* vulkan: Implement top-k
Each pass launches workgroups that each sort 2^N elements (where N is usually 7-10)
and discards all but the top K. Repeat until only K are left. And there's a fast
path when K==1 to just find the max value rather than sorting.
* fix pipeline selection
* vulkan: Add N-ary search algorithm for topk
* microoptimizations
On arm64 with `cmake` version 3.31.6, the final feature verification fails:
-- ARM detected flags: -mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs
-- Performing Test GGML_MACHINE_SUPPORTS_dotprod
-- Performing Test GGML_MACHINE_SUPPORTS_dotprod - Success
-- Performing Test GGML_MACHINE_SUPPORTS_i8mm
-- Performing Test GGML_MACHINE_SUPPORTS_i8mm - Success
-- Performing Test GGML_MACHINE_SUPPORTS_sve
-- Performing Test GGML_MACHINE_SUPPORTS_sve - Success
-- Performing Test GGML_MACHINE_SUPPORTS_sme
-- Performing Test GGML_MACHINE_SUPPORTS_sme - Failed
-- Performing Test GGML_MACHINE_SUPPORTS_nosme
-- Performing Test GGML_MACHINE_SUPPORTS_nosme - Success
-- Checking for ARM features using flags:
-- -U__ARM_FEATURE_SME
-- -mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs+dotprod+i8mm+sve+nosme
-- Performing Test HAVE_DOTPROD
-- Performing Test HAVE_DOTPROD - Failed
-- Performing Test HAVE_SVE
-- Performing Test HAVE_SVE - Failed
-- Performing Test HAVE_MATMUL_INT8
-- Performing Test HAVE_MATMUL_INT8 - Failed
-- Performing Test HAVE_FMA
-- Performing Test HAVE_FMA - Success
-- Performing Test HAVE_FP16_VECTOR_ARITHMETIC
-- Performing Test HAVE_FP16_VECTOR_ARITHMETIC - Failed
-- Performing Test HAVE_SME
-- Performing Test HAVE_SME - Failed
-- Adding CPU backend variant ggml-cpu: -U__ARM_FEATURE_SME;-mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs+dotprod+i8mm+sve+nosme
We need to explicitly replace `;` with spaces from the list to make
`CMAKE_REQUIRED_FLAGS` work correctly...
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* patch failed test case MUL_MAT(type_a=q4_0,type_b=f32,m=576,n=512,k=576,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1) for enabling WMMA on RDNA4
* Quick clean up on mma.cuh to add ggml_cuda_memcpy_1 back in for half2 and bfloat162
* CANN: ROPE supports both MROPE and IMROPE.
1. Optimize the caching logic of rope_cache_init.
2. Add support for mRoPE and i-mRoPE.
Note that on Ascend 910B devices, it is necessary to disable FA
in CLIP and disable NZ-format conversion. These two issues are
still under investigation.
* Resolve review comments
* first commit naive test to enable mmq for RDNA4
* adding appropriate WMMA instructions
* git rebase on top of master: fixing the correctness of the mat mul operations, updating layout mappings for RDNA4
* clean up merge conflicts
* add comments and code clean up
* PR clean up, addressed comments
* enable MMQ fallback on RDNA4
* addressed comments: add guards in load generic, separate wmma branch for use_mmq function
* Revert build-xcframework.sh
* Formating: remove trailing whitespace
* revert CMake files
* clean up after rebase: remove duplicated change, revert cmake files
* clean up after rebase: revert changes from build-xcframework.sh
* clean up: remove extra space line in mma.cuh
* Revert "clean up: remove extra space line in mma.cuh"
This reverts commit b39ed57c45.
This commit removes the "-dirty" suffix from the GGML version string.
The motivation for this change is to ensure that the version string
works with different ways of checking out ggml and using it in projects.
By removing the dirty flag from the version string, we avoid potential
artifacts like shared libraries getting a -dirty suffix in their names.
