mtmd : add VAETKI vision encoder support

This commit is contained in:
suhyun-hwang 2026-01-09 22:12:23 +09:00
parent 488cdee96f
commit b267aada03
8 changed files with 246 additions and 2 deletions

View File

@ -7727,7 +7727,7 @@ class VaetkiModel(TextModel):
toktypes.append(gguf.TokenType.CONTROL)
else:
# pre-normalize user-defined spaces (Metaspace → space)
token = token.replace("\xe2\x96\x81", " ")
token = token.replace("\u2581", " ")
toktypes.append(gguf.TokenType.USER_DEFINED)
tokens.append(token)
elif i in reverse_vocab:

View File

@ -1165,7 +1165,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
switch (hparams.n_layer) {
case 24: type = LLM_TYPE_7B; break;
case 48: type = LLM_TYPE_109B; break;
case 48: type = LLM_TYPE_120B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;

View File

@ -26,6 +26,7 @@ add_library(mtmd
models/qwen2vl.cpp
models/qwen3vl.cpp
models/siglip.cpp
models/vaetki.cpp
models/whisper-enc.cpp
models/mobilenetv5.cpp
models/youtuvl.cpp

View File

@ -66,6 +66,7 @@
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_CLASS_POS_EMBD "v.class_pos_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias"
@ -233,6 +234,7 @@ enum projector_type {
PROJECTOR_TYPE_LFM2A,
PROJECTOR_TYPE_GLM4V,
PROJECTOR_TYPE_YOUTUVL,
PROJECTOR_TYPE_VAETKI,
PROJECTOR_TYPE_UNKNOWN,
};
@ -266,6 +268,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_LFM2A, "lfm2a"},
{ PROJECTOR_TYPE_GLM4V, "glm4v"},
{ PROJECTOR_TYPE_YOUTUVL, "youtuvl"},
{ PROJECTOR_TYPE_VAETKI, "vaetki"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {

View File

@ -219,6 +219,7 @@ struct clip_model {
// embeddings
ggml_tensor * class_embedding = nullptr;
ggml_tensor * class_pos_emb = nullptr;
ggml_tensor * patch_embeddings_0 = nullptr;
ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
ggml_tensor * patch_bias = nullptr;

View File

@ -849,6 +849,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{
builder = std::make_unique<clip_graph_youtuvl>(ctx, img);
} break;
case PROJECTOR_TYPE_VAETKI:
{
builder = std::make_unique<clip_graph_vaetki>(ctx, img);
} break;
default:
GGML_ABORT("missing cgraph builder");
}
@ -1192,6 +1196,13 @@ struct clip_model_loader {
hparams.set_limit_image_tokens(8, 4096);
hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
} break;
case PROJECTOR_TYPE_VAETKI:
{
hparams.rope_theta = 10000.0f;
hparams.n_merge = 2;
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
hparams.set_warmup_n_tokens(40*40);
} break;
case PROJECTOR_TYPE_LLAMA4:
{
hparams.rope_theta = 10000.0f;
@ -1325,6 +1336,7 @@ struct clip_model_loader {
};
model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
model.class_pos_emb = get_tensor(TN_CLASS_POS_EMBD, false);
model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
@ -1540,6 +1552,15 @@ struct clip_model_loader {
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); // merger.mlp.2
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
} break;
case PROJECTOR_TYPE_VAETKI:
{
model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
} break;
case PROJECTOR_TYPE_GLM4V:
{
model.projection = get_tensor(TN_MM_PROJECTOR);
@ -2952,6 +2973,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
case PROJECTOR_TYPE_GLM_EDGE:
case PROJECTOR_TYPE_GEMMA3:
case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
case PROJECTOR_TYPE_VAETKI:
{
clip_image_u8 resized_image;
int sz = params.image_size;
@ -3229,6 +3251,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_INTERNVL:
case PROJECTOR_TYPE_LLAMA4:
case PROJECTOR_TYPE_VAETKI:
{
// both X and Y are downscaled by the scale factor
int scale_factor = ctx->model.hparams.n_merge;
@ -3496,6 +3519,31 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_VAETKI:
{
const int merge_ratio = 2;
const int ipw = image_size_width / patch_size;
const int iph = image_size_height / patch_size;
std::vector<int> positions(num_patches * 4);
int ptr = 0;
for (int y = 0; y < iph; y += merge_ratio) {
for (int x = 0; x < ipw; x += merge_ratio) {
for (int dy = 0; dy < 2; dy++) {
for (int dx = 0; dx < 2; dx++) {
positions[ ptr] = y + dy;
positions[ num_patches + ptr] = x + dx;
positions[2 * num_patches + ptr] = y + dy;
positions[3 * num_patches + ptr] = x + dx;
ptr++;
}
}
}
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_QWEN25VL:
@ -3756,6 +3804,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
case PROJECTOR_TYPE_MUSIC_FLAMINGO:
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_INTERNVL:
case PROJECTOR_TYPE_VAETKI:
return ctx->model.mm_3_w->ne[1];
case PROJECTOR_TYPE_LLAMA4:
return ctx->model.mm_model_proj->ne[1];

