spec : various improvements ton ngram-map + docs (#19253)
* spec: ngram-map and reasoning chats * spec: add t_begin and t_accept * ngram-map : add internal hash map * docs : update ngram-map, add ngram-mod * docs : fix ngram-map-k * docs : differences between implementations
This commit is contained in:
parent
2dc3ce2166
commit
b4d05a3d2f
|
|
@ -7,6 +7,18 @@
|
|||
#include <cstdio>
|
||||
#include <sstream>
|
||||
|
||||
// prime number used for LCG hash function (32 bit), it is near (sqrt(5) - 1)/2 * 2^32.
|
||||
#define LCG_FACTOR 2654435761UL
|
||||
|
||||
// Compute the LCG hash of a n-gram of size len at offset start.
|
||||
static uint32_t common_ngram_map_hash(const llama_tokens & tokens, size_t start, size_t len) {
|
||||
uint32_t hash = 0;
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
hash = hash * LCG_FACTOR + tokens[start + i];
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
|
||||
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
|
||||
std::ostringstream oss;
|
||||
|
|
@ -115,6 +127,100 @@ llama_tokens common_ngram_simple_draft(
|
|||
// maximum number of counted values of a ngram map value.
|
||||
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
|
||||
|
||||
void common_ngram_map_begin(
|
||||
common_ngram_map & map, const llama_tokens & tokens) {
|
||||
size_t size_begin = tokens.size();
|
||||
|
||||
LOG_DBG("%s: begin, idx_last_draft=%zu, new begin=%zu, #keys=%zu\n", __func__,
|
||||
map.idx_last_check, size_begin, map.keys.size());
|
||||
|
||||
size_t count_map_entries_upd = 0;
|
||||
if (!map.key_map.empty() && size_begin < map.idx_last_check) {
|
||||
if (map.show_key_map_stats) {
|
||||
// Print statistics of hash map map_key.
|
||||
size_t count_nonzero = 0;
|
||||
uint32_t min_idx = UINT32_MAX;
|
||||
uint32_t max_idx = 0;
|
||||
for (size_t i = 0; i < map.key_map.size(); ++i) {
|
||||
uint32_t key_idx = map.key_map[i];
|
||||
if (key_idx != 0) {
|
||||
++count_nonzero;
|
||||
if (key_idx < min_idx) min_idx = key_idx;
|
||||
if (key_idx > max_idx) max_idx = key_idx;
|
||||
}
|
||||
}
|
||||
if (count_nonzero == 0) {
|
||||
min_idx = 0;
|
||||
}
|
||||
LOG_INF("%s: key_map stats: entries=%zu, min_idx=%u, max_idx=%u, key_map_last_idx=%u\n",
|
||||
__func__, count_nonzero, min_idx, max_idx, map.key_map_last_idx);
|
||||
}
|
||||
|
||||
// Update the map from hash to key index (clear outdated entries).
|
||||
for (size_t i = 0; i < map.key_map.size(); ++i) {
|
||||
uint32_t key_idx = map.key_map[i];
|
||||
if (key_idx >= map.size_last_begin) {
|
||||
map.key_map[i] = 0;
|
||||
count_map_entries_upd++;
|
||||
}
|
||||
}
|
||||
map.key_map_last_idx = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
|
||||
}
|
||||
|
||||
if (size_begin < map.idx_last_check && !map.keys.empty()) {
|
||||
// The next token generation will start at index size_begin.
|
||||
// The tokens between map.size_last_begin and size_begin are no longer valid.
|
||||
//
|
||||
// Refresh map: Remove all entries with index >= map.size_last_begin.
|
||||
size_t count_keys = map.keys.size();
|
||||
size_t count_keys_del = 0;
|
||||
size_t count_values_del = 0;
|
||||
for (int32_t i = map.keys.size() - 1; i >= 0; --i) {
|
||||
common_ngram_map_key & key = map.keys[i];
|
||||
if (key.key_idx >= map.size_last_begin) {
|
||||
// Delete the key.
