- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"
For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.
* Adjust to pytorch
* Add antialiasing upscale
* Increase number of patches to 1024
* Handle default marker insertion for LFM2
* Switch to flag
* Reformat
* Cuda implementation of antialias kernel
* Change placement in ops.cpp
* consistent float literals
* Pad only for LFM2
* Address PR feedback
* Rollback default marker placement changes
* Fallback to CPU implementation for antialias implementation of upscale
* vulkan: Implement top-k
Each pass launches workgroups that each sort 2^N elements (where N is usually 7-10)
and discards all but the top K. Repeat until only K are left. And there's a fast
path when K==1 to just find the max value rather than sorting.
* fix pipeline selection
* vulkan: Add N-ary search algorithm for topk
* microoptimizations
* vulkan: support larger argsort
This is an extension of the original bitonic sorting shader that puts the
temporary values in global memory and when more than 1024 threads are needed
it runs multiple workgroups and synchronizes through a pipelinebarrier.
To improve the memory access pattern, a copy of the float value is kept with
the index value. I've applied this same change to the original shared memory
version of the shader, which is still used when ncols <= 1024.
* Reduce the number of shader variants. Use smaller workgroups when doing a single pass, for a modest perf boost
* reduce loop overhead
* run multiple cols per invocation, to reduce barrier overhead
* vulkan: add LOG operation support for F32 and F16
Part of #14909.
* vulkan: Fix LOG operation types
* docs: Update operation support documentation for Vulkan LOG operation
* vulkan: fix log_f16 shader
* docs: restore missing LOG test cases and regenerate ops.md
* vulkan: change graph_compute to be async and enable get_tensor_async
This allows some additional CPU/GPU overlap for large pp workloads. Also seems
to help a bit for token gen, maybe getting rid of a small bubble between
graph_compute and get_tensor.
Async set and copy functions seem to be very rarely used, so I didn't enable
them because I didn't have a good way to test them.
The async commands need to be ordered against each other, so put them all on
the compute queue. The non-async commands still use the transfer queue.
The fence for graph_compute/get_tensor_async is submitted and waited on in
ggml_vk_synchronize.
* fix thread safety errors
* teardown context cleanly
* Handle async read to non-pinned dst
* vulkan : implement upscale with bicubic interpolation
* cuda : implement upscale with bicubic interpolation
* tests : add ggml_interpolate with GGML_SCALE_MODE_BICUBIC to backend tests
* adapt OpenCL backend to not support the OP in that case so tests don't fail
* print scale mode & flags in test-backend-ops
* vulkan: use all device-local heaps for memory availability reporting
Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>
* use all available heaps for iGPU memory reporting
* Allow multiple memory types per buffer request for devices with split heaps
---------
Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>
This change combines the rms_norm+mul and rope+view+set_rows fusions to
allow fusing the whole sequence together. This comes up in Qwen3, Bailing,
and some other models.
The std::map pipeline_flash_attn_f32_f16 could be searched and inserted at the
same time, which needs to hold the lock. To be safe, hold the lock for all of
ggml_vk_load_shaders.
* vulkan: remove the need for the dryrun
Allocate pipelines and descriptor sets when requested.
Reallocate the prealloc buffers when needed, and flush any pending work
before reallocating.
For rms_partials and total_mul_mat_bytes, use the sizes computed the last time
the graph was executed.
* remove dryrun parameters
* vulkan: fuse mul_mat+add and mul_mat_id+add_id
The fusion is only applied for the mat-vec mul paths.
* Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* fix 32b build
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Experimenting crash fix
* added assert for aborting and fixed comment
* changed to check if a pipeline is empty or not
* Moved function in class definition
* replaced with is_empty
* Modified is_empty to check only unaligned pipelines
This pattern appears in a lot of models, the rope operation is applied right
before storing into the KV cache (usually on the K tensor).
Add a path to some of the rope shaders that computes the destination address
based on the set_rows tensor. Compile variants of the shader with D_TYPE of
f16 (the usual KV cache type).
Add a src3 operand to ggml_vk_op_f32 - sometimes rope uses three srcs and needs
the fourth for the row indices.
Add fused_ops_write_mask to indicate which intermediate tensors need to write
their results to memory. Skipping writing the roped K value helps to allow more
nodes to run concurrently.
Add logic to ggml_vk_graph_optimize to make ROPE+VIEW+SET_ROWS consecutive. It
rarely starts out that way in the graph.
Add new backend tests.
* vulkan: Update topk_moe fusion to handle gpt's late softmax
Based on #16649.
* Add ggml_check_edges
* Add sync logging to show fusion effects
* handle clamp added in #16655
* Update ggml/src/ggml-impl.h
Co-authored-by: Diego Devesa <slarengh@gmail.com>