Commit Graph

7960 Commits

Author SHA1 Message Date
Prashant Vithule 81737e6188
Merge 2c87ef415b into 423bee462b 2026-02-04 13:33:37 -03:00
Georgi Gerganov 423bee462b
ci : fix sanitize workflow to enable ggml sanitizers too (#19323) 2026-02-04 15:12:03 +02:00
Xuan-Son Nguyen 8abcc70a74
model: (qwen3next) correct vectorized key_gdiff calculation (#19324)
* model: (qwen3next) correct vectorized key_gdiff calculation

* move transpose to outside of loop
2026-02-04 13:09:58 +01:00
Georgi Gerganov eaba92c3dc
tests : add non-cont, inplace rope tests (#19296)
* tests : add non-cont, inplace rope tests

* cont : exercise dim 3

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* cont : more dim3 exercises

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2026-02-04 12:45:21 +02:00
Daniel Bevenius 6ab881b7c3
model-conversion : add tensor-info.py utility (#18954)
This commit adds a new python script that can be used to print tensors
information from a tensor in a safetensors model.

The motivation for this is that during model conversion work it can
sometimes be useful to verify the shape of tensors in the original
model. While it is possible to print the tensors when loading the model
this can be slow when working with larger models.
With this script it is possible to quickly query tensor shapes.

Example usage:
```console
(venv) $ ./scripts/utils/tensor-info.py --help
usage: tensor-info.py [-h] [-m MODEL_PATH] [-l] [tensor_name]

Print tensor information from a safetensors model

positional arguments:
  tensor_name           Name of the tensor to inspect

options:
  -h, --help            show this help message and exit
  -m MODEL_PATH, --model-path MODEL_PATH
                        Path to the model directory (default: MODEL_PATH environment variable)
  -l, --list            List unique tensor patterns in the model (layer numbers replaced with #)
```

Listing tensor names:
```console
(venv) $ ./scripts/utils/tensor-info.py -m ~/work/ai/models/google/embeddinggemma-300m -l
embed_tokens.weight
layers.#.input_layernorm.weight
layers.#.mlp.down_proj.weight
layers.#.mlp.gate_proj.weight
layers.#.mlp.up_proj.weight
layers.#.post_attention_layernorm.weight
layers.#.post_feedforward_layernorm.weight
layers.#.pre_feedforward_layernorm.weight
layers.#.self_attn.k_norm.weight
layers.#.self_attn.k_proj.weight
layers.#.self_attn.o_proj.weight
layers.#.self_attn.q_norm.weight
layers.#.self_attn.q_proj.weight
layers.#.self_attn.v_proj.weight
norm.weight
```

Printing a specific tensor's information:
```console
(venv) $ ./scripts/utils/tensor-info.py -m ~/work/ai/models/google/embeddinggemma-300m layers.0.input_layernorm.weight
Tensor: layers.0.input_layernorm.weight
File:   model.safetensors
Shape:  [768]
```
2026-02-04 10:40:53 +01:00
Georgi Gerganov d838c22bb3
spec : fix the check-rate logic of ngram-simple (#19261)
* spec : fix the check-rate logic of ngram-simple

* cont : refactor + fix checks
2026-02-04 10:39:53 +02:00
Daniel Bevenius 25f40ca65f
completion : simplify batch (embd) processing (#19286)
* completion : simplify batch (embd) processing

This commit simplifies the processing of embd by removing the for loop
that currently exists which uses params.n_batch as its increment. This
commit also removes the clamping of n_eval as the size of embd is always
at most the size of params.n_batch.

The motivation is to clarify the code as it is currently a little
confusing when looking at this for loop in isolation and thinking that
it can process multiple batches.

* add an assert to verify n_eval is not greater than n_batch
2026-02-04 05:43:28 +01:00
Kevin Pouget 015deb9048
ggml-virtgpu: make the code thread safe (#19204)
* ggml-virtgpu: regenerate_remoting.py: add the ability to deprecate a function

* ggml-virtgpu: deprecate buffer_type is_host remoting

not necessary

* ggml-virtgpu: stop using static vars as cache

The static init isn't thread safe.