View File

@ -109,3 +109,8 @@ struct clip_graph_mobilenetv5 : clip_graph {
ggml_tensor * inp,
const mobilenetv5_block & block);
};
struct clip_graph_vaetki : clip_graph {
clip_graph_vaetki(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
ggml_cgraph * build() override;
};

View File

@ -0,0 +1,185 @@
#include "models.h"
ggml_cgraph * clip_graph_vaetki::build() {
GGML_ASSERT(model.class_embedding != nullptr);
const int batch_size = 1;
const int n_pos = n_patches + 1;
const int n_pos_patches = n_patches;
const int num_position_ids = n_pos_patches * 4;
norm_type norm_t = NORM_TYPE_NORMAL;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
ggml_tensor * inp = build_inp();
// add CLS token
inp = ggml_concat(ctx0, model.class_embedding, inp, 1);
cb(inp, "inp_with_cls", -1);
ggml_tensor * inpL = inp;
// position IDs for 2D RoPE (patch tokens only)
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
// precompute CLS position embedding cos/sin
ggml_tensor * cls_cos = nullptr;
ggml_tensor * cls_sin = nullptr;
if (model.class_pos_emb) {
// class_pos_emb: [head_dim/2] -> concat to [head_dim]
ggml_tensor * cls_pos = ggml_concat(ctx0, model.class_pos_emb, model.class_pos_emb, 0);
cls_cos = ggml_cos(ctx0, cls_pos);
cls_sin = ggml_sin(ctx0, cls_pos);
}
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
cb(inpL, "pre_ln", -1);
}
for (int il = 0; il < n_layer; il++) {
const auto & layer = model.layers[il];
ggml_tensor * cur = inpL;
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
cb(cur, "ln1", il);
// self-attention with 2D RoPE
{
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b) {
Qcur = ggml_add(ctx0, Qcur, layer.q_b);
}
ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b) {
Kcur = ggml_add(ctx0, Kcur, layer.k_b);
}
ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b) {
Vcur = ggml_add(ctx0, Vcur, layer.v_b);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// split CLS and patch tokens for RoPE
ggml_tensor * Q_cls = ggml_view_3d(ctx0, Qcur, d_head, n_head, 1,
ggml_row_size(Qcur->type, d_head),
ggml_row_size(Qcur->type, d_head * n_head), 0);
ggml_tensor * K_cls = ggml_view_3d(ctx0, Kcur, d_head, n_head, 1,
ggml_row_size(Kcur->type, d_head),
ggml_row_size(Kcur->type, d_head * n_head), 0);
ggml_tensor * Q_patch = ggml_view_3d(ctx0, Qcur, d_head, n_head, n_pos_patches,
ggml_row_size(Qcur->type, d_head),
ggml_row_size(Qcur->type, d_head * n_head),
ggml_row_size(Qcur->type, d_head * n_head));
ggml_tensor * K_patch = ggml_view_3d(ctx0, Kcur, d_head, n_head, n_pos_patches,
ggml_row_size(Kcur->type, d_head),
ggml_row_size(Kcur->type, d_head * n_head),
ggml_row_size(Kcur->type, d_head * n_head));
// apply RoPE to CLS token using class_pos_emb