|
||||
LOG_DBG("%s: delete key %d at index %zu (>= size_last_begin=%zu)\n", __func__, i, key.key_idx, map.size_last_begin);
|
||||
map.keys.erase(map.keys.begin() + i);
|
||||
count_keys_del++;
|
||||
continue;
|
||||
}
|
||||
if (map.key_only) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check the indices of the values.
|
||||
for (int16_t j = COMMON_NGRAM_MAX_VALUES - 1; j >= 0; --j) {
|
||||
common_ngram_map_value & value = key.values[j];
|
||||
if (value.value_idx >= map.size_last_begin) {
|
||||
// Delete the value.
|
||||
count_values_del++;
|
||||
|
||||
// Move all values after this value to the left.
|
||||
for (uint16_t k = j; k < COMMON_NGRAM_MAX_VALUES - 1; ++k) {
|
||||
key.values[k] = key.values[k + 1];
|
||||
}
|
||||
// Clear the last value.
|
||||
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_idx = 0;
|
||||
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_num = 0;
|
||||
}
|
||||
}
|
||||
if (key.values[0].value_idx == 0) {
|
||||
// No values left, delete the key.
|
||||
LOG_DBG("%s: delete key %d at index %zu (no values left)\n", __func__, i, key.key_idx);
|
||||
map.keys.erase(map.keys.begin() + i);
|
||||
count_keys_del++;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("%s: refresh map: idx_last_draft=%zu, new begin=%zu, #keys_checked=%zu, #keys_del=%zu, #values_del=%zu, #hashes_upd=%zu\n", __func__,
|
||||
map.idx_last_check, size_begin,
|
||||
count_keys, count_keys_del, count_values_del, count_map_entries_upd);
|
||||
}
|
||||
|
||||
map.idx_last_check = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
|
||||
map.size_last_begin = size_begin;
|
||||
}
|
||||
|
||||
void common_ngram_map_draft(common_ngram_map & map,
|
||||
const llama_tokens & inp, llama_token sampled,
|
||||
llama_tokens & draft) {
|
||||
|
|
@ -129,6 +235,10 @@ void common_ngram_map_draft(common_ngram_map & map,
|
|||
if (cur_len < static_cast<size_t>(2 * n + m)) {
|
||||
return;
|
||||
}
|
||||
if (cur_len >= static_cast<size_t>(UINT32_MAX)) {
|
||||
// key_map uses uint32_t instead of size_t.
|
||||
GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len);
|
||||
}
|
||||
|
||||
// Only check every check_rate tokens to save compute
|
||||
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
|
||||
|
|
@ -147,24 +257,92 @@ void common_ngram_map_draft(common_ngram_map & map,
|
|||
|
||||
// search for the key in the map
|
||||
size_t match_pos = 0;
|
||||
for (size_t j = cur_len - n - m - 1; j > 0; --j) {
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
if (map.size_last_begin > cur_len) {
|
||||
GGML_ABORT("%s: map.size_last_begin > cur_len: %zu > %zu", __func__, map.size_last_begin, cur_len);
|
||||
}
|
||||
if (!map.key_map.empty()) {
|
||||
// Search for the key in the map key_map from hash of ngrams to index of ngram.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(key_tokens, 0, n) % map.key_map.size());
|
||||
uint32_t idx_key = map.key_map[idx_hash];
|
||||
if (idx_key != 0 && idx_key < cur_len - n - m - 1) {
|
||||
// Check if the key matches the key at idx_key (because of possible collisions).
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[idx_key + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
LOG_DBG("%s: key hash %x -> idx_key %d: match %d\n", __func__, idx_hash, idx_key, match ? 1 : 0);
|
||||
if (match) {
|
||||
match_pos = idx_key;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
if (match_pos == 0 && map.size_last_begin > (size_t) (n + m + 1)) {
|
||||
// Search for the key in [1, map.size_last_begin - n - m -1], descending.
|
||||
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
|
||||
// Check if the key matches the key.
