n_group;
|
||||
const int64_t num_v_heads = hparams.ssm_dt_rank;
|
||||
const int64_t head_v_dim = d_inner / num_v_heads;
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
const auto kv_head = mctx_cur->get_head();
|
||||
|
||||
GGML_ASSERT(n_seqs != 0);
|
||||
GGML_ASSERT(ubatch.equal_seqs());
|
||||
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||
|
||||
// Input projections
|
||||
auto qkvz = build_qkvz(cur, il);
|
||||
ggml_tensor * qkv_mixed = qkvz.first;
|
||||
ggml_tensor * z = qkvz.second;
|
||||
|
||||
ggml_tensor * beta = build_lora_mm(model.layers[il].ssm_beta, cur);
|
||||
beta = ggml_reshape_4d(ctx0, beta, num_v_heads, 1, n_seq_tokens, n_seqs);
|
||||
cb(beta, "beta", il);
|
||||
ggml_tensor * alpha = build_lora_mm(model.layers[il].ssm_alpha, cur);
|
||||
alpha = ggml_cont_3d(ctx0, alpha, num_v_heads, n_seq_tokens, n_seqs);
|
||||
cb(alpha, "alpha", il);
|
||||
|
||||
ggml_tensor * alpha_biased = ggml_add(ctx0, alpha, model.layers[il].ssm_dt);
|
||||
ggml_tensor * alpha_softplus = ggml_softplus(ctx0, alpha_biased);
|
||||
cb(alpha_softplus, "a_softplus", il);
|
||||
ggml_tensor * gate = ggml_mul(ctx0, alpha_softplus, model.layers[il].ssm_a); // -A_log.exp() * softplus
|
||||
cb(gate, "gate", il);
|
||||
|
||||
// Get convolution states from cache
|
||||
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
|
||||
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
|
||||
|
||||
// bool use_precomputed_states = n_seq_tokens == 1 && mctx_cur->has_previous_state();
|
||||
|
||||
// Build the convolution states tensor
|
||||
ggml_tensor * conv_states = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
|
||||
cb(conv_states, "conv_states", il);
|
||||
|
||||
// Calculate convolution kernel size
|
||||
ggml_tensor * conv_kernel = model.layers[il].ssm_conv1d;
|
||||
const int64_t conv_kernel_size = conv_kernel->ne[0];
|
||||
const int64_t conv_channels = d_inner + 2 * hparams.ssm_n_group * hparams.ssm_d_state;
|
||||
conv_states = ggml_reshape_3d(ctx0, conv_states, conv_kernel_size - 1, conv_channels, n_seqs);
|
||||
cb(conv_states, "conv_states_reshaped", il);
|
||||
|
||||
qkv_mixed = ggml_permute(ctx0, qkv_mixed, 1, 0, 2, 3);
|
||||
cb(qkv_mixed, "qkv_mixed_permuted", il);
|
||||
|
||||
ggml_tensor * conv_input = ggml_concat(ctx0, conv_states, qkv_mixed, 0);
|
||||
cb(conv_input, "conv_input", il);
|
||||
|
||||
// Update convolution state cache
|
||||
// Extract the last (conv_kernel_size - 1) states from conv_input
|
||||
ggml_tensor * last_conv_states =
|
||||
ggml_view_3d(ctx0, conv_input, conv_kernel_size - 1, conv_channels, n_seqs, conv_input->nb[1],
|
||||
conv_input->nb[2], (conv_input->ne[0] - conv_states->ne[0]) * ggml_element_size(conv_input));
|
||||
cb(last_conv_states, "last_conv_states", il);
|
||||
|
||||
ggml_tensor * state_update_target =
|
||||
ggml_view_1d(ctx0, conv_states_all, (conv_kernel_size - 1) * conv_channels * n_seqs,
|
||||
kv_head * (conv_kernel_size - 1) * conv_channels * ggml_element_size(conv_states_all));
|
||||
cb(state_update_target, "state_update_target", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv_states, state_update_target));
|
||||
cb(conv_states_all, "conv_states_updated", il);
|
||||
|
||||
// Apply SSM convolution
|
||||
ggml_tensor * conv_output_proper = ggml_ssm_conv(ctx0, conv_input, conv_kernel);
|
||||
cb(conv_output_proper, "conv_output_raw", il);
|
||||
|
||||
ggml_tensor * conv_output_silu = ggml_silu(ctx0, conv_output_proper);
|
||||
cb(conv_output_silu, "conv_output_silu", il);
|
||||
|
||||
ggml_tensor * conv_qkv_mix = conv_output_silu;
|
||||
|
||||
// Calculate the total conv dimension
|
||||
int64_t qkv_dim = head_k_dim * num_k_heads * 2 + head_v_dim * num_v_heads;
|
||||
int64_t nb1_qkv = ggml_row_size(conv_qkv_mix->type, qkv_dim);
|
||||
|
||||
// Extract the convolved Q, K, V from conv_output
|
||||
ggml_tensor * q_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, nb1_qkv, 0);
|
||||
cb(q_conv, "q_conv", il);
|
||||
ggml_tensor * k_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, nb1_qkv,
|
||||
head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
||||
cb(k_conv, "k_conv", il);
|
||||
ggml_tensor * v_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_v_dim * num_v_heads, n_seq_tokens * n_seqs, nb1_qkv,
|
||||
2 * head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
||||
cb(v_conv, "v_conv", il);
|
||||
|
||||
// Unsqueeze them
|
||||
q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
||||
k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
||||
v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
|
||||
|
||||
ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs);
|
||||
state = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim * num_v_heads, 1, n_seqs);
