* lora: make sure model keep track of associated adapters
* deprecate llama_adapter_lora_free
* minor : std::unordered_set over std::set
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* hexagon: disable repack buffers if host buffers are disabled, improved handling of env vars
* hexagon: add support for OP_CPY fp16/fp32 -> fp16/fp32
Factore out all hvx_copy functions into hvx-copy.h header and reduced code duplication.
Update HTP ops infra to support OP_CPY
* hexagon: cleanup and refactor hex/hvx/htp headers and helper libs
hex is basically all scalar/core platform stuff (L2, DMA, basic utils)
hvx is all hvx related utils, helpers, etc
htp is higher level stuff like Ops, etc
hvx-utils library got a nice round of cleanup and refactoring to reduce duplication
use hvx_vec_store_a where possible
* hexagon: refactor HVX sigmoid functions to hvx-sigmoid.h
Moved sigmoid and tanh vector functions from hvx-utils.h to a new header
hvx-sigmoid.h. Implemented aligned and unaligned variants for sigmoid
array processing using a macro pattern similar to hvx-copy.h. Updated
act-ops.c to use the new aligned variant hvx_sigmoid_f32_aa. Removed
unused hvx-sigmoid.c.
* hexagon: factor out hvx-sqrt.h
* hexagon: mintor update to hvx-utils.h
* hexagon: remove spurios log
* hexagon: factor out and optimize hvx_add/sub/mul
* hexagon: remove _opt variants of add/sub/mul as they simply fully aligned versions
* hexagon: refactor reduction functions to hvx-reduce.h
Moved `hvx_self_max_f32` and `hvx_self_sum_f32` from `hvx-utils.h`/`.c` to `hvx-reduce.h`.
Renamed them to `hvx_reduce_max_f32` and `hvx_reduce_sum_f32`.
Added aligned (`_a`) and unaligned (`_u`) variants and used macros to unify logic.
Updated `softmax-ops.c` to use the new functions.
* hexagon: refactor the rest of arithmetic functions to hvx-arith.h
Moved `hvx_sum_of_squares_f32`, `hvx_min_scalar_f32`, and `hvx_clamp_scalar_f32` from `hvx-utils.c/h` to `hvx-arith.h`. Implemented aligned/unaligned variants (`_aa`, `_au`, etc.) and used macros to reduce code duplication. Updated `hvx_min_scalar_f32` and `hvx_clamp_scalar_f32` to use `dst, src, ..., n` argument order. Updated call sites in `act-ops.c`.
Refactor Hexagon HVX arithmetic functions (min, clamp) to hvx-arith.h
Moved `hvx_min_scalar_f32` and `hvx_clamp_scalar_f32` from `hvx-utils.c/h` to `hvx-arith.h`. Implemented aligned/unaligned variants (`_aa`, `_au`, etc.) and used macros to reduce code duplication. Updated these functions to use `dst, src, ..., n` argument order and updated call sites in `act-ops.c`. `hvx_sum_of_squares_f32` remains in `hvx-utils.c` as requested.
* hexagon: refactor hvx_sum_of_squares_f32
- Modify `hvx_sum_of_squares_f32` in `ggml/src/ggml-hexagon/htp/hvx-reduce.h` to use `dst, src` signature.
- Implement `_a` (aligned) and `_u` (unaligned) variants for `hvx_sum_of_squares_f32`.
- Update `hvx_reduce_loop_body` macro to support both returning and storing results via `finalize_op`.
- Update existing reduction functions in `hvx-reduce.h` to use the updated macro.
- Update `rms_norm_htp_f32` in `ggml/src/ggml-hexagon/htp/unary-ops.c` to match the new signature.
* hexagon: use hvx_splat instead of memset
* hexagon: consistent use of f32/f16 in all function names to match the rest of GGML
* hexagon: fix hvx_copy_f16_f32 on v75 and older
* hexagon: update readme to include GGML_HEXAGON_EXPERIMENTAL
* scripts: update snapdragon/adb scripts to enable host param
* CUDA: Refactor and expose two_stage_warp_reduce_* function
* Use `two_stage_warp_reduce` also in softmax kernel, move smem out of it
Moving smem out of `__device__` function to `__global__` function
allows for explicit smem reuse, as either compiler or cuda rt seem to not
free it afterwards (`cudaFuncSetAttribute` fails when not accounting for
it once for each call to two_stage_warp_reduce)
* Update ggml/src/ggml-cuda/common.cuh
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
* Use two_stage_warp_reduce in group_norm_f32
* Use two_stage_warp_reduce in rms_norm_f32
* Fix smem calculation which expects bytes
* Make `two_stage_warp_reduce` accept all values warp_reduce accepts
Also integrate it into norm_f32 function
* Use two_stage_warp_reduce in l2_norm_f32
* Use type traits for block reduction for better legibility
Also adresss other requests by @am17an such as variable renaming
* Make norm tests cover all cuda paths
* Mark columns % WARP_SIZE !=0 as supported for RMS_NORM_BACK
Unit-tests passed locally, let's see if they pass in the CI as well
* Use `enum class` for `block_reduce_method`
This is more type-safe than plain enum
* Rename variables as suggested in code review by @am17an
* Rename two_stage_warp_reduce -> block_reduce
* Fix trailing whitespace in common.cuh
* Make condition of static_assert type-dependent
This delays evaluation until the template is actually instantiated.
Otherwise, some compilers may evaluate the assert when parsing the
template, resulting in build errors as observed here:
https://github.com/ggml-org/llama.cpp/actions/runs/20960323123/job/60235530068?pr=18785
* Inline definitions
---------
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Haiku OS does not support RLIMIT_MEMLOCK, similar to visionOS/tvOS.
Skip the resource limit check on Haiku to allow mlock functionality
to work without compile errors.
Tested on Haiku with NVIDIA RTX 3080 Ti using Vulkan backend.
* ci, tests : use cmake to download models and remove libcurl dependency
* llama_dl_model -> llama_download_model
* use EXPECTED_HASH for robust model downloading
* Move llama_download_model to cmake/common.cmake
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
This commit removes the `-c, --ctx-size N` from the llama-server
command in the model card template for causal models.
The motivation for this is that -c 0 is the default and specifying it
is redundant.