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos == 0) {
|
||||
// In case of a reasoning chat, the part after size_last_begin may be deleted/reordered later.
|
||||
//
|
||||
// Search in [size_last_begin, cur_len - n - m - 1], descending.
|
||||
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos > 0) {
|
||||
LOG_INF("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
|
||||
LOG_DBG("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
|
||||
cur_len, n, m, key_tokens.size(), sampled, match_pos);
|
||||
}
|
||||
|
||||
if (!map.key_map.empty()) {
|
||||
// Add hashes of new ngrams in key_map.
|
||||
//
|
||||
// Use the same order as above.
|
||||
if (map.size_last_begin > (size_t) (n + m + 1)) {
|
||||
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
|
||||
// compute hash and store index of ngram at idx j in the map.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
|
||||
if (map.key_map[idx_hash] == 0) {
|
||||
map.key_map[idx_hash] = j; // collisions may occur
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
|
||||
// compute hash and store index of ngram at idx j in the map.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
|
||||
if (map.key_map[idx_hash] == 0) {
|
||||
map.key_map[idx_hash] = j;
|
||||
}
|
||||
}
|
||||
map.key_map_last_idx = std::max(static_cast<uint32_t>(cur_len - n - m - 1), map.key_map_last_idx);
|
||||
}
|
||||
|
||||
if (match_pos == 0) {
|
||||
return;
|
||||
}
|
||||
|
|
@ -215,8 +393,8 @@ void common_ngram_map_draft(common_ngram_map & map,
|
|||
draft.push_back(inp[match_pos + n + i]);
|
||||
}
|
||||
|
||||
LOG_INF("%s: key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
|
||||
key_offset, curr_key.key_num, draft.size());
|
||||
LOG_DBG("%s: key_idx = %zu, key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
|
||||
curr_key.key_idx, key_offset, curr_key.key_num, draft.size());
|
||||
|
||||
map.last_draft_created = false;
|
||||
map.last_draft_key_idx = key_offset;
|
||||
|
|
@ -318,7 +496,7 @@ void common_ngram_map_draft(common_ngram_map & map,
|
|||
}
|
||||
}
|
||||
|
||||
if (sum_occur > 0 && max_occur < 3 * sum_occur) {
|
||||
if (sum_occur > 0 && max_occur < 2 * sum_occur) {
|
||||
// The most frequent value is not much more frequent than the other values.
|
||||
// We do not use the draft.
|
||||
return;
|
||||
|
|
|
|||
|
|
@ -9,6 +9,8 @@
|
|||
// 2. ngram_map: lookup of n-grams followed by m-grams in token history using a map.
|
||||
// The map is a vector of key n-grams, and for each key n-gram there is a list of value m-grams.
|
||||
//
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/18471
|
||||
//
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
|
@ -51,10 +53,13 @@ llama_tokens common_ngram_simple_draft(
|
|||
// maximum number of m-gram values stored for each key n-gram.
|
||||
#define COMMON_NGRAM_MAX_VALUES 4
|
||||
|
||||
// number of entries in the (optional, size 0 to disable) map from ngram-hash to ngram-index.
|
||||
#define COMMON_NGRAM_HASH_MAP_SIZE 262144
|
||||
|
||||
// statistics of a m-gram after a known n-gram
|
||||
struct common_ngram_map_value {
|
||||
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
|
||||
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
|
||||
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
|
||||
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
|
||||
int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused)
|
||||
};
|
||||
|
||||
|
|
@ -74,23 +79,43 @@ struct common_ngram_map {
|
|||
|
||||
bool key_only; // true if only key n-grams are used, no values.
|
||||
|
||||
// first draft: vector only, no map.
|
||||
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
|
||||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
uint16_t min_hits; // minimum number of key hits to consider a draft
|
||||
|
||||
bool show_key_map_stats = false; // true, if statitics of the key_map should be printed.
