* First working version of GEMM and GEMV
* interleave loads and compute
* Clang-format
* Added missing fallback. Removed tested TODO.
* Swap M and N to be consistent with the repack template convention
using noexcept std::filesystem::directory_entry::is_regular_file
overload prevents abnormal termination upon throwing an error
(as caused by symlinks to non-existent folders on linux)
Resolves: #18560
Implement ggml_cann_mul_mat_id_quant function to support quantized matrix
multiplication for Mixture of Experts (MoE) architectures on CANN backend.
Key features:
- Support Q4_0 and Q8_0 quantized weight formats
- Use IndexSelect to dynamically route expert-specific weights based on indices
- Leverage WeightQuantBatchMatmulV2 for efficient quantized computation
- Handle automatic F16 type conversion for hardware compatibility
- Support both per-expert and broadcast input modes
Implementation details:
- Extract expert weights and scales using CANN IndexSelect operation
- Process each batch and expert combination independently
- Create proper tensor views with correct stride for matmul operations
- Automatic input/output type casting to/from F16 as needed
Testing: All test cases passed for supported types (F32, F16, Q4_0, Q8_0).
* ci : add metal server workflows
* cont : try fix python init
* cont : move to a separate workflow that runs only on master
* cont : fix num jobs
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* ggml-virtgpu: add backend documentation
Assisted-by-AI: Claude Code
* CODEOWNERS: add /docs/backend/GGML-VirtGPU/ -> kpouget
* README: add the link to docs/backend/GGML-VirtGPU/ggml-virt.md
* docs/ggml-virt: add link to testing + configuration
* Revert "CODEOWNERS: add /docs/backend/GGML-VirtGPU/ -> kpouget"
This reverts commit 8ece8e72e2.
* drop the ggml- prefix
* s/ggerganov/ggml-org
* Relocate VirtGPU.md
* reorganize the text
* turn turn the ascii diagram into a mermaid
* README.md: update the link to the main doc
* Unified delta net handling
* Remove old methods.
* Refactor and optimize
* Adapt autoregressive version from @ymcki
* Change to decay mask approach
* Fix bad permute
* Qwen 3.5 support
* Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Further fixes
* Use inheritance, remove unneeded conts
* Not like this!
* Remove ggml.h explicit import
* Remove transformers, fix the views
* ACTUALLY fix views, make super calls explicit in conversion.
* Fix conversion again
* Remove extra ggml.h imports
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Rename variables + fix rope_neox
Seems memory layout is shared with Vulkan so we can port fix from
https://github.com/ggml-org/llama.cpp/pull/19299
* Fix rope_multi
* Fix rope_vision
* Fix rope_norm
* Rename ne* to ne0* for consistent variable naming
* cont : consistent stride names
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* gguf-py: Bump sentencepiece version
There's a new version that's been out for a while that addresses the issues mentioned in https://github.com/ggml-org/llama.cpp/pull/14200. There's a long chain of reasons I would like this change, but the short version is that it allows people who use both `sentencepiece` and `gguf` to take advantage of these fixes. On conda-forge, currently, it locks the version (since there is no notion of optional dependencies).
Regardless, I don't think this should be too controversial.
* review feedback
* ggml webgpu: port binary operators to use pre-wgsl
* Add binary.wgsl: unified shader with conditionals for all 4 ops
* Add gen_binary_shaders.cpp: build tool for using pre_wgsl preprocessor
* Remove bin_op.tmpl.wgsl and binary.wgsl (Python template)
* Update CMake to generate binary operator shaders at build time
* ggml-webgpu: migrate binary ops to JIT compilation with overlap handling
* port binary operators from AOT to pre-wgsl JIT compilation
* add src1=dst overlap handling for binary ops
* use compile-time workgroup size defines instead of runtime overrides
* ggml-webgpu: complete overlap handling for binary ops
* add support for inplace & overlap case in binding setup
* restructure conditional logic to handle all overlap cases
* ensure all buffer bindings are correctly assigned for edge cases
* ggml-webgpu: remove unused binary overlap cases
Remove src0==src1 binary overlap case that never occurs in practice.
