vulkan: Implement SOLVE_TRI (#17486)
* vulkan: Implement SOLVE_TRI * load B matrix through shared memory * use FLOAT_TYPE
This commit is contained in:
parent
c386114922
commit
4abef75f2c
|
|
@ -399,6 +399,18 @@ struct vk_conv2d_pipeline_state {
|
|||
}
|
||||
};
|
||||
|
||||
struct vk_solve_tri_pipeline_state {
|
||||
vk_solve_tri_pipeline_state(uint32_t N, uint32_t K)
|
||||
: N(N), K(K) {}
|
||||
|
||||
uint32_t N, K;
|
||||
|
||||
bool operator<(const vk_solve_tri_pipeline_state &b) const {
|
||||
return std::tie(N, K) <
|
||||
std::tie(b.N, b.K);
|
||||
}
|
||||
};
|
||||
|
||||
enum shader_reduction_mode {
|
||||
SHADER_REDUCTION_MODE_SHMEM,
|
||||
SHADER_REDUCTION_MODE_HYBRID,
|
||||
|
|
@ -711,6 +723,7 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_cumsum_f32;
|
||||
vk_pipeline pipeline_argmax_f32;
|
||||
vk_pipeline pipeline_count_equal_i32;
|
||||
std::map<vk_solve_tri_pipeline_state, vk_pipeline> pipeline_solve_tri_f32;
|
||||
vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16;
|
||||
vk_pipeline pipeline_im2col_3d_f32, pipeline_im2col_3d_f32_f16;
|
||||
vk_pipeline pipeline_timestep_embedding_f32;
|
||||
|
|
@ -4002,6 +4015,14 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_count_equal_i32, "count_equal_i32", count_equal_i32_len, count_equal_i32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, { device->subgroup_size }, 1);
|
||||
|
||||
for (auto &s : device->pipeline_solve_tri_f32) {
|
||||
const vk_solve_tri_pipeline_state &state = s.first;
|
||||
ggml_vk_create_pipeline(
|
||||
device, s.second, "solve_tri_f32",
|
||||
solve_tri_f32_len, solve_tri_f32_data, "main", 3,
|
||||
sizeof(vk_op_binary_push_constants), {1, 1, 1}, { 0, state.N, state.K }, 1, true);
|
||||
}
|
||||
|
||||
#define IM2COL(bda) \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32 ## bda ## _len, im2col_f32 ## bda ## _data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true); \
|
||||
ggml_vk_create_pipeline(device, device->pipeline_im2col_3d_f32, "im2col_3d_f32", im2col_3d_f32 ## bda ## _len, im2col_3d_f32 ## bda ## _data, "main", 2, sizeof(vk_op_im2col_3d_push_constants), {512, 1, 1}, { 512 }, 1, true); \
|
||||
|
|
@ -8496,6 +8517,26 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
return ctx->device->pipeline_cumsum_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
|
||||
vk_solve_tri_pipeline_state solve_tri_pipeline_state(src0->ne[0], src1->ne[0]);
|
||||
|
||||
vk_pipeline pipeline = nullptr;
|
||||
|
||||
{
|
||||
std::lock_guard<std::recursive_mutex> guard(ctx->device->mutex);
|
||||
auto it = ctx->device->pipeline_solve_tri_f32.find(solve_tri_pipeline_state);
|
||||
if (it != ctx->device->pipeline_solve_tri_f32.end()) {
|
||||
pipeline = it->second;
|
||||
} else {
|
||||
ctx->device->pipeline_solve_tri_f32[solve_tri_pipeline_state] = pipeline = std::make_shared<vk_pipeline_struct>();
|
||||
}
|
||||
}
|
||||
|
||||
return pipeline;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_ARGMAX:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) {
|
||||
return ctx->device->pipeline_argmax_f32;
|
||||
|
|
@ -8832,6 +8873,18 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
elements = { nr, 1, 1 };
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
{
|
||||
uint32_t nr = (uint32_t)(ne02 * ne03);
|
||||
if (nr > 262144) {
|
||||
elements = { 512, 512, CEIL_DIV(nr, 262144) };
|
||||
} else if (nr > 512) {
|
||||
elements = { 512, CEIL_DIV(nr, 512), 1 };
|
||||
} else {
|
||||
elements = { nr, 1, 1 };
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GGML_OP_RMS_NORM:
|
||||
if (ctx->do_add_rms_partials) {
|
||||
// Run one element per thread, 128 threads per workgroup
|
||||
|
|
@ -10260,6 +10313,21 @@ static void ggml_vk_count_equal(ggml_backend_vk_context * ctx, vk_context& subct
|
|||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_COUNT_EQUAL, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
||||
}
|
||||
|
||||
static void ggml_vk_solve_tri(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SOLVE_TRI, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
0,
|
||||
0.0f, 0.0f, 0,
|
||||
});
|
||||
}
|
||||
|
||||
static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const int32_t s0 = dst->op_params[0];
|
||||
const int32_t s1 = dst->op_params[1];
|
||||
|
|
@ -11871,6 +11939,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|||
case GGML_OP_COUNT_EQUAL:
|
||||
ggml_vk_count_equal(ctx, compute_ctx, src0, src1, node);
|
||||
|
||||