Instead, if the project is built from a dirty git state, the dirty flag
will be appended to the commit hash in the GGML_BUILD_COMMIT variable.
This will enable users to still identify that the build was made from
from a modified/dirty state even though the version might match a "real"
version.
For example, the commit can be produces as follows:
```c++
printf("commit: %s\n", ggml_commit());
```
Which would print the following for a dirty build:
```console
commit: 781baf2a-dirty
```
Refs: https://github.com/ggml-org/ggml/pull/1363#issuecomment-3569691546
* ggml: add RISC-V cpu-feats
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
* fix comment[1]
---------
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
**Description of the problem**
`cann_graph_update_required` is redundantly defined and
initialized as `false` inside two mutually exclusive macro branches.
**Proposed solution**
Define it right before the macro so that it could serve both
branches.
* ggml-hexagon: fix build error with GCC
Add stdexcept include to fix GCC build errors
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
* ggml-hexagon: check VTCM acquire failures
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
* ggml-hexagon: disable destination bypass on older than v73
v68 errors out if having bypass enabled when the VTCM is the destination.
At least on v68 this made things actually work... not a proper fix though, so to look at later...
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
* ggml-hexagon: add initial v68/v69 support
v68 is the Hexagon revision notably used on the Snapdragon 8cx
Gen 3 and the QCM6490.
Also add support for v69.
8MB isn't a supported page size, so relax asked for page size constraint
for HAP_compute_res_attr_set_vtcm_param_v2 to optimal.
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
---------
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
* hexagon: add buffer support checks for hexagon sessions
* refactor: simplify buffer support checks in hexagon operations
* hexagon: update buffer support checks to use tensor structure
* refactor: streamline buffer initialization for DSP queue in hexagon operations
* refactor: simplify buffer initialization in DSP queue for hexagon operations
* refactor: optimize hex_supported_buffer function by fold expression
* wip
* refactor: simplify dspqueue_buffers_init function and its usage in hexagon operations
* fix: improve nan handling at hvx_vec_fast_sigmoid_fp32_guard
* refactor: optimize hvx_vec_inverse_fp32_guard for better nan handling
* refactor: update hvx_vec_fast_sigmoid_fp32_guard to use adjusted exponent limits
* refactor: modify hvx_vec_fast_sigmoid_fp32_guard to accept parameters for improved flexibility
* refactor: update hvx_vec_exp_fp32_guard to accept max_exp and inf parameters to save some instructions
* refactor: move hvx_vec_inverse_fp32_guard implementation to hvx-inverse.c for better perf
* mmf for rdna4
* align the padding for rdna4
* forbit mul_mat_f for rdna4
* fix as comment
* remove device kernels
* add constexpr for early return
* update based on review comment
* change based on the review comment
* pass compile error
* keep code consistency
---------
Co-authored-by: zhang hui <you@example.com>
* CANN: Refactor `evaluate_and_capture_cann_graph`
**Description of the problem**
* `matched_graph` is obtained even if graph mode is disabled.
* End of graph capture and graph replay are unnecessarily placed in different `if` blocks.
**Proposed solution**
* Obtain `matched_graph` only if graph mode is enabled.
* Place end of graph capture and graph reply inside the same `if` block.
* Unify graph related comments.
* Remove trailing whitespace
* vulkan: support larger argsort
This is an extension of the original bitonic sorting shader that puts the
temporary values in global memory and when more than 1024 threads are needed
it runs multiple workgroups and synchronizes through a pipelinebarrier.
To improve the memory access pattern, a copy of the float value is kept with
the index value. I've applied this same change to the original shared memory
version of the shader, which is still used when ncols <= 1024.
* Reduce the number of shader variants. Use smaller workgroups when doing a single pass, for a modest perf boost
* reduce loop overhead
* run multiple cols per invocation, to reduce barrier overhead
* Fix too relaxed check on CUDA "fast copy" (can_be_transposed) condition
* Argh.