|
||||
|
||||
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
|
||||
uint16_t check_rate, uint16_t min_hits)
|
||||
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
|
||||
check_rate(check_rate), min_hits(min_hits) {}
|
||||
check_rate(check_rate), min_hits(min_hits) {
|
||||
key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used
|
||||
}
|
||||
|
||||
// In reasoning chats the previous reasoning block will be removed from context history.
|
||||
// A rebuild of the ngram map is needed after that.
|
||||
|
||||
size_t size_last_begin = 0; // number of tokens at previous start of generation
|
||||
|
||||
bool last_draft_created = false; // true if a draft was created at last call.
|
||||
size_t last_draft_key_idx = 0; // index of last key used for draft generation.
|
||||
size_t last_draft_key_idx = 0; // index of last key used for draft generation (0 = no draft)
|
||||
uint16_t last_draft_value_idx = 0; // index of last value used for draft generation.
|
||||
|
||||
size_t idx_last_check = 0; // index of last check in context history
|
||||
|
||||
// optional map "hash to ngram-index" for faster lookup of n-grams. map is empty if unused.
|
||||
//
|
||||
// uint32_t instead of size_t (size of current histories is << UINT32_MAX)
|
||||
std::vector<uint32_t> key_map; // key_map[hash] = index of ngram in context window
|
||||
uint32_t key_map_last_idx = 0; // index of the last ngram added to key_map
|
||||
};
|
||||
|
||||
// Initialize the n-gram map with the given token history.
|
||||
// map: the ngram map to initialize.
|
||||
// tokens: the token history to base the map on.
|
||||
void common_ngram_map_begin(
|
||||
common_ngram_map & map,
|
||||
const llama_tokens & tokens);
|
||||
|
||||
// Searches for the n-gram in the history and checks whether a draft sequence should be generated.
|
||||
// map: the ngram map to search in.
|
||||
|
|
|
|||
|
|
@ -124,9 +124,9 @@ struct common_speculative_state {
|
|||
// TODO: track performance of most recent calls
|
||||
const bool gen_perf = true; // whether to generate performance stats.
|
||||
|
||||
// TODO: rename to t_draft_us
|
||||
// TODO: add t_begin_us, t_accept_us
|
||||
int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds.
|
||||
int64_t t_begin_us = 0; // total time spent in refresh of this implementation in microseconds.
|
||||
int64_t t_draft_us = 0; // total time spent in generating drafts in this implementation in microseconds.
|
||||
int64_t t_accept_us = 0; // total time spent in accumulation of this implementation in microseconds.
|
||||
|
||||
common_speculative_state(enum common_speculative_type type) : type(type) {}
|
||||
|
||||
|
|
@ -499,7 +499,7 @@ struct common_speculative_state_ngram_map_k : public common_speculative_state {
|
|||
: common_speculative_state(type), map(std::move(map)) {}
|
||||
|
||||
void begin(const llama_tokens & prompt) override {
|
||||
GGML_UNUSED(prompt);
|
||||
common_ngram_map_begin(map, prompt);
|
||||
}
|
||||
|
||||
void draft(
|
||||
|
|
@ -951,7 +951,12 @@ void common_speculative_begin(common_speculative * spec, const llama_tokens & pr
|
|||
}
|
||||
|
||||
for (auto & impl : spec->impls) {
|
||||
const int64_t t_start_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
|
||||
impl->begin(prompt);
|
||||
|
||||
const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
impl->t_begin_us += t_now_us - t_start_us; // accumulate duration for this refresh
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -973,7 +978,7 @@ llama_tokens common_speculative_draft(
|
|||
const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
|
||||
impl->drafts_call_count++;
|
||||
impl->gen_duration_us += t_now_us - t_start_us; // accumulate duration for this implementation
|
||||
impl->t_draft_us += t_now_us - t_start_us; // accumulate duration for this implementation
|
||||
}
|
||||
|
||||
if (!result.empty()) {
|
||||
|
|
@ -1001,12 +1006,15 @@ void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) {
|
|||
|
||||
GGML_ASSERT(impl);
|
||||
|
||||
const int64_t t_start_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
if (n_accepted > 0) {
|
||||
impl->drafts_accepted_count++;