* ggml-virtgpu: protect the use of the shared memory to transfer data

* ggml-virtgpu: make the remote calls thread-safe

* ggml-virtgpu: backend: don't continue if couldn't allocate the tensor memory

* ggml-virtgpu: add a cleanup function for consistency

* ggml-virtgpu: backend: don't crash if buft->iface.get_max_size is missing

* fix style and ordering

* Remove the static variable in apir_device_get_count

* ggml-virtgpu: improve the logging

* fix review minor formatting changes
2026-02-04 10:46:18 +08:00
Aman Gupta 2ceda3f662
ggml-cpu: use LUT for converting e8->f32 scales on x86 (#19288)
* ggml-cpu: use LUT for converting e8->f32 scales on x86

* add dispatch based on macro
2026-02-04 09:43:29 +08:00
Georgi Gerganov 44008ce8f9
metal : add solve_tri (#19302) 2026-02-03 23:43:14 +02:00
Georgi Gerganov 6a9bf2f788
ci : add sanitizer runs for server (#19291) 2026-02-03 22:41:20 +02:00
Georgi Gerganov faa1bc26ee
sampling : delegate input allocation to the scheduler (#19266)
* sampling : delegate input allocation to the scheduler

* graph : compute backend samplers only if needed
2026-02-03 22:16:16 +02:00
Ruben Ortlam 32b17abdb0
vulkan: disable coopmat1 fa on Nvidia Turing (#19290) 2026-02-03 17:37:32 +01:00
Aman Gupta 8bece2eb20
CUDA: use mmvq for mul-mat-id for small batch sizes (#18958)
* CUDA: use mmvq for mul-mat-id for small batch sizes

* add mmvq too

* Fix perf issue on ampere. Use mmvf mm-id only for non-nvidia GPUs

* templatize multi_token_path
2026-02-03 23:31:23 +08:00
Sigbjørn Skjæret a6fd8ca1fe
models : remove unnecessary cont in openelm (#19289) 2026-02-03 14:20:57 +01:00
Georgi Gerganov c55bce4159
metal : minor cleanup (#19251) 2026-02-03 13:43:29 +02:00
Oliver Simons 1f1e57f2bf
CUDA: Fix loop unrolling for BW in mul_mat_q_stream_k_fixup (#19053)
By providing stride_* variables as size_t (i.e., 64-bit) the compiler can
correctly unroll the [two for-loops](557515be1e/ggml/src/ggml-cuda/mmq.cuh (L3789-L3816))
on BW. This gives some perf for prefill/pp phase on BW, while not affecting
other SMs:

| GPU                                                     | Model                 | Test   |   t/s master |   t/s osimons/fix_bw_mmq_fixup_kernel |   Speedup |
|:--------------------------------------------------------|:----------------------|:-------|-------------:|--------------------------------------:|----------:|
| NVIDIA RTX 6000 Ada Generation                          | gpt-oss 20B MXFP4 MoE | pp8096 |      8404.05 |                               8375.79 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | llama 3B Q4_K_M       | pp8096 |     16148.93 |                              16019.60 |      0.99 |
| NVIDIA RTX 6000 Ada Generation                          | llama 8B Q4_0         | pp8096 |      8008.29 |                               7978.80 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | nemotron_h 9B BF16    | pp8096 |      4263.16 |                               4248.53 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | nemotron_h 9B Q4_K_M  | pp8096 |      5165.11 |                               5157.43 |      1.00 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | gpt-oss 20B MXFP4 MoE | pp8096 |     12582.80 |                              12758.37 |      1.01 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | llama 3B Q4_K_M       | pp8096 |     16879.10 |                              17619.47 |      1.04 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | llama 8B Q4_0         | pp8096 |     10649.90 |                              10982.65 |      1.03 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | nemotron_h 9B BF16    | pp8096 |      7717.73 |                               7716.22 |      1.00 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | nemotron_h 9B Q4_K_M  | pp8096 |      7301.90 |                               7370.38 |      1.01 |
2026-02-03 11:33:14 +01:00
George e9a859db3c
ggml: added cleanups in ggml_quantize_free (#19278)
Add missing cleanup calls for IQ2_S, IQ1_M quantization types and IQ3XS with 512 blocks during quantization cleanup.
2026-02-03 08:43:39 +02:00
Gaurav Garg 41e3f02647
cuda : revert CUDA_SCALE_LAUNCH_QUEUES override until investigated (#19227)
Hangs were reported on Jetson Orin AGX if we set CUDA_SCALE_LAUNCH_QUEUES=4x. Reverting the previous PR (#19042) and updating the document to consider setting CUDA_SCALE_LAUNCH_QUEUES=4x for faster throughput on multi-GPU systems.
2026-02-03 08:41:02 +02:00
Alexey Dubrov 1efb5f7ae1
vocab: add Falcon-H1-Tiny-Coder FIM tokens (#19249) 2026-02-03 08:31:01 +02:00
Georgi Gerganov aeb827a3cc
spec : simplify time measurement using common_time_meas (#19262) 2026-02-03 08:20:15 +02:00
lhez 91ea44e89b
opencl: refactor some ops, concat, repeat, tanh and scale (#19226)
* opencl: refactor concat