break;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
ggml_vk_solve_tri(ctx, compute_ctx, src0, src1, node);
|
||||
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
ggml_vk_im2col(ctx, compute_ctx, src0, src1, node);
|
||||
|
|
@ -13916,6 +13988,25 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|||
}
|
||||
return false;
|
||||
}
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
{
|
||||
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
||||
const vk_device& device = ggml_vk_get_device(ctx->device);
|
||||
|
||||
if (op->type != GGML_TYPE_F32 || op->src[0]->type != GGML_TYPE_F32) {
|
||||
return false;
|
||||
}
|
||||
const uint32_t N = op->src[0]->ne[0];
|
||||
const uint32_t K = op->src[1]->ne[0];
|
||||
// K dimension limited to workgroup size
|
||||
if (K > 128) {
|
||||
return false;
|
||||
}
|
||||
if (N * N * sizeof(float) + N * K * sizeof(float) > device->properties.limits.maxComputeSharedMemorySize) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
case GGML_OP_ARGMAX:
|
||||
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
|
|
@ -14588,6 +14679,8 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
|||
tensor_clone = ggml_argmax(ggml_ctx, src_clone[0]);
|
||||
} else if (tensor->op == GGML_OP_COUNT_EQUAL) {
|
||||
tensor_clone = ggml_count_equal(ggml_ctx, src_clone[0], src_clone[1]);
|
||||
} else if (tensor->op == GGML_OP_SOLVE_TRI) {
|
||||
tensor_clone = ggml_solve_tri(ggml_ctx, src_clone[0], src_clone[1], true, true, false);
|
||||
} else if (tensor->op == GGML_OP_IM2COL) {
|
||||
const int32_t s0 = tensor->op_params[0];
|
||||
const int32_t s1 = tensor->op_params[1];
|
||||
|
|
|
|||
|
|
@ -0,0 +1,72 @@
|
|||
#version 450
|
||||
|
||||
#include "types.glsl"
|
||||
#include "generic_binary_head.glsl"
|
||||
|
||||
layout (constant_id = 1) const uint N = 64;
|
||||
layout (constant_id = 2) const uint K = 32;
|
||||
|
||||
layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
uint a_base, b_base, x_base;
|
||||
|
||||
FLOAT_TYPE get_a(uint r, uint c) {
|
||||
return FLOAT_TYPE(data_a[a_base + r * p.nb01 + c * p.nb00]);
|
||||
}
|
||||
|
||||
FLOAT_TYPE get_b(uint r, uint c) {
|
||||
return FLOAT_TYPE(data_b[b_base + r * p.nb11 + c * p.nb10]);
|
||||
}
|
||||
|
||||
void store_x(uint r, uint c, FLOAT_TYPE v) {
|
||||
data_d[x_base + r * p.nb21 + c * p.nb20] = D_TYPE(v);
|
||||
}
|
||||
|
||||
shared FLOAT_TYPE shA[N * N];
|
||||
shared FLOAT_TYPE shB[N * K];
|
||||
|
||||
void main() {
|
||||
const uint batch = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
|
||||
const uint tid = gl_LocalInvocationID.x;
|
||||
|
||||
if (batch >= p.ne02 * p.ne03) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint i3 = batch / p.ne22;
|
||||
const uint i2 = batch % p.ne22;
|
||||
a_base = get_aoffset() + i2 * p.nb02 + i3 * p.nb03;
|
||||
b_base = get_boffset() + i2 * p.nb12 + i3 * p.nb13;
|
||||
x_base = get_doffset() + i2 * p.nb22 + i3 * p.nb23;
|
||||
|
||||
// Load the A matrix into shA
|
||||
[[unroll]] for (uint i = 0; i < N * N; i += gl_WorkGroupSize.x) {
|
||||
uint idx = i + tid;
|
||||
if (((N * N) % gl_WorkGroupSize.x == 0) || idx < N * N) {
|
||||
shA[idx] = get_a(idx / N, idx % N);
|
||||
}
|
||||
}
|
||||
// Load the B matrix into shB
|
||||
[[unroll]] for (uint i = 0; i < N * K; i += gl_WorkGroupSize.x) {
|
||||
uint idx = i + tid;
|
||||
if (((N * K) % gl_WorkGroupSize.x == 0) || idx < N * K) {
|
||||
shB[idx] = get_b(idx / K, idx % K);
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
|
||||
FLOAT_TYPE X[N];
|
||||
// Each thread solves one column
|
||||
if (tid < K) {
|
||||
[[unroll]] for (int r = 0; r < N; ++r) {
|
||||
FLOAT_TYPE b = shB[r * K + tid];
|
||||
// Compute x[r,c] = (b[r,c] - sum(a[r,c]*x[c])) / a[r,r]
|
||||
[[unroll]] for (int c = 0; c < r; ++c) {
|
||||
b -= shA[r * N + c] * X[c];
|
||||
}
|
||||
FLOAT_TYPE x = b / shA[r * N + r];
|
||||
X[r] = x;
|
||||
store_x(r, tid, x);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -944,6 +944,8 @@ void process_shaders() {
|
|||
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
|
||||
string_to_spv("opt_step_sgd_f32", "opt_step_sgd.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
|
||||
|
||||
string_to_spv("solve_tri_f32", "solve_tri.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
|
||||
|
||||
for (auto transpose : {false, true}) {
|
||||
for (auto unroll : {false, true}) {
|
||||
for (auto a_f16 : {false, true}) {
|
||||
|
|
|
|||
Loading…
Reference in New Issue