if (cls_cos && cls_sin) {
// rotate_half: split into two halves, negate second, swap order
ggml_tensor * Q_cls_1 = ggml_view_3d(ctx0, Q_cls, d_head/2, n_head, 1,
ggml_row_size(Q_cls->type, d_head),
ggml_row_size(Q_cls->type, d_head * n_head), 0);
ggml_tensor * Q_cls_2 = ggml_view_3d(ctx0, Q_cls, d_head/2, n_head, 1,
ggml_row_size(Q_cls->type, d_head),
ggml_row_size(Q_cls->type, d_head * n_head),
ggml_row_size(Q_cls->type, d_head/2));
ggml_tensor * Q_cls_rot = ggml_concat(ctx0, ggml_neg(ctx0, Q_cls_2), Q_cls_1, 0);
ggml_tensor * K_cls_1 = ggml_view_3d(ctx0, K_cls, d_head/2, n_head, 1,
ggml_row_size(K_cls->type, d_head),
ggml_row_size(K_cls->type, d_head * n_head), 0);
ggml_tensor * K_cls_2 = ggml_view_3d(ctx0, K_cls, d_head/2, n_head, 1,
ggml_row_size(K_cls->type, d_head),
ggml_row_size(K_cls->type, d_head * n_head),
ggml_row_size(K_cls->type, d_head/2));
ggml_tensor * K_cls_rot = ggml_concat(ctx0, ggml_neg(ctx0, K_cls_2), K_cls_1, 0);
// RoPE: x * cos + rotate_half(x) * sin
Q_cls = ggml_add(ctx0,
ggml_mul(ctx0, Q_cls, cls_cos),
ggml_mul(ctx0, Q_cls_rot, cls_sin));
K_cls = ggml_add(ctx0,
ggml_mul(ctx0, K_cls, cls_cos),
ggml_mul(ctx0, K_cls_rot, cls_sin));
}
// apply 2D RoPE to patch tokens
Q_patch = ggml_rope_multi(ctx0, Q_patch, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
K_patch = ggml_rope_multi(ctx0, K_patch, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
Qcur = ggml_concat(ctx0, Q_cls, Q_patch, 2);
Kcur = ggml_concat(ctx0, K_cls, K_patch, 2);
cb(Qcur, "Qcur_rope", il);
cb(Kcur, "Kcur_rope", il);
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
cur = ggml_add(ctx0, cur, inpL);
inpL = cur;
cb(cur, "ffn_inp", il);
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
cb(cur, "ln2", il);
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
nullptr, nullptr,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
inpL = cur;
}
// remove CLS token
ggml_tensor * embeddings = ggml_view_2d(ctx0, inpL,
n_embd, n_pos_patches,
ggml_row_size(inpL->type, n_embd),
ggml_row_size(inpL->type, n_embd));
cb(embeddings, "patches_only", -1);
// merger
embeddings = build_norm(embeddings, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
cb(embeddings, "merger_normed", -1);
// pixel shuffle
const int scale_factor = hparams.n_merge;
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * scale_factor * scale_factor, n_pos_patches / (scale_factor * scale_factor), batch_size);
cb(embeddings, "merger_reshaped", -1);
embeddings = build_ffn(embeddings,
model.mm_1_w, model.mm_1_b,
nullptr, nullptr,
model.mm_3_w, model.mm_3_b,
FFN_GELU,
-1);
cb(embeddings, "merger_out", -1);
ggml_build_forward_expand(gf, embeddings);
return gf;
}