* opencl: refactor repeat

* opencl: refactor tanh

* opencl: enable fp16 for tanh

* opencl: refactor scale

* opencl: fix unused variables
2026-02-02 15:54:43 -08:00
Sid Mohan 0dfcd3b607
jinja : add missing 'in' test to template engine (#19004) (#19239)
* jinja : add missing 'in' test to template engine (#19004)

The jinja template parser was missing the 'in' test from
global_builtins(), causing templates using reject("in", ...),
select("in", ...), or 'x is in(y)' to fail with
"selectattr: unknown test 'in'".

This broke tool-calling for Qwen3-Coder and any other model
whose chat template uses the 'in' test.

Added test_is_in supporting array, string, and object containment
checks, mirroring the existing 'in' operator logic in runtime.cpp.

Includes test cases for all three containment types plus
reject/select filter usage.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* reuse test_is_in in binary op

---------

Co-authored-by: Sid Mohan <sidmohan0@users.noreply.github.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2026-02-02 21:00:55 +01:00
Xuan-Son Nguyen 07a7412a3b
mtmd: add min/max pixels gguf metadata (#19273) 2026-02-02 20:59:06 +01:00
Aman Gupta 9f682fb640
ggml-cpu: FA split across kv for faster TG (#19209)
* ggml-cpu: split across kv for faster TG

* simplify sinks application

* add ref impl
2026-02-03 01:19:55 +08:00
Matthieu Coudron a3fa035822
server: print actual model name in 'model not found" error (#19117)
Experimenting with AI, my environment gets messy fast and it's not
always easy to know what model my software is trying to load. This helps
with troubleshooting.

before:

Error: {
  code = 400,
  message = "model not found",
  type = "invalid_request_error"
}

After:

Error: {
  code = 400,
  message = "model 'toto' not found",
  type = "invalid_request_error"
}
2026-02-02 16:55:27 +01:00
Aman Gupta 15818ac44c
ci: add test-backend-ops test for CPU (#19268) 2026-02-02 22:40:28 +08:00
Neo Zhang bf38346d13
Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. (#19246)
User can't build up the software for Nvidia & AMD GPU.
rm the oneMath since it is only used in NV and AMD code path.
2026-02-02 21:06:21 +08:00
Tamar 4d5e972673
sycl: implement GGML_OP_TOP_K (#19242) 2026-02-02 21:05:51 +08:00
Georgi Gerganov 6fdddb4987
metal : support virtual devices (#18919)
* metal : support virtual devices

* cont : manage buffer type context memory

* metal : add events

* cont : implement cpy_tensor_async
2026-02-02 14:29:44 +02:00
Daniel Bevenius 6156ae5111
model-conversion : add debug option to conversion script (#19265)
This commit adds a debug option to the model conversion script to enable
using the Python debugger (pdb) during model conversion.

The motivation for this is that I've found myself adding this a few
times now and it would be quicker to have this flag as an option and a
makefile target/recipe for it.
2026-02-02 11:29:57 +01:00
Johannes Gäßler 59377a6c87
ggml-backend: fix async set/get fallback sync (#19179) 2026-02-02 10:00:05 +01:00
Georgi Gerganov 1239267cc4
authors : update (#19263)
[no ci]
2026-02-02 08:51:25 +02:00
Christian Kastner 7a4ca3cbd9
docs : Minor cleanups (#19252)
* Update old URLs to github.com/ggml-org/

* Bump copyrights
2026-02-02 08:38:55 +02:00
Sascha Rogmann b4d05a3d2f
spec : various improvements ton ngram-map + docs (#19253)
* spec: ngram-map and reasoning chats

* spec: add t_begin and t_accept

* ngram-map : add internal hash map

* docs : update ngram-map, add ngram-mod

* docs : fix ngram-map-k

* docs : differences between implementations
2026-02-02 08:26:58 +02:00
Nikhil Jain 2dc3ce2166
Remove pipeline cache mutexes (#19195)
* Remove mutex for pipeline caches, since they are now per-thread.

* Add comment

* Run clang-format

* Cleanup

* Run CI again

* Run CI once more

* Run clang-format
2026-02-01 18:47:29 -08:00
Max Krasnyansky 3bc8d2cf23
Bump cmake max version (needed for Windows on Snapdragon builds) (#19188)
* Bump max cmake version (needed for Windows on Snapdragon builds)

* cmake: move max version setting into ggml/CMakeLists
2026-02-01 14:13:38 -08:00
Alexis Williams 8a98ba4582
nix: fix allowUnfreePredicate for packages with multiple licenses (#19237)
The allowUnfreePredicate in pkgsCuda was wrapping p.meta.license in a
list unconditionally. This fails when meta.license is already a list
of licenses, as it creates a nested list and then tries to access
.free and .shortName on the inner list.

Use lib.toList instead, which correctly handles both cases:
- Single license attrset -> wraps in list
- List of licenses -> returns unchanged
2026-02-01 22:10:48 +02:00
Neo Zhang 2634ed207a
create test.sh to enhance the parameters for testing, update the guide, rm useless script (#19243) 2026-02-01 18:24:00 +08:00
Matthieu Coudron 41ea26144e
nix: fix nix develop .#python-scripts (#19218)
Without this I get:

> * Getting build dependencies for wheel...
> * Building wheel...
> Successfully built gguf-0.17.1-py3-none-any.whl
> Finished creating a wheel...
> Finished executing pypaBuildPhase
> Running phase: pythonRuntimeDepsCheckHook
> Executing pythonRuntimeDepsCheck
> Checking runtime dependencies for gguf-0.17.1-py3-none-any.whl
>   - requests not installed
For full logs, run:
    nix log /nix/store/x0c4a251l68bvdgang9d8v2fsmqay8a4-python3.12-gguf-0.0.0.drv

I changed a bit the style to make it more terse ~> more elegant in my
opinion.
2026-01-31 18:01:46 +02:00
nullname 89f10baad5
ggml-hexagon: flash-attention and reduce-sum optimizations (#19141)
* wip

* ggml-hexagon: add vectorized dot product function for FP32 and FP16 accumulation

* ggml-hexagon: optimize dot product functions for FP16 and FP32 with new vectorized implementations

* wip

* ggml-hexagon: optimize hvx_vec_dump_f32_n and hvx_vec_reduce_sum_qf32x2 functions for improved performance

* ggml-hexagon: refactor dot product functions to use a common loading function for improved readability

* optimize vector dot product functions to use unified reduction for improved performance

* wip

* ggml-hexagon: add vectorized dot product function for FP32 and FP16 accumulation

* ggml-hexagon: optimize dot product functions for FP16 and FP32 with new vectorized implementations

* wip

* ggml-hexagon: optimize hvx_vec_dump_f32_n and hvx_vec_reduce_sum_qf32x2 functions for improved performance

* ggml-hexagon: refactor dot product functions to use a common loading function for improved readability

* optimize vector dot product functions to use unified reduction for improved performance

* hexagon: optimize reduce-sum for v75+

* hexagon: always keep row_sums in sf/fp32

* ggml-hexagon: enhance directory checks for HEXAGON_SDK_ROOT and HEXAGON_TOOLS_ROOT

* fix compiling error after rebase

---------

Co-authored-by: Max Krasnyansky <maxk@qti.qualcomm.com>
2026-01-30 21:14:20 -08:00
EugeoSynthesisThirtyTwo 3dd95914d0
quantize: add option --tensor-type-file to llama-quantize (#18572)
* add option --tensor-type-file to llama-quantize, but it raises an error.

* add error message when file not found

* quantize: update help menu, fix CI

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Aaron Teo <aaron.teo1@ibm.com>
2026-01-31 11:39:21 +08:00
tc-mb ec6c7421e4
mtmd: support MiniCPM-o 4.5(vision only) (#19211)
Signed-off-by: tc-mb <caitianchi@modelbest.cn>
2026-01-30 23:19:30 +01:00
Daniele Pinna 1488339138
lookup, lookahead: fix crash when n_ctx not specified (#18729)
* lookup, lookahead: fix crash when n_ctx not specified

Since PR #16653 (Dec 15, 2025), the default n_ctx is 0 to enable automatic
GPU memory fitting. This causes llama-lookup and llama-lookahead to crash
when run without explicit -c flag:

    GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded")

Root cause: Both examples use params.n_ctx directly for batch initialization,
but params.n_ctx remains 0 even after the context is properly initialized
to n_ctx_train internally.

Bug history:
- Nov 2023: lookahead.cpp created (PR #4207) with params.n_ctx pattern
- Dec 2023: lookup.cpp created (PR #4484) with same pattern
- Nov 2024: default n_ctx changed to 4096 (PR #10136) - bug dormant
- Dec 2025: default n_ctx changed to 0 (PR #16653) - bug activated

The bug was dormant for 2+ years because params.n_ctx defaulted to 512,
then 4096. PR #16653 changed it to 0 for GPU auto-fitting, triggering
the crash.

Fix: Use llama_n_ctx(ctx) to get the actual runtime context size, matching
the pattern already used elsewhere in lookup.cpp (line 72) and in
speculative.cpp/speculative-simple.cpp.

Tested: llama-lookup now works without -c flag (12.5% acceptance on
Gemma-3-1B).

Note: llama-lookahead has a separate pre-existing issue with sequence
initialization (n_seq_max=1 vs W+G+1 needed) that is unrelated to this fix.

* lookahead: fix n_seq_max and kv_unified configuration

Lookahead decoding requires:
- W + G + 1 = 31 sequences for parallel Jacobi decoding
- Unified KV cache for coupled sequences in batch splitting

These requirements were broken after PR #14482 changed validation logic.

Consolidates fix from PR #18730 per maintainer request.

Commit message drafted with Claude.
2026-01-30 22:10:24 +02:00
Georgi Gerganov 4927795810
ngram-mod : fix build [no ci] (#19216) 2026-01-30 21:27:27 +02:00
shaofeiqi 971facc38e
opencl: add optimized q8_0 mm kernel for adreno (#18871)
* Add Q8_0 OpenCL kernel

Co-authored-by: yunjie <yunjie@qti.qualcomm.com>

* opencl: fix build for non-adreno

* opencl: refactor q8_0

* opencl: enforce subgroup size of 64 for adreno for q8_0

* For A750 and older generations, subgroup size can be 64 or 128.
  This kernel assumes subgroup size 64.

* opencl: suppress warning when adreno kernels are disabled

---------

Co-authored-by: yunjie <yunjie@qti.qualcomm.com>
Co-authored-by: Li He <lih@qti.qualcomm.com>
2026-01-30 10:19:27 -08:00
Georgi Gerganov d9a2a4bcaa sync : ggml 2026-01-30 20:09:21 +02:00
Georgi Gerganov dfd6106c84 cuda : fix compile warnings (whisper/0) 2026-01-30 20:09:21 +02:00
Georgi Gerganov bbada8bfb9
server : wrap around the "id_slot" parameter (#19207)
* server : wrap around the "id_slot" parameter

* cont : minor
2026-01-30 19:46:10 +02:00
Simon Redman 13f3ebfae1
Correctly fetch q8_1 quantize pipeline in test as needed by 8a3519b (#19194) 2026-01-30 17:27:16 +01:00