|
||||
cb(state, "state_predelta", il);
|
||||
|
||||
// if head keys and value keys are different, repeat Q/K to match V's head count
|
||||
// V heads are in tiled order (from conversion), so simple tiled repeat works
|
||||
if (num_k_heads != num_v_heads) {
|
||||
GGML_ASSERT(num_v_heads % num_k_heads == 0);
|
||||
q_conv = ggml_repeat_4d(ctx0, q_conv, head_k_dim, num_v_heads, n_seq_tokens, n_seqs);
|
||||
k_conv = ggml_repeat_4d(ctx0, k_conv, head_k_dim, num_v_heads, n_seq_tokens, n_seqs);
|
||||
}
|
||||
|
||||
cb(q_conv, "q_conv_predelta", il);
|
||||
cb(k_conv, "k_conv_predelta", il);
|
||||
cb(v_conv, "v_conv_predelta", il);
|
||||
|
||||
// Choose between build_delta_net_chunking, build_delta_net_recurrent, and build_delta_net_autoregressive based on n_tokens
|
||||
std::pair<ggml_tensor *, ggml_tensor *> attn_out; // pair of (output, new_state)
|
||||
if (n_seq_tokens == 1) {
|
||||
attn_out = build_delta_net_autoregressive(q_conv, k_conv, v_conv, gate, beta, state, il);
|
||||
} else {
|
||||
attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, diag_mask, il);
|
||||
}
|
||||
ggml_tensor * output = attn_out.first;
|
||||
ggml_tensor * new_state = attn_out.second;
|
||||
cb(output, "attn_output", il);
|
||||
cb(new_state, "new_state", il);
|
||||
|
||||
// Update the recurrent states
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0, new_state,
|
||||
ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs,
|
||||
kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all))));
|
||||
|
||||
// Reshape both attn_out_final and z to 2D tensors for normalization
|
||||
// attn_out_final: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
|
||||
ggml_tensor * attn_out_2d_final = ggml_reshape_2d(ctx0, output, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
|
||||
|
||||
// z: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
|
||||
ggml_tensor * z_2d = ggml_reshape_2d(ctx0, z, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
|
||||
|
||||
// Apply gated normalization: self.norm(core_attn_out, z)
|
||||
ggml_tensor * attn_out_norm = build_norm_gated(attn_out_2d_final, model.layers[il].ssm_norm, z_2d, il);
|
||||
|
||||
// Final reshape: [head_dim, n_heads, n_tokens, n_seqs] -> [n_tokens, n_seqs, n_heads * head_dim]
|
||||
ggml_tensor * final_output = ggml_reshape_3d(ctx0, attn_out_norm, head_v_dim * num_v_heads, n_seq_tokens, n_seqs);
|
||||
cb(final_output, "final_output", il);
|
||||
|
||||
// Output projection
|
||||
cur = build_lora_mm(model.layers[il].ssm_out, final_output);
|
||||
cb(cur, "linear_attn_out", il);
|
||||
|
||||
// Reshape back to original dimensions
|
||||
cur = ggml_cont_2d(ctx0, cur, n_embd, n_seq_tokens * n_seqs);
|
||||
return cur;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen35::build_layer_ffn(ggml_tensor * cur, const int il) {
|
||||
// Qwen3.5 does not use MoE FFN
|
||||
GGML_ASSERT(model.layers[il].ffn_gate_inp == nullptr);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
|
@ -0,0 +1,774 @@
|
|||
#include "ggml.h"
|
||||
#include "models.h"
|
||||
|
||||
#define CHUNK_SIZE 64
|
||||
|
||||
llm_build_qwen35moe::llm_build_qwen35moe(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context_mamba(params), model(model) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
int sections[4];
|
||||
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
cb(inpL, "model.input_embed", -1);
|
||||
|
||||
auto * inp = build_inp_mem_hybrid();
|
||||
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
ggml_tensor * causal_mask =
|
||||
ggml_tri(ctx0, ggml_fill(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
|
||||
GGML_TRI_TYPE_LOWER);
|
||||
|
||||
ggml_tensor * identity = ggml_diag(ctx0, ggml_fill(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
|
||||
ggml_tensor * diag_mask = ggml_add(ctx0, causal_mask, identity);
|
||||
|
||||
ggml_build_forward_expand(gf, causal_mask);
|
||||
ggml_build_forward_expand(gf, identity);
|
||||
ggml_build_forward_expand(gf, diag_mask);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// Determine layer type and build appropriate attention mechanism
|
||||
if (hparams.is_recurrent(il)) {
|
||||
// Linear attention layer (gated delta net)
|
||||
cur = build_layer_attn_linear(inp->get_recr(), cur, causal_mask, identity, diag_mask, il);
|
||||
} else {
|
||||
// Full attention layer
|
||||
cur = build_layer_attn(inp->get_attn(), cur, inp_pos, sections, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
// Residual connection
|
||||
cur = ggml_add(ctx0, cur, inpSA);
|
||||
cb(cur, "attn_residual", il);
|
||||
|
||||
// Save the tensor before post-attention norm for residual connection
|
||||
ggml_tensor * ffn_residual = cur;