* keep INPLACE (src0==dst), OVERLAP (src1==dst), DEFAULT
* remove unused src0==src1 and all-same variant
* refactor wgsl to eliminate duplication
* Fix model loading regex error
* Change comments
* Use const_iterator and remove specializations
---------
Co-authored-by: Alde Rojas <hello@alde.dev>
* kimi linear model implementation
* kimi linear convert_hf_to_gguf
* kimi linear constants.py tensor_mapping.py
* Kimi Linear ggml.h
* kimi linear ggml-cpu
* Kimi Linear ggml-cuda
* Kimi Linear ggml.c
* kimi linear src/llama
* remove "const int64_t n_seq_tokens = q->ne[2];" to get rid of unused variable warning
* remove type mismatch warning
* read MoE params
* removed some hard coded code
* removed all hard code
* use DeepseekV2 tokenizer
* removed unnecessary internal methods called by the old set_vocab of KimiLinear
* rewrite get_vocab for KimiLinear. Removed all kda_scan code
* removed all traces of kda_scan
* reduce OP count by 1 due to removal of kda_scan
* Move KIMI_LINEAR to llm_arch_is_hybrid to enable KV cache
* set n_embd_head_k/v to ensure kv cache works
* don't quantize conv1d of Kimi Linear
* Kimi Linear backend agnostic
* removed LOG_INFO
* naive chunking form implemented
* fixed some comments
* add Kimi-K2 specific tokens to be recognized as EOG
* build_kda_autoregressive is implemented to replace build_kda_recurrent for faster inference. sync'd to b7682
* replaced Akk and Aqk with mul_mat and clamp
* no clamp version
* Moved Aqk computation out of the loop
* fixed typo and split wkv_b into wk_b and wv_b
* MLA KV cache support
* fix trailing spaces
* moved const llama_model & model; around to follow qwen3next format and see if it cna pass the -Wunused-private-field error
* fix trailing whitespace
* removed traling whitespaces in empty line + make sure indentation is multiple of 4
* try to make lint happy
* remove blank lines to make lint happy
* removed at least blank line containing white space
* fixed flake8 complaints locally
* return ggml_tensor * pair in kda_autoregressive and kda_chunking as in ngxson's Qwen3Next improvement
* removed Kimi-Linear specific change that causes failure at server-windows
* removed private: from kimi_linear to make build checks happy
* removed unnecessary ggml_cont before ggml_reshape
* created static function causal_conv1d to abtract similar code for q/k/v
* merged dt_bias to SSM_DT. Do -exp(log_A) in convert_hf_to_gguf.py.
* reverted to original
* fixed find_hparam calls. Fixed e_score_correction_bias to use bias instead of weight. Removed all ssm_conv bias terms.
* remove DT_B from constants.py. remove one comment line in llama-model.cpp
* new class llm_graph_input_mem_hybrid_k to get around the new MLA change. switch the concat order of ggml_concat calls in kimi-linear.cpp to accommodate MLA changes. Removed support for exp_probs_b.weight
* remove ssm_o_norm_b
* remove ssm_o_norm_b
* changed hparams.kda_head_dim to hparams.n_embd_head_kda. added TODO comment for class llama_graph_mem_hybrid_k
* removed all ggml_cont b4 ggml_reshape_4d
* Whitespace
* replaced all hparams.get with find_hparams
* added new names for n_experts, n_experts_used and score_func in TextModel and removed their code in KimiLinear in convert_hf_to_gguf.py. Removed unnecessary ggml_cont and GGML_ASSERT in kimi-linear.cpp
* use is_mla to switch between different mem_hybrid types
* fixed logical errors in convert_hf_to_gguf.py pointed out by CISC
* removed if else for required parameters kv_lora_rank and qk_rope_head_dim
* add back ggml_cont for Vcur
* minor changes
* removed extra line in llama-vocab.cpp. Added back the comment in llama-graph.cpp
* f16 gguf cannot run without context length
* made a mistake of adding back n_ctx parsing
---------
Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
The cpu and cuda backends use fp16 for the VKQ accumulator type, this change
does the same for vulkan. This helps particularly with large head sizes which
are very register-limited.
I tried this for the coopmat1 path and it slowed down a bit. I didn't try for
scalar.
I applied the softmax bias that the cuda backend uses to avoid overflow,
although I was not able to reproduce the original bug without it.
Write out a 2-bit code per block and avoid loading the mask when it
matches these two common cases.
Apply this optimization when the mask is relatively large (i.e. prompt
processing).