|
||||
impl->drafts_accepted_tokens += n_accepted;
|
||||
}
|
||||
|
||||
impl->accept(n_accepted);
|
||||
const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
impl->t_accept_us += t_now_us - t_start_us; // accumulate duration for this acculumulation
|
||||
}
|
||||
|
||||
void common_speculative_print_stats(const common_speculative * spec) {
|
||||
|
|
@ -1018,13 +1026,14 @@ void common_speculative_print_stats(const common_speculative * spec) {
|
|||
std::string str_perf;
|
||||
if (impl->gen_perf) {
|
||||
std::ostringstream oss;
|
||||
oss << std::fixed << std::setprecision(3) << impl->gen_duration_us / 1000.0;
|
||||
str_perf = ", dur = " + oss.str() + " ms";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_begin_us / 1000.0 << ", ";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_draft_us / 1000.0 << ", ";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_accept_us / 1000.0;
|
||||
str_perf = ", dur(b,g,a) = " + oss.str() + " ms";
|
||||
} else {
|
||||
str_perf = "";
|
||||
}
|
||||
|
||||
// TODO: report time for begin() and accept()
|
||||
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
|
||||
common_speculative_type_to_str(impl->type).c_str(),
|
||||
impl->drafts_call_count,
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ llama.cpp supports speculative decoding, a technique that can significantly acce
|
|||
|
||||
## Implementations
|
||||
|
||||
The `llama-server` application supports several implementations of speculative decoding:
|
||||
The `llama-server` application supports several implementations of speculative decoding. An implementation with draft model can be mixed with an implementation without draft model.
|
||||
|
||||
### Draft Model (`draft`)
|
||||
|
||||
|
|
@ -32,12 +32,21 @@ An example to use this approach can be the rewriting of source code by a LLM.
|
|||
|
||||
This implementation looks for the last n-gram in history that matches the current n-gram and creates a draft using the m tokens following the matched n-gram. It is the simplest self-speculative approach with minimal overhead.
|
||||
|
||||
```
|
||||
llama-server [...] --spec-type ngram-simple --draft-max 64
|
||||
```
|
||||
|
||||
#### n-gram Map Key (`ngram-map-k`)
|
||||
|
||||
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`) before generating drafts.
|
||||
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`, default is 1) before generating drafts.
|
||||
|
||||
The number of accepted tokens is stored for each used n-gram.
|
||||
|
||||
**Example:**
|
||||
```
|
||||
llama-server [...] --spec-type ngram-map-k --draft-max 64
|
||||
```
|
||||
|
||||
#### n-gram Map Key-4-Values (`ngram-map-k4v`)
|
||||
|
||||
This experimental implementation looks for the current n-gram of size n (called the _key_) in the token history. For each key, up to four _values_ (n-grams of size m, called _mgrams_) are tracked. An internal statistic counts the occurrences of each mgram after the key n-gram. If one mgram is significantly more frequent than the others, it is used as the draft.
|
||||
|
|
@ -45,17 +54,65 @@ This experimental implementation looks for the current n-gram of size n (called
|
|||
The number of accepted tokens is stored for each used n-gram.
|
||||
|
||||
**Example:** Server options to be used if there are a lot of longer repetitions.
|
||||
```bash
|
||||
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2
|
||||
```
|
||||
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2 --draft-max 64
|
||||
```
|
||||
|
||||
### n-gram Mod (`ngram-mod`)
|
||||
|
||||
Add basic ngram hasher for speculative decoding:
|
||||
|
||||
- For each ngram, compute a hash using LCG
|
||||
- For each computed hash, store the next token
|
||||
- During speculation, iteratively compute the rolling hash of the last n tokens and pick the next token from the storage
|
||||
|
||||
Some characteristics:
|
||||
|
||||
- Lightweight (~16 MB)
|
||||
- Constant memory and complexity
|
||||
- Can generate variable draft lengths (i.e. m is not fixed)
|
||||
|
||||
Currently, a single hash pool is shared across all server slots, so different requests can benefit from each other.