|
||||
|
||||
// Post-attention norm
|
||||
ggml_tensor * attn_post_norm = build_norm(cur, model.layers[il].attn_post_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(attn_post_norm, "attn_post_norm", il);
|
||||
|
||||
// MOE FFN layer
|
||||
cur = build_layer_ffn(attn_post_norm, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
// Residual connection for FFN - add to the tensor from before post_attention_layernorm
|
||||
cur = ggml_add(ctx0, cur, ffn_residual);
|
||||
cb(cur, "post_moe", il);
|
||||
|
||||
// Input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
cur = inpL;
|
||||
|
||||
// Final norm
|
||||
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// LM head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
// utility to get one slice from the third dimension
|
||||
// input dim: [x, y, c, b]
|
||||
// output dim: [x, y, 1, b]
|
||||
static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) {
|
||||
return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3],
|
||||
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35moe::build_delta_net_chunking(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il) {
|
||||
const int64_t S_k = q->ne[0];
|
||||
const int64_t H_k = q->ne[1];
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
const int64_t n_seqs = q->ne[3];
|
||||
|
||||
const int64_t S_v = v->ne[0];
|
||||
const int64_t H_v = v->ne[1];
|
||||
|
||||
GGML_ASSERT(v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
||||
|
||||
const float eps_norm = hparams.f_norm_rms_eps;
|
||||
|
||||
q = ggml_l2_norm(ctx0, q, eps_norm);
|
||||
k = ggml_l2_norm(ctx0, k, eps_norm);
|
||||
|
||||
const float scale = 1.0f / sqrtf(S_v);
|
||||
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
cb(k, "k_in", il);
|
||||
cb(v, "v_in", il);
|
||||
cb(beta, "beta_in", il);
|
||||
cb(g, "g_in", il);
|
||||
|
||||
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
|
||||
|
||||
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
|
||||
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
||||
|
||||
cb(q, "q_perm", il);
|
||||
cb(k, "k_perm", il);
|
||||
cb(v, "v_perm", il);
|
||||
cb(beta, "beta_perm", il);
|
||||
cb(g, "g_perm", il);
|
||||
cb(state, "state_in", il);
|
||||
|
||||
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
|
||||
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
|
||||
|
||||
// Do padding
|
||||
const int64_t chunk_size = CHUNK_SIZE;
|
||||
|
||||
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
|
||||
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
|
||||
|
||||
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
|
||||
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
|
||||
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
|
||||
g = ggml_pad(ctx0, g, pad, 0, 0, 0);
|
||||
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
|
||||
|
||||
cb(q, "q_pad", il);
|
||||
cb(k, "k_pad", il);
|
||||
cb(v, "v_pad", il);
|
||||
cb(beta, "beta_pad", il);
|
||||
cb(g, "g_pad", il);
|
||||
|
||||
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
|
||||
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
|
||||
|
||||
cb(v_beta, "v_beta", il);
|
||||
cb(k_beta, "k_beta", il);
|
||||
|
||||
q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
||||
v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
|
||||
beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
|
||||
|
||||
ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
|
||||
cb(g_cumsum, "g_cumsum", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * gcs_i = g_cumsum; // ggml_reshape_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs);
|
||||
ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
ggml_tensor * gcs_j_broadcast =
|
||||
ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
|
||||
cb(decay_mask, "decay_mask", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
decay_mask = ggml_exp(ctx0, decay_mask);
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
|
||||
ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
|
||||
|
||||
ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
|
||||
ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
|
||||
cb(attn, "attn_pre_solve", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
|
||||
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
|
||||
|
||||
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
|
||||
attn = ggml_mul(ctx0, lin_solve, causal_mask);
|
||||
attn = ggml_add(ctx0, attn, identity);
|
||||
cb(attn, "attn_solved", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
|
||||
|
||||
ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
|
||||
ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t);
|
||||
|
||||
ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
|
||||
cb(kbeta_gexp, "kbeta_gexp", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * k_cumdecay =
|
||||
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
|
||||
cb(k_cumdecay, "k_cumdecay", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * attn_kq = ggml_mul_mat(ctx0, k, q);
|
||||
attn_kq = ggml_mul(ctx0, attn_kq, decay_mask);
|
||||
attn_kq = ggml_mul(ctx0, attn_kq, diag_mask);
|
||||
cb(attn_kq, "attn_kq", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
|
||||
// vectorized calculation of key_gdiff
|
||||
// improved from the chunked version:
|
||||
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
|
||||
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
|
||||
// key_gdiff = key * g_diff.unsqueeze(-1)
|
||||
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
||||
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
||||
|
||||
// get last element in g_cumsum along chunk_size dimension (ne0)
|
||||
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
|
||||
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cumsum, 1, 1, g_cumsum->ne[2], g_cumsum->ne[3],
|
||||
g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3],
|
||||
(g_cumsum->ne[0] - 1) * ggml_element_size(g_cumsum));
|
||||
g_last = ggml_cont(ctx0, g_last);
|
||||
cb(g_last, "g_last", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
|
||||
cb(g_last_exp, "g_last_exp", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last));
|
||||
cb(g_diff, "g_diff", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
|
||||
ggml_tensor * g_diff_exp_t = ggml_reshape_4d(ctx0, g_diff_exp,
|
||||
1, chunk_size, n_chunks, g_diff_exp->ne[3]);
|
||||
|
||||
ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp_t);
|
||||
cb(key_gdiff, "key_gdiff", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * key_gdiff_t = ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff));
|
||||
cb(key_gdiff_t, "key_gdiff_t", il); // shape: (chunk_size, S_k, n_chunks, H_v * n_seqs)
|
||||
|
||||
|
||||
// state to be updated per chunk
|
||||
ggml_tensor * new_state = state; // ggml_dup(ctx0, state);
|
||||
cb(new_state, "new_state", il); // shape: (S_v, S_v, H_v, n_seqs)
|
||||
|
||||
// shape after loop of chunks: (S_v, chunk_size, n_chunks, H_v * n_seqs)
|
||||
ggml_tensor * core_attn_out = nullptr;
|
||||
|
||||
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
|
||||
// shape: (S_k, chunk_size, 1, H_k * n_seqs)
|
||||
ggml_tensor * q_chunk = get_slice_2d(ctx0, q, chunk); // (no cont), next op: ggml_mul
|
||||
|
||||
// shape: (S_v, chunk_size, 1, H_v * n_seqs)
|
||||
ggml_tensor * v_chunk = get_slice_2d(ctx0, v, chunk); // (no cont), next op: ggml_repeat
|
||||
|
||||
// shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
ggml_tensor * gexp_chunk = get_slice_2d(ctx0, gexp, chunk); // (no cont), next op: ggml_mul
|
||||
|
||||
// shape: (chunk_size, 1, H_v * n_seqs)
|
||||
ggml_tensor * k_cumdecay_chunk = get_slice_2d(ctx0, k_cumdecay, chunk); // (no cont), next op: ggml_mul_mat
|
||||
|
||||
// attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
|
||||
// replaced by precomputed attn_kq
|
||||
ggml_tensor * attn_chunk = get_slice_2d(ctx0, attn_kq, chunk);
|
||||
cb(attn_chunk, "attn_chunk", il);
|
||||
|
||||
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
|
||||
|
||||
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
|
||||
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
|
||||
cb(v_prime, "v_prime_chunk", il); // shape: (S_v, 1, H_v * n_seqs)
|
||||
|
||||
// v_new = v_i - v_prime
|
||||
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
|
||||
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
|
||||
cb(v_new, "v_new_chunk", il);
|
||||
|
||||
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
|
||||
ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk);
|
||||
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
|
||||
cb(attn_inter, "attn_inter_chunk", il);
|
||||
|
||||
// core_attn_out[:, :, i] = attn_inter + attn @ v_new
|
||||
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn_chunk);
|
||||
cb(v_attn, "v_attn_chunk", il);
|
||||
|
||||
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
|
||||
cb(core_attn_out_chunk, "core_attn_out_chunk", il); // shape: (S_v, chunk_size, 1, H_v * n_seqs)
|
||||
|
||||
core_attn_out = core_attn_out == nullptr
|
||||
? core_attn_out_chunk
|
||||
: ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2);
|
||||
|
||||
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
||||
ggml_tensor * k_gdiff_t = get_slice_2d(ctx0, key_gdiff_t, chunk);
|
||||
//ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, k_gdiff, v_new); // this is slower on metal, why?
|
||||
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, k_gdiff_t);
|
||||
|
||||
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
||||
ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk));
|
||||
new_state = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last_chunk, gexp_last_chunk->ne[0], gexp_last_chunk->ne[1], H_v, n_seqs)),
|
||||
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
|
||||
}
|
||||
|
||||
// truncate padded tokens
|
||||
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
|
||||
S_v, n_tokens, H_v, n_seqs,
|
||||
ggml_row_size(core_attn_out->type, S_v),
|
||||
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
|
||||
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
|
||||
output_tokens = ggml_cont(ctx0, output_tokens);
|
||||
cb(output_tokens, "output_tokens", il);
|
||||
|
||||
// permute back to (S_v, H_v, n_tokens, n_seqs)
|
||||
output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
|
||||
output_tokens = ggml_cont(ctx0, output_tokens);
|
||||
|
||||
return {output_tokens, new_state};
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35moe::build_delta_net_autoregressive(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
int il) {
|
||||
const int64_t S_k = q->ne[0];
|
||||
const int64_t H_k = q->ne[1];
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
const int64_t n_seqs = q->ne[3];
|
||||
|
||||
const int64_t S_v = v->ne[0];
|
||||
const int64_t H_v = v->ne[1];
|
||||
|
||||
GGML_ASSERT(n_tokens == 1); // This function is optimized for single token processing
|
||||
GGML_ASSERT(v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
||||
|
||||
const float eps_norm = hparams.f_norm_rms_eps;
|
||||
|
||||
q = ggml_l2_norm(ctx0, q, eps_norm);
|
||||
k = ggml_l2_norm(ctx0, k, eps_norm);
|
||||
|
||||
const float scale = 1.0f / sqrtf(S_v);
|
||||
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
cb(k, "k_in", il);
|
||||
cb(v, "v_in", il);
|
||||
cb(beta, "beta_in", il);
|
||||
cb(g, "g_in", il);
|
||||
|
||||
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
||||
|
||||
ggml_tensor * g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs);
|
||||
ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
|
||||
|
||||
// Apply exponential to g_t
|
||||
g_t = ggml_exp(ctx0, g_t);
|
||||
|
||||
// Apply the gated delta rule for the single timestep
|
||||
// last_recurrent_state = last_recurrent_state * g_t
|
||||
state = ggml_mul(ctx0, state, g_t);
|
||||
|
||||
// kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2)
|
||||
ggml_tensor * k_t_unsqueezed = ggml_reshape_4d(ctx0, k, 1, S_v, H_v, n_seqs);
|
||||
ggml_tensor * kv_mem = ggml_mul(ctx0, state, k_t_unsqueezed);
|
||||
// we need to sum over dim=-2, so we transpose, sum, then transpose again
|
||||
kv_mem = ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kv_mem))));
|
||||
|
||||
// v_t = v.unsqueeze(2) (we insert the singleton dimension after n_seqs and H_v)
|
||||
ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
|
||||
// delta = (v_t - kv_mem) * beta_t
|
||||
ggml_tensor * v_diff = ggml_sub(ctx0, v_t, kv_mem); // both should be [S_v, 1, H_v, n_seqs]
|
||||
ggml_tensor * delta = ggml_mul(ctx0, v_diff, beta_t);
|
||||
|
||||
// last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta
|
||||
ggml_tensor * k_t_delta = ggml_mul(ctx0, ggml_repeat_4d(ctx0, k_t_unsqueezed, S_v, S_v, H_v, n_seqs), delta);
|
||||
state = ggml_add(ctx0, state, k_t_delta);
|
||||
|
||||
// Compute the attention output
|
||||
// core_attn_out = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2)
|
||||
ggml_tensor * q_t_unsqueezed = ggml_reshape_4d(ctx0, q, 1, S_v, H_v, n_seqs); // unsqueeze q_t
|
||||
ggml_tensor * state_q = ggml_mul(ctx0, state, q_t_unsqueezed);
|
||||
// again, since it's over dim = -2, transpose, sum, transpose back
|
||||
ggml_tensor * core_attn_out =
|
||||
ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, state_q))));
|
||||
|
||||
// core_attn_out should be [S_v, 1, H_v, n_seqs] after this
|
||||
cb(core_attn_out, "output_tokens", il);
|
||||
cb(state, "new_state", il);
|
||||
|
||||
return {core_attn_out, state};
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen35moe::build_qkvz(
|
||||
ggml_tensor * input,
|
||||
int il) {
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
ggml_tensor * qkv_mixed = build_lora_mm(model.layers[il].wqkv, input);
|
||||
qkv_mixed = ggml_reshape_3d(ctx0, qkv_mixed, qkv_mixed->ne[0], n_seq_tokens, n_seqs);
|
||||
cb(qkv_mixed, "linear_attn_qkv_mixed", il);
|
||||
|
||||
ggml_tensor * z = build_lora_mm(model.layers[il].wqkv_gate, input);
|
||||
cb(z, "z", il);
|
||||
|
||||
return { qkv_mixed, z };
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen35moe::build_norm_gated(
|
||||
ggml_tensor * input,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * gate,
|
||||
int layer) {
|
||||
ggml_tensor * normalized = build_norm(input, weights, nullptr, LLM_NORM_RMS, layer);
|
||||
ggml_tensor * gated_silu = ggml_silu(ctx0, gate);
|
||||
|
||||
return ggml_mul(ctx0, normalized, gated_silu);
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen35moe ::build_layer_attn(
|
||||
llm_graph_input_attn_kv * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * inp_pos,
|
||||
int * sections,
|
||||
int il) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
// Order: joint QG projection, QG split, Q norm, KV projection, K norm, RoPE, attention
|
||||
|
||||
// Qwen3Next uses a single Q projection that outputs query + gate
|
||||
ggml_tensor * Qcur_full = build_lora_mm(model.layers[il].wq, cur); // [ (n_embd_head * 2) * n_head, n_tokens ]
|
||||
cb(Qcur_full, "Qcur_full", il);
|
||||
|
||||
ggml_tensor * Qcur = ggml_view_3d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2 * n_head, 0);
|
||||
cb(Qcur, "Qcur_reshaped", il);
|
||||
|
||||
// Apply Q normalization
|
||||
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(Qcur, "Qcur_normed", il);
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
// Apply K normalization
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(Kcur, "Kcur_normed", il);
|
||||
|
||||
ggml_tensor * gate = ggml_view_3d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2 * n_head,
|
||||
ggml_element_size(Qcur_full) * n_embd_head);
|
||||
gate = ggml_cont_2d(ctx0, gate, n_embd_head * n_head, n_tokens);
|
||||
cb(gate, "gate_reshaped", il);
|
||||
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
// Apply IMRoPE
|
||||
Qcur = ggml_rope_multi(
|
||||
ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_multi(
|
||||
ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
// Attention computation
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
|
||||
cur = build_attn(inp,
|
||||
nullptr, nullptr,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_pregate", il);
|
||||
|
||||
ggml_tensor * gate_sigmoid = ggml_sigmoid(ctx0, gate);
|
||||
cb(gate_sigmoid, "gate_sigmoid", il);
|
||||
|
||||
cur = ggml_mul(ctx0, cur, gate_sigmoid);
|
||||
cb(cur, "attn_gated", il);
|
||||
|
||||
cur = build_lora_mm(model.layers[il].wo, cur);
|
||||
cb(cur, "attn_output", il);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen35moe ::build_layer_attn_linear(
|
||||
llm_graph_input_rs * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il) {
|
||||
const auto * mctx_cur = inp->mctx;
|
||||
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
const int64_t head_k_dim = hparams.ssm_d_state;
|
||||
const int64_t num_k_heads = hparams.ssm_n_group;
|
||||
const int64_t num_v_heads = hparams.ssm_dt_rank;
|
||||
const int64_t head_v_dim = d_inner / num_v_heads;
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
const auto kv_head = mctx_cur->get_head();
|
||||
|
||||
GGML_ASSERT(n_seqs != 0);
|
||||
GGML_ASSERT(ubatch.equal_seqs());
|
||||
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||
|
||||
// Input projections
|
||||
auto qkvz = build_qkvz(cur, il);
|
||||
ggml_tensor * qkv_mixed = qkvz.first;
|
||||
ggml_tensor * z = qkvz.second;
|
||||
|
||||
ggml_tensor * beta = build_lora_mm(model.layers[il].ssm_beta, cur);
|
||||
beta = ggml_reshape_4d(ctx0, beta, num_v_heads, 1, n_seq_tokens, n_seqs);
|
||||
cb(beta, "beta", il);
|
||||
ggml_tensor * alpha = build_lora_mm(model.layers[il].ssm_alpha, cur);
|
||||
alpha = ggml_cont_3d(ctx0, alpha, num_v_heads, n_seq_tokens, n_seqs);
|
||||
cb(alpha, "alpha", il);
|
||||
|
||||
ggml_tensor * alpha_biased = ggml_add(ctx0, alpha, model.layers[il].ssm_dt);
|
||||
ggml_tensor * alpha_softplus = ggml_softplus(ctx0, alpha_biased);
|
||||
cb(alpha_softplus, "a_softplus", il);
|
||||
ggml_tensor * gate = ggml_mul(ctx0, alpha_softplus, model.layers[il].ssm_a); // -A_log.exp() * softplus
|
||||
cb(gate, "gate", il);
|
||||
|
||||
// Get convolution states from cache
|
||||
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
|
||||
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
|
||||
|
||||
// bool use_precomputed_states = n_seq_tokens == 1 && mctx_cur->has_previous_state();
|
||||
|
||||
// Build the convolution states tensor
|
||||
ggml_tensor * conv_states = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
|
||||
cb(conv_states, "conv_states", il);
|
||||
|
||||
// Calculate convolution kernel size
|
||||
ggml_tensor * conv_kernel = model.layers[il].ssm_conv1d;
|
||||
const int64_t conv_kernel_size = conv_kernel->ne[0];
|
||||
const int64_t conv_channels = d_inner + 2 * hparams.ssm_n_group * hparams.ssm_d_state;
|
||||
conv_states = ggml_reshape_3d(ctx0, conv_states, conv_kernel_size - 1, conv_channels, n_seqs);
|
||||
cb(conv_states, "conv_states_reshaped", il);
|
||||
|
||||
qkv_mixed = ggml_permute(ctx0, qkv_mixed, 1, 0, 2, 3);
|
||||
cb(qkv_mixed, "qkv_mixed_permuted", il);
|
||||
|
||||
ggml_tensor * conv_input = ggml_concat(ctx0, conv_states, qkv_mixed, 0);
|
||||
cb(conv_input, "conv_input", il);
|
||||
|
||||
// Update convolution state cache
|
||||
// Extract the last (conv_kernel_size - 1) states from conv_input
|
||||
ggml_tensor * last_conv_states =
|
||||
ggml_view_3d(ctx0, conv_input, conv_kernel_size - 1, conv_channels, n_seqs, conv_input->nb[1],
|
||||
conv_input->nb[2], (conv_input->ne[0] - conv_states->ne[0]) * ggml_element_size(conv_input));
|
||||
cb(last_conv_states, "last_conv_states", il);
|
||||
|
||||
ggml_tensor * state_update_target =
|
||||
ggml_view_1d(ctx0, conv_states_all, (conv_kernel_size - 1) * conv_channels * n_seqs,
|
||||
kv_head * (conv_kernel_size - 1) * conv_channels * ggml_element_size(conv_states_all));
|
||||
cb(state_update_target, "state_update_target", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv_states, state_update_target));
|
||||
cb(conv_states_all, "conv_states_updated", il);
|
||||
|
||||
// Apply SSM convolution
|
||||
ggml_tensor * conv_output_proper = ggml_ssm_conv(ctx0, conv_input, conv_kernel);
|
||||
cb(conv_output_proper, "conv_output_raw", il);
|
||||
|
||||
ggml_tensor * conv_output_silu = ggml_silu(ctx0, conv_output_proper);
|
||||
cb(conv_output_silu, "conv_output_silu", il);
|
||||
|
||||
ggml_tensor * conv_qkv_mix = conv_output_silu;
|
||||
|
||||
// Calculate the total conv dimension
|
||||
int64_t qkv_dim = head_k_dim * num_k_heads * 2 + head_v_dim * num_v_heads;
|
||||
int64_t nb1_qkv = ggml_row_size(conv_qkv_mix->type, qkv_dim);
|
||||
|
||||
// Extract the convolved Q, K, V from conv_output
|
||||
ggml_tensor * q_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, nb1_qkv, 0);
|
||||
cb(q_conv, "q_conv", il);
|
||||
ggml_tensor * k_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, nb1_qkv,
|
||||
head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
||||
cb(k_conv, "k_conv", il);
|
||||
ggml_tensor * v_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_v_dim * num_v_heads, n_seq_tokens * n_seqs, nb1_qkv,
|
||||
2 * head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
||||
cb(v_conv, "v_conv", il);
|
||||
|
||||
// Unsqueeze them
|
||||
q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
||||
k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
||||
v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
|
||||
|
||||
ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs);
|
||||
state = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim * num_v_heads, 1, n_seqs);
|
||||
cb(state, "state_predelta", il);
|
||||
|
||||
// if head keys and value keys are different, repeat Q/K to match V's head count
|
||||
// V heads are in tiled order (from conversion), so simple tiled repeat works
|
||||
if (num_k_heads != num_v_heads) {
|
||||
GGML_ASSERT(num_v_heads % num_k_heads == 0);
|
||||
q_conv = ggml_repeat_4d(ctx0, q_conv, head_k_dim, num_v_heads, n_seq_tokens, n_seqs);
|
||||
k_conv = ggml_repeat_4d(ctx0, k_conv, head_k_dim, num_v_heads, n_seq_tokens, n_seqs);
|
||||
}
|
||||
|
||||
cb(q_conv, "q_conv_predelta", il);
|
||||
cb(k_conv, "k_conv_predelta", il);
|
||||
cb(v_conv, "v_conv_predelta", il);
|
||||
|
||||
// Choose between build_delta_net_chunking, build_delta_net_recurrent, and build_delta_net_autoregressive based on n_tokens
|
||||
std::pair<ggml_tensor *, ggml_tensor *> attn_out; // pair of (output, new_state)
|
||||
if (n_seq_tokens == 1) {
|
||||
attn_out = build_delta_net_autoregressive(q_conv, k_conv, v_conv, gate, beta, state, il);
|
||||
} else {
|
||||
attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, diag_mask, il);
|
||||
}
|
||||
ggml_tensor * output = attn_out.first;
|
||||
ggml_tensor * new_state = attn_out.second;
|
||||
cb(output, "attn_output", il);
|
||||
cb(new_state, "new_state", il);
|
||||
|
||||
// Update the recurrent states
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0, new_state,
|
||||
ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs,
|
||||
kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all))));
|
||||
|
||||
// Reshape both attn_out_final and z to 2D tensors for normalization
|
||||
// attn_out_final: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
|
||||
ggml_tensor * attn_out_2d_final = ggml_reshape_2d(ctx0, output, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
|
||||
|
||||
// z: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
|
||||
ggml_tensor * z_2d = ggml_reshape_2d(ctx0, z, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
|
||||
|
||||
// Apply gated normalization: self.norm(core_attn_out, z)
|
||||
ggml_tensor * attn_out_norm = build_norm_gated(attn_out_2d_final, model.layers[il].ssm_norm, z_2d, il);
|
||||
|
||||
// Final reshape: [head_dim, n_heads, n_tokens, n_seqs] -> [n_tokens, n_seqs, n_heads * head_dim]
|
||||
ggml_tensor * final_output = ggml_reshape_3d(ctx0, attn_out_norm, head_v_dim * num_v_heads, n_seq_tokens, n_seqs);
|
||||
cb(final_output, "final_output", il);
|
||||
|
||||
// Output projection
|
||||
cur = build_lora_mm(model.layers[il].ssm_out, final_output);
|
||||
cb(cur, "linear_attn_out", il);
|
||||
|
||||
// Reshape back to original dimensions
|
||||
cur = ggml_cont_2d(ctx0, cur, n_embd, n_seq_tokens * n_seqs);
|
||||
return cur;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen35moe ::build_layer_ffn(ggml_tensor * cur, const int il) {
|
||||
// Check if this is an MoE layer
|
||||
GGML_ASSERT(model.layers[il].ffn_gate_inp != nullptr);
|
||||
|
||||
ggml_tensor * moe_out =
|
||||
build_moe_ffn(cur,
|
||||
model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used, LLM_FFN_SILU,
|
||||
true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
||||
// Add shared experts if present - following Qwen3Next reference implementation
|
||||
if (model.layers[il].ffn_up_shexp != nullptr) {
|
||||
ggml_tensor * ffn_shexp =
|
||||
build_ffn(cur,
|
||||
model.layers[il].ffn_up_shexp, NULL, NULL,
|
||||
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
||||
model.layers[il].ffn_down_shexp, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(ffn_shexp, "ffn_shexp", il);
|
||||
|
||||
// Apply shared expert gating as in the reference implementation
|
||||
// The shared expert has its own gate that is sigmoided
|
||||
// Note: ffn_gate_inp_shexp is the shared expert gate (outputs 1 value per token)
|
||||
ggml_tensor * shared_gate = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
|
||||
cb(shared_gate, "shared_expert_gate", il);
|
||||
|
||||
// Apply sigmoid to the gate
|
||||
shared_gate = ggml_sigmoid(ctx0, shared_gate);
|
||||
cb(shared_gate, "shared_expert_gate_sigmoid", il);
|
||||
|
||||
|
||||
// Apply the gate to the shared expert output
|
||||
ffn_shexp = ggml_mul(ctx0, ffn_shexp, shared_gate);
|
||||
cb(ffn_shexp, "ffn_shexp_gated", il);
|
||||
|
||||
cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
cur = moe_out;
|
||||
}
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
|
@ -182,7 +182,9 @@ ggml_cgraph * clip_graph_qwen3vl::build() {
|
|||
model.mm_1_w, model.mm_1_b,
|
||||
ffn_op_type::FFN_GELU, -1);
|
||||
|
||||
embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
|
||||
if (deepstack_features) {
|
||||
embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0);
|
||||
} // concat along the feature dimension
|
||||
|
||||
// build the graph
|
||||
ggml_build_forward_expand(gf, embeddings);
|
||||
|
|
|
|||
Loading…
Reference in New Issue