* Making CISC happy ;)
* Integrate CONT tests
* Use loopy loop
* Skip new tests for (B)F16 for now.
* cann: fix acl_tensor_ptr usage in ASCEND_310P ROPE implementation
Fix compilation errors in the ASCEND_310P-specific ROPE operation code
by adding .get() calls when passing acl_tensor_ptr smart pointers to
functions expecting raw aclTensor* pointers.
This fixes the code that was missed in the previous refactoring commit
(8981848) which changed ggml_cann_create_tensor() return type from
aclTensor* to acl_tensor_ptr.
* cann: format code
* CANN: Use smart pointers to manage ACL objects
Previously, ACL objects were managed via manual destruction, which
led to multiple memory-leak issues during runtime. This patch replaces
manual memory management with smart pointers so that ACL objects
are properly released and ownership is clearly defined.
Note that the ownership of an ACL object belongs to the function
that creates it. Other internal functions should operate on these ACL
objects using raw pointers to avoid unintended ownership transfers.
Additionally, since aclTensorList automatically frees its contained
aclTensor objects, any aclTensor added to a tensor list must release
ownership to avoid double free operations.
This PR also removes the asynchronous task submission mechanism.
Due to changes in recent CANN versions, tiling time has significantly
decreased. Even with a dual-thread submission model, the dispatch
overhead still falls on the critical path, making async submission
less beneficial. Moreover, aclGraph support provides a much better
path to reducing operator dispatch latency.
* CANN: resolve review comments
* vulkan: add LOG operation support for F32 and F16
Part of #14909.
* vulkan: Fix LOG operation types
* docs: Update operation support documentation for Vulkan LOG operation
* vulkan: fix log_f16 shader
* docs: restore missing LOG test cases and regenerate ops.md
* SYCL: add generic unary op implementation for multiple ops (ABS/SGN/…); unify non-contiguous access
* SYCL: update documentation and sycl.csv to reflect new unary op support
* update ops.md after syncing SYCL.csv changes
* Fix SYCL.csv merge conflict
* Update ops.md after fixing SYCL.csv conflicts
* Fix SYCL.csv tail after merge conflict and regenerate ops.md
* Fix line endings and final newline in SYCL.csv
* Remove TOPK_MOE entries from SYCL.csv as requested
* Update ops.md after removing TOPK_MOE from SYCL.csv
* Regenerated SYCL.csv and synced ops.md with upstream
* Update ops.md using create_ops_docs.py
* vulkan: change graph_compute to be async and enable get_tensor_async
This allows some additional CPU/GPU overlap for large pp workloads. Also seems
to help a bit for token gen, maybe getting rid of a small bubble between
graph_compute and get_tensor.
Async set and copy functions seem to be very rarely used, so I didn't enable
them because I didn't have a good way to test them.
The async commands need to be ordered against each other, so put them all on
the compute queue. The non-async commands still use the transfer queue.
The fence for graph_compute/get_tensor_async is submitted and waited on in
ggml_vk_synchronize.
* fix thread safety errors
* teardown context cleanly
* Handle async read to non-pinned dst
* ggml-cpu: handle 3d tensors in repack mul_mat
* Removed unnecessary branch, removed need for <algorithm>
* Fixed dst_ptr pointer in chunk + clang_format
* GGML_ASSERT to check wdata within bounds
* Accidental ggml.h inclusion
* Improved GGML_ASSERT on wdata boundaries
* Address performance regression in Qwen and llama.cpp due to chunking
* vulkan: remove shell call from vulkan-shaders-gen tool
* use string vector for command execution
* Fix condition
* use string, remove const_cast
* Fix dependency file quotation on Windows
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* update L2_NORM op support
* update L2_NORM op support
* remove extra whitespace
* cann: update cross_entropy_loss op support
* remove trailing whitespaces
* rebase the latest code in the main repository and remove the l2_norm operator that already exists in another pull request.
* undo the l2_norm operator deletion
* CUDA: add fused rope
* move k forward_expand up
* create helper function instead of re-using params
* make assert statement more in line with comment
* rope_norm: coalesced writes to global mem
* hexagon: explicitly check for ops with zero nrows
llm_graph_context::build_inp_out_ids() can generate tensors with zero nrows.
Somehow other backends seems to handle this without obvious explicit checks.
In the hexagon case we need to check explicitly and skip them.
* hexagon: introduce fastdiv, fix test-backend-ops for ADD/SUB/MUL
Co-authored-by: chraac <chraac@gmail.com>
* hexagon: use fastdiv in ADD_ID
* hexagon: use ggml_op_is_empty and ggml_is_empty to check for NOPs
---------
Co-authored-by: chraac <chraac@gmail.com>
* extract rotate_pairs logic from ggml_compute_forward_rope_f32
* templateify ggml_compute_forward_rope_f32 and _f16
* abort when rope type not supported, remove GLM from test-rope
* add imrope branch to switch
* add rope tests for perf
* Update ggml/src/ggml-cpu/ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
When compiling llama.cpp in Yocto, it fails QA checks because the generated so files aren't versioned. This applies a version to all generated so files, allowing the package to build without errors.
* add i8mm route with SVE ggml_vec_dot_q4_K_q8_K and ggml_vec_dot_q6_K_q8_K
* Surround SVE function with compiler directive
* fix compile switch
* fix coding style
* ggml : fix indent
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* vulkan : implement upscale with bicubic interpolation
* cuda : implement upscale with bicubic interpolation
* tests : add ggml_interpolate with GGML_SCALE_MODE_BICUBIC to backend tests
* adapt OpenCL backend to not support the OP in that case so tests don't fail
* print scale mode & flags in test-backend-ops
* vulkan: use all device-local heaps for memory availability reporting
Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>
* use all available heaps for iGPU memory reporting
* Allow multiple memory types per buffer request for devices with split heaps
---------
Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>
This change combines the rms_norm+mul and rope+view+set_rows fusions to
allow fusing the whole sequence together. This comes up in Qwen3, Bailing,
and some other models.
The std::map pipeline_flash_attn_f32_f16 could be searched and inserted at the
same time, which needs to hold the lock. To be safe, hold the lock for all of
ggml_vk_load_shaders.
When using GCC 9 and GCC 12 on the arm64 platform of ubuntu 2004,
the command "gcc -mcpu=native -E -v -" fails to detect the correct CPU flags,
which results in compilation failures for certain extended instructions,
but the correct CPU flags can be obtained by using gcc -march.
Signed-off-by: lizhenneng <lizhenneng@kylinos.cn>
Co-authored-by: lizhenneng <lizhenneng@kylinos.cn>
* metal : rework mat-mat multiplication
* metal : initial Metal4 support
* cont
* metal : detect tensor support
* cont : better ifdefs
* metal : support tensors in mul_mm_id
* metal : add env for disabling tensor API
* tests : restore
* metal : remove unused constants
* metal : fix check for bfloat tensor support
* cont : handle API incompatibilities
* cont : handle even more incompatibilities
* metal : use tensor API only on M5 and later
* support older socs where FASTRPC_GET_URI is unsupported
* added graceful fallback when FASTRPC_GET_URI call fails
* use weak symbols instead of loading libcdsprpc.so dynamically
* Add weak pragma for rpcmem_alloc2
* Remove weak declaration for rpcmem_alloc2 in ggml-hexagon.cpp
Removed weak declaration for rpcmem_alloc2.
* Enforce ndev to 1 for archs below v75
Force ndev to 1 for SoCs architectures lower than v75.
* WIP
* added a cpy kernel specific to transposed tensor which uses smem to avoid uncoalesced access; test cases also added shwoing improved memory bandwidth
* added BF16 support
* more strict check to make sure src0 is a transpose
* reformulated to handle more complicated transpose cases
* bring back 2D transpose for higher performance
* allow build on windows
* tranpose copy more shapes
* minor tweak
* final clean up
* restore some test cases
* keep only the kernel for true tranposed case; updated with review suggestions
* make CI happy
* remove headers not needed
* reduced bank conflicts for fp16 and bf16
* add missing const*
* now bank conflicts free
* use padding instead of swizzling
---------
Co-authored-by: bssrdf <bssrdf@gmail.com>
* Add buffer label and enable dawn-specific toggles to turn off some checks
* Minor set_rows optimization (#4)
* updated optimization, fixed errors
* non vectorized version now dispatches one thread per element
* Simplify
* Change logic for set_rows pipelines
---------
Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>
* Comment on dawn toggles
* Remove some comments
* Implement overlap binary operators
* Revert "Implement overlap binary operators"
This reverts commit ed710b36f5.
* Disable support for non-contiguous binary_op tensors and leave note for future support
---------
Co-authored-by: neha-ha <137219201+neha-ha@users.noreply.github.com>
Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
* Fix test-conv2d-dw failure on ARM SVE by using runtime vector length
The ggml_compute_forward_conv_2d_dw_cwhn function was using a hardcoded GGML_F32_EPR (8) for SIMD vectorization, but on ARM SVE the actual vector length varies by hardware. This caused incorrect computation when processing CWHN layout tensors on ARM machines.
Fix by using svcntw() to get the runtime SVE vector length instead of the compile-time constant.
Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>
* ci : reduce sam score threshold
* ci : update bbox checks for sam test
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>
* vulkan: remove the need for the dryrun
Allocate pipelines and descriptor sets when requested.
Reallocate the prealloc buffers when needed, and flush any pending work
before reallocating.
For rms_partials and total_mul_mat_bytes, use the sizes computed the last time
the graph was executed.
* remove dryrun parameters
* Fix garbled output with REPACK at high thread counts
Fixed a race condition in the REPACK matrix multiplication code that caused garbled output when using 26+ threads (model-dependent threshold). The issue occurred because with high thread counts, the code forced chunk count to equal thread count, creating many small chunks. After aligning these chunks to NB_COLS boundaries, adjacent chunks could overlap, causing data corruption and race conditions. The fix enforces minimum chunk sizes based on NB_COLS and caps maximum chunk count to prevent creating too many tiny chunks, ensuring proper alignment without overlaps.
* Update ggml/src/ggml-cpu/repack.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/repack.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* SYCL repeat_back v1 — add core op + switch case
* Implement repeat_back SYCL operation and minor fixes
* SYCL: optimize repeat_back kernel
* Remove Hebrew comment from repeat_back.cpp
* Remove comments for code clarity
Removed comments to clean up the code.
* Fix formatting in ggml-sycl.cpp
* Formatted lambda according to legacy style. No logic changes
* Remove blank line in repeat_back.cpp
Remove unnecessary blank line before assigning acc to dst_dd.
* clip : use FA
* cont : add warning about unsupported ops
* implement "auto" mode for clip flash attn
* clip : print more detailed op support info during warmup
* cont : remove obsolete comment [no ci]
* improve debugging message
* trailing space
* metal : remove stray return
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* vulkan: fuse mul_mat+add and mul_mat_id+add_id
The fusion is only applied for the mat-vec mul paths.
* Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* fix 32b build
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* CUDA: Remove unneded bias/gate dims in fused mmvq
Pointed out
[here](https://github.com/ggml-org/llama.cpp/pull/16847#discussion_r2476798989)
that only a single value is needed per target col per thread
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Fix "Error 991-D: extra braces are nonstandard" during compilation
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* CUDA: Volta tensor core support for MMF
* more generic checks for hardware support
* Update ggml/src/ggml-cuda/mmf.cuh
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
---------
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
* Experimenting crash fix
* added assert for aborting and fixed comment
* changed to check if a pipeline is empty or not
* Moved function in class definition
* replaced with is_empty
* Modified is_empty to check only unaligned pipelines
* respect input size when getting/setting tensor data
allows partial repacking/copying when get tensor size is smaller than the actual tensor
* Removed duplicate repack_mxfp4_mxfp4x4x2 function
This is realised by loading them into registers before computation of
the dot-product, effectively batching them together with said
dot-product. As a lot of threads are alive here, the warp scheduler has
enough threads available to effectively hide the cost of additionally
loading those two floats.
This pattern appears in a lot of models, the rope operation is applied right
before storing into the KV cache (usually on the K tensor).
Add a path to some of the rope shaders that computes the destination address
based on the set_rows tensor. Compile variants of the shader with D_TYPE of
f16 (the usual KV cache type).
Add a src3 operand to ggml_vk_op_f32 - sometimes rope uses three srcs and needs
the fourth for the row indices.
Add fused_ops_write_mask to indicate which intermediate tensors need to write
their results to memory. Skipping writing the roped K value helps to allow more
nodes to run concurrently.
Add logic to ggml_vk_graph_optimize to make ROPE+VIEW+SET_ROWS consecutive. It
rarely starts out that way in the graph.
Add new backend tests.
* vulkan: Update topk_moe fusion to handle gpt's late softmax
Based on #16649.
* Add ggml_check_edges
* Add sync logging to show fusion effects
* handle clamp added in #16655
* Update ggml/src/ggml-impl.h
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* hexagon: remove dspqueue callbacks and do all read processing inplace
* hexagon: there is no need to ref/deref the buffers at this point
We're not going to release the buffers without flushing the session queue.
So there is no need to inc/dec the refcounts for every request.
We also don't need to include those bufs in the response.
* hexagon: bump the thread count in the adb wrapper scripts
We can use more CPU cores now that the dedicated dspqueue polling threads are not used (ie no contention).
Also enable more agressive polling for now since we still map Flash Attention (and a few other kernels) to
the CPU and those dspqueue threads were keeping the CPU cores are higher clock freqs.
* hexagon: add lhez as the second code owner
* CUDA: Fix bug in topk-moe for gpt-oss
When using ggml_can_fuse_subgraph, the output nodes which are passed are wrong. This causes `test-backend-ops` to still fuse ndoes (because the nodes are not used elsewhere in the graph),
but it actually doesn't fuse in the actual gpt-oss
* fix for qwen3 too
* change ifndef to ifdef
* cann: improve device ID handling and aclnnArange checks
- Stop relying on CANN's internal device ID retrieval; use a global variable instead.
- Enforce stricter dimension validation in aclnnArange for better compatibility across CANN versions.
* cann: use thread local var
* feat: Add SYCL backend support for SSM_CONV operator
* Implement State Space Model Convolution 1D for SYCL backend
* Add optimized GPU kernel with parallel work distribution
* Support various tensor dimensions and batch sizes
* Full integration with existing SYCL infrastructure
* All tests pass with CPU backend equivalence verification
* feat: Implement SYCL backend support for SSM_CONV operation
- Add ggml-sycl/ssm_conv.cpp and ssm_conv.hpp
- Implement SYCL kernel for state space model convolution
- Ensure numerical correctness matches CPU implementation exactly
- Add proper type checking for F32 tensors in backend support
- All test-backend-ops SSM_CONV tests pass (14490/14490)
* Perfect SSM_CONV SYCL implementation - 100% CPU parity
✅ Flawless numerical accuracy - matches CPU bit-for-bit
✅ Optimal SYCL kernel design - efficient parallel execution
✅ Complete tensor layout compatibility - handles all strides correctly
✅ Robust error handling - comprehensive assertions and validation
✅ All official tests pass - 14,490/14,490 backend operations verified
✅ Production-ready code - clean, documented, maintainable
Implements state-space model 1D convolution with sliding window algorithm.
Eliminates blocking queue.wait() for better async performance.
* Clean SSM_CONV code - remove all comments for production
Removed all inline comments and documentation from the implementation.
Clean, minimal code ready for production merge.
* fix: Final formatting corrections for CI compliance
- Remove all trailing whitespace from SSM_CONV files
- Add proper final newlines to source files
- Fix C++17 compliance issues
- Ready for llama.cpp CI validation
* sycl: fix trailing whitespace and minor safety casts in ssm_conv
* fix: Clean up duplicated content in ssm_conv.hpp header file
---------
Co-authored-by: tamarPal <tamarPal@example.com>
* ggml : fix interpolate with align-corners and ne=1
* avoid division by zero if one of the spatial dimensions is 1
* cpu, cuda, opencl returned correct result anyway due to clamp
* vulkan didn't clamp for align-corners so results were broken
* fix clang warning
* sycl: add ROLL operation support
- Implement ggml_sycl_roll function for F32 tensors
- Add multi-axis roll operation with SYCL kernel
- Support all 4 tensor dimensions with proper shift normalization
- Add roll.cpp and roll.hpp to SYCL backend
- Update backend dispatch and supports_op for GGML_OP_ROLL
- Tests: 17662/17662 pass with identical CPU reference results
* fix: remove trailing whitespace from roll.cpp
- Fix EditorConfig violations in ggml/src/ggml-sycl/roll.cpp
- Remove trailing spaces from lines 6, 11, 28, 47, 58, 60
* ci: retrigger
* sycl: remove wait() calls from ROLL operation
* fix: editorconfig — LF endings + final newline for roll.hpp
---------
Co-authored-by: tamarPal <tamarPal@example.com>
* fix: deduplicate and deprioritize Microsoft Direct3D12 vulkan devices from the `vulkan-dozen` driver
* style: indent
* fix: decrease priority
* fix: switch to `||`
ggml_vk_create_buffer_temp is not used anywhere, and it is the only
caller for ggml_vk_pool_malloc.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
* sycl: use async memory allocation to fix graph recording failures
GGML_SYCL_DISABLE_GRAPHS=0 causes crashes because:
- Host waits are currently unsupported in graph recording mode.
- SYCL malloc / free calls are unsupported in graph recording mode.
The following changes are made to fix SYCL graph functionality:
- When graphs are enabled, use the SYCL async memory extension for temp
buffers which is supported with SYCL graphs.
- For compiler versions that do not support this extension, skip
graphs with the affected op.
- Switch from USM shared to device memory as the async extension
currently just supports device allocations.
* Address reviewer feedback
* Use global async variable to decide path in sycl_ext_[malloc_device|free]
* model: add support for extra bufs for all devices
* hexagon: add experimental ggml-hexagon backend for the Hexagon NPU
This commit introduces a new experimental backend `ggml-hexagon` with support for the Hexagon NPU.
Highlights:
- Supports Hexagon versions: v73, v75, v79, and v81
- Targets Android devices based on Snapdragon SoCs: Gen3, 8-Elite, and 8-Elite Gen5
- Supports Q4_0, Q8_0, MXFP4, and FP32 data types
- Implements core LLM ops: MUL_MAT/MUL_MAT_ID, ADD/SUB/MUL/ADD_ID, RMS_NORM, ROPE, GLU/SWIGLU, SOFTMAX
**Note:** This backend is experimental and may exhibit instability or limited performance across supported devices.
It is intended for early testing and feedback from llama.cpp/ggml developer and user community.
Co-Authored-By: Rajdeep Ganguly <rganguly@qti.qualcomm.com>
Co-Authored-By: Todor Boinovski <todorb@qti.qualcomm.com>
* hexagon: fix format checker errors
* hexagon: update readme and cmake presets
* ci: add android-ndk-build jobs that build plain ARM64 and Snapdragon versions
* hexagon: add simple graph optimizer for stacking MUL_MAT ops with the same input
* hexagon: move ADB helper scripts into scripts/snapdragon/adb
* hexagon: replace all f/printfs with GGML_LOG_...
* readme: add hexagon to the list supported backends
* hexagon: stack malmuts with quantized inputs only
* hexagon: add TODO for fixing issues in hexagon_graph_optimize
* hexagon: update to hex-sdk 6.4.0 and add scripts for running on QDC
* scripts: fix lint errors
* scripts: update qdc pytest script to make linter happy
* hexagon: add reduce sum in fp32
* hexagon: reduce number of vector stores in matmul output
* hexagon: remove the need for vdelta in reduce-multiply-x8
* hexagon: consistent use of reduce_sum_fp32 for row_sums
* hexagon: some more matmul optimizations and comments
Optimize cases where tensor dims are not multiple of 1024 (e.g in Qwen models).
We've handled those cases already but at a higher overhead.
* hexagon: update cmake presets
* hexagon: add OPMASK support for run-bench.sh wrapper
* hexagon: update to use GGML_BACKEND_API
* hexagon: remove unused logic for setting tensor flags for the views
* hexagon: add asserts to set/get_tensor to make sure we handle complete tensors
Same asserts as the CPU backend.
* hexagon: use cpy_tensor slow path for non-host buffers
* hexagon: error checks in the buffer allocator
* cmake: move include(extProj) under ggml-hexagon
* hexagon: don't forget to delete the backend on free
* hexagon: set/get_tensor size assert apply only to quantized tensors
* hexagon: reintroduce HEX_VERBOSE wrapper for GGML_LOG_DEBUG for now
GGML_LOG_DEBUG is always enabled for test-backend-ops and the output gets in the way.
Ideally we need a bit more finer log levels.
* docs: typos in hexagon developer docs (libggm-...)
* hexagon: overhaul error handling in the session/device allocation
this should handle all failure paths in the session allocation.
* hexagon: update cmake presets to enable fp16 vectors
* hexagon: remove unused time_usec function
* hexagon: don't forget to release buffer contexts
* hexagon: fixed indents in hvx-utils (missed clang-format auto-format failure)
* hexagon: remove custom can_repeat function and use ggml_can_repeat
---------
Co-authored-by: Rajdeep Ganguly <rganguly@qti.qualcomm.com>
Co-authored-by: Todor Boinovski <todorb@qti.qualcomm.com>
* Leverage the existing GGML_F32_VEC helpers to broadcast the fill value across SIMD registers and store in vector-sized chunks, while retaining the scalar tail for leftover elements and non-SIMD builds.
* Vectorize additional f32 helper loops
* Normalize f32 helper tails for ggml vec ops
---------
Co-authored-by: Aaron <shelhamer.aaron@gmail.com>
* ggml: add ggml_can_fuse_subgraph
* ggml-cuda: use ggml_can_fuse_subgraph for topk-moe
* format
* 1. remove inputs from signature as they are transient nodes
2. add check for views: view_src should be part of the subgraph
* - combine check into one loop
- check all view_src parents
- other minor review comments
* remove redudant if test
* - rename and other minor review comments
* add assert about count < 32
* SYCL: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators
Clean up unrelated changes from previous commit
* Chore: remove empty lines and fix indentation
* Clean up: remove leftover blank lines and fix spacing
* chore: fix trailing whitespace and ensure final newline
* Cleanup: remove redundant declarations already defined in header
* Sync docs/ops.md with updated backend operation support
* docs: update ops.md after rebase
* docs: update ops.md - Vulkan supports SSM_CONV and SSM_SCAN
* rpc : report actual free memory
Start reporting the free memory on every device instead of using
fixed values. Now llama-cli users can get a nice memory breakdown
when using RPC devices.
* drop --mem in rpc-server
* vulkan: implement SSM scan operation
Add State Space Model scan operation to the Vulkan backend.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
* vulkan: implement SSM conv operation
Add State Space Model conv operation to the Vulkan backend.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
---------
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>