|
||||
|
||||
**Sample usage:**
|
||||
|
||||
```
|
||||
# notes:
|
||||
# - small `n` are not recommended
|
||||
# - MoEs require long drafts
|
||||
# - dense models: can reduce `--draft-min` and `--draft-max`
|
||||
|
||||
llama-server ... --spec-type ngram-mod --spec-ngram-size-n 24 --draft-min 48 --draft-max 64
|
||||
```
|
||||
|
||||
Applications:
|
||||
|
||||
- Iterating over a block of text/code (e.g. in llama.vim)
|
||||
- Reasoning models (when they have to repeat their thinking in the final answer)
|
||||
- Summarization
|
||||
|
||||
Example Video:
|
||||
|
||||
- See #19164
|
||||
|
||||
### Differences between ngram-simple, ngram-map and ngram-mod
|
||||
|
||||
- ngram-simple looks for a previous matching n-gram and inserts the following m-gram.
|
||||
- ngram-map-k looks for a previous matching n-gram and inserts the following m-gram but uses an internal hash-map of n-grams in the current context window.
|
||||
- ngram-mod uses a hash pool which is shared across all server slots. The hash pool is a map from n-gram hash to the next token (not the next m-gram as in ngram-map).
|
||||
|
||||
## Command-Line Options
|
||||
|
||||
If a draft model is combined with a draftless decoding the draftless decoding has higher precedence.
|
||||
|
||||
```
|
||||
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v]
|
||||
--draft, --draft-n, --draft-max N number of tokens to draft for speculative decoding (default: 16)
|
||||
(env: LLAMA_ARG_DRAFT_MAX)
|
||||
--draft-min, --draft-n-min N minimum number of draft tokens to use for speculative decoding
|
||||
(default: 0)
|
||||
(env: LLAMA_ARG_DRAFT_MIN)
|
||||
[...]
|
||||
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]
|
||||
type of speculative decoding to use when no draft model is provided
|
||||
(default: none)
|
||||
--spec-ngram-size-n N ngram size N for ngram-simple/ngram-map speculative decoding, length
|
||||
|
|
@ -78,6 +135,7 @@ Specifies a type of speculative decoding without draft model.
|
|||
| `ngram-simple` | Use simple n-gram pattern matching |
|
||||
| `ngram-map-k` | Use n-gram pattern matching with n-gram-keys |
|
||||
| `ngram-map-k4v` | Use n-gram pattern matching with n-gram-keys and up to four m-gram values (experimental) |
|
||||
| `ngram-mod` | Use basic ngram hasher for speculative decoding with shared pool |
|
||||
|
||||
**Example:** Server-instance used to refactor source code.
|
||||
```bash
|
||||
|
|
@ -112,9 +170,15 @@ statistics ngram_simple: #calls = 15, #gen drafts = 5, #acc drafts = 5, #gen tok
|
|||
statistics draft: #calls = 10, #gen drafts = 10, #acc drafts = 10, #gen tokens = 110, #acc tokens = 98
|
||||
```
|
||||
|
||||
```
|
||||
draft acceptance rate = 0.70312 ( 90 accepted / 128 generated)
|
||||
statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms
|
||||
```
|
||||
|
||||
- `#calls`: number of calls of this implementations
|
||||
- `#gen drafts`: number of drafts generated by this implementation
|
||||
- `#acc drafts`: number of drafts accepted (partially) by the main model
|
||||
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)
|
||||
- `#acc tokens`: number of tokens accepted by the main model
|
||||
- `dur(b,g,a): durations of begin (new prompt), generation and accumulation (process acceptance).
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue