188 lines
22 KiB
Markdown
188 lines
22 KiB
Markdown
# llama.cpp/tools/cli
|
|
|
|
## Usage
|
|
|
|
<!-- HELP_START -->
|
|
|
|
<!-- IMPORTANT: The list below is auto-generated by llama-gen-docs; do NOT modify it manually -->
|
|
|
|
### Common params
|
|
|
|
| Argument | Explanation |
|
|
| -------- | ----------- |
|
|
| `-h, --help, --usage` | print usage and exit |
|
|
| `--version` | show version and build info |
|
|
| `-cl, --cache-list` | show list of models in cache |
|
|
| `--completion-bash` | print source-able bash completion script for llama.cpp |
|
|
| `--verbose-prompt` | print a verbose prompt before generation (default: false) |
|
|
| `-t, --threads N` | number of CPU threads to use during generation (default: -1)<br/>(env: LLAMA_ARG_THREADS) |
|
|
| `-tb, --threads-batch N` | number of threads to use during batch and prompt processing (default: same as --threads) |
|
|
| `-C, --cpu-mask M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: "") |
|
|
| `-Cr, --cpu-range lo-hi` | range of CPUs for affinity. Complements --cpu-mask |
|
|
| `--cpu-strict <0\|1>` | use strict CPU placement (default: 0) |
|
|
| `--prio N` | set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: 0) |
|
|
| `--poll <0...100>` | use polling level to wait for work (0 - no polling, default: 50) |
|
|
| `-Cb, --cpu-mask-batch M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask) |
|
|
| `-Crb, --cpu-range-batch lo-hi` | ranges of CPUs for affinity. Complements --cpu-mask-batch |
|
|
| `--cpu-strict-batch <0\|1>` | use strict CPU placement (default: same as --cpu-strict) |
|
|
| `--prio-batch N` | set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0) |
|
|
| `--poll-batch <0\|1>` | use polling to wait for work (default: same as --poll) |
|
|
| `-c, --ctx-size N` | size of the prompt context (default: 0, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE) |
|
|
| `-n, --predict, --n-predict N` | number of tokens to predict (default: -1, -1 = infinity)<br/>(env: LLAMA_ARG_N_PREDICT) |
|
|
| `-b, --batch-size N` | logical maximum batch size (default: 2048)<br/>(env: LLAMA_ARG_BATCH) |
|
|
| `-ub, --ubatch-size N` | physical maximum batch size (default: 512)<br/>(env: LLAMA_ARG_UBATCH) |
|
|
| `--keep N` | number of tokens to keep from the initial prompt (default: 0, -1 = all) |
|
|
| `--swa-full` | use full-size SWA cache (default: false)<br/>[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)<br/>(env: LLAMA_ARG_SWA_FULL) |
|
|
| `-fa, --flash-attn [on\|off\|auto]` | set Flash Attention use ('on', 'off', or 'auto', default: 'auto')<br/>(env: LLAMA_ARG_FLASH_ATTN) |
|
|
| `-p, --prompt PROMPT` | prompt to start generation with; for system message, use -sys |
|
|
| `--perf, --no-perf` | whether to enable internal libllama performance timings (default: false)<br/>(env: LLAMA_ARG_PERF) |
|
|
| `-f, --file FNAME` | a file containing the prompt (default: none) |
|
|
| `-bf, --binary-file FNAME` | binary file containing the prompt (default: none) |
|
|
| `-e, --escape, --no-escape` | whether to process escapes sequences (\n, \r, \t, \', \", \\) (default: true) |
|
|
| `--rope-scaling {none,linear,yarn}` | RoPE frequency scaling method, defaults to linear unless specified by the model<br/>(env: LLAMA_ARG_ROPE_SCALING_TYPE) |
|
|
| `--rope-scale N` | RoPE context scaling factor, expands context by a factor of N<br/>(env: LLAMA_ARG_ROPE_SCALE) |
|
|
| `--rope-freq-base N` | RoPE base frequency, used by NTK-aware scaling (default: loaded from model)<br/>(env: LLAMA_ARG_ROPE_FREQ_BASE) |
|
|
| `--rope-freq-scale N` | RoPE frequency scaling factor, expands context by a factor of 1/N<br/>(env: LLAMA_ARG_ROPE_FREQ_SCALE) |
|
|
| `--yarn-orig-ctx N` | YaRN: original context size of model (default: 0 = model training context size)<br/>(env: LLAMA_ARG_YARN_ORIG_CTX) |
|
|
| `--yarn-ext-factor N` | YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation)<br/>(env: LLAMA_ARG_YARN_EXT_FACTOR) |
|
|
| `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: -1.0)<br/>(env: LLAMA_ARG_YARN_ATTN_FACTOR) |
|
|
| `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: -1.0)<br/>(env: LLAMA_ARG_YARN_BETA_SLOW) |
|
|
| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: -1.0)<br/>(env: LLAMA_ARG_YARN_BETA_FAST) |
|
|
| `-kvo, --kv-offload, -nkvo, --no-kv-offload` | whether to enable KV cache offloading (default: enabled)<br/>(env: LLAMA_ARG_KV_OFFLOAD) |
|
|
| `--repack, -nr, --no-repack` | whether to enable weight repacking (default: enabled)<br/>(env: LLAMA_ARG_REPACK) |
|
|
| `--no-host` | bypass host buffer allowing extra buffers to be used<br/>(env: LLAMA_ARG_NO_HOST) |
|
|
| `-ctk, --cache-type-k TYPE` | KV cache data type for K<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
|
|
| `-ctv, --cache-type-v TYPE` | KV cache data type for V<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
|
|
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (DEPRECATED)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
|
|
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
|
|
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
|
|
| `--mmap, --no-mmap` | whether to memory-map model (if disabled, slower load but may reduce pageouts if not using mlock) (default: enabled)<br/>(env: LLAMA_ARG_MMAP) |
|
|
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggml-org/llama.cpp/issues/1437<br/>(env: LLAMA_ARG_NUMA) |
|
|
| `-dev, --device <dev1,dev2,..>` | comma-separated list of devices to use for offloading (none = don't offload)<br/>use --list-devices to see a list of available devices<br/>(env: LLAMA_ARG_DEVICE) |
|
|
| `--list-devices` | print list of available devices and exit |
|
|
| `-ot, --override-tensor <tensor name pattern>=<buffer type>,...` | override tensor buffer type |
|
|
| `-cmoe, --cpu-moe` | keep all Mixture of Experts (MoE) weights in the CPU<br/>(env: LLAMA_ARG_CPU_MOE) |
|
|
| `-ncmoe, --n-cpu-moe N` | keep the Mixture of Experts (MoE) weights of the first N layers in the CPU<br/>(env: LLAMA_ARG_N_CPU_MOE) |
|
|
| `-ngl, --gpu-layers, --n-gpu-layers N` | max. number of layers to store in VRAM (default: -1)<br/>(env: LLAMA_ARG_N_GPU_LAYERS) |
|
|
| `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:<br/>- none: use one GPU only<br/>- layer (default): split layers and KV across GPUs<br/>- row: split rows across GPUs<br/>(env: LLAMA_ARG_SPLIT_MODE) |
|
|
| `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1<br/>(env: LLAMA_ARG_TENSOR_SPLIT) |
|
|
| `-mg, --main-gpu INDEX` | the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: 0)<br/>(env: LLAMA_ARG_MAIN_GPU) |
|
|
| `-fit, --fit [on\|off]` | whether to adjust unset arguments to fit in device memory ('on' or 'off', default: 'on')<br/>(env: LLAMA_ARG_FIT) |
|
|
| `-fitt, --fit-target MiB` | target margin per device for --fit option, default: 1024<br/>(env: LLAMA_ARG_FIT_TARGET) |
|
|
| `-fitc, --fit-ctx N` | minimum ctx size that can be set by --fit option, default: 4096<br/>(env: LLAMA_ARG_FIT_CTX) |
|
|
| `--check-tensors` | check model tensor data for invalid values (default: false) |
|
|
| `--override-kv KEY=TYPE:VALUE,...` | advanced option to override model metadata by key. to specify multiple overrides, either use comma-separated or repeat this argument.<br/>types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false,tokenizer.ggml.add_eos_token=bool:false |
|
|
| `--op-offload, --no-op-offload` | whether to offload host tensor operations to device (default: true) |
|
|
| `--lora FNAME` | path to LoRA adapter (use comma-separated values to load multiple adapters) |
|
|
| `--lora-scaled FNAME:SCALE,...` | path to LoRA adapter with user defined scaling (format: FNAME:SCALE,...)<br/>note: use comma-separated values |
|
|
| `--control-vector FNAME` | add a control vector<br/>note: use comma-separated values to add multiple control vectors |
|
|
| `--control-vector-scaled FNAME:SCALE,...` | add a control vector with user defined scaling SCALE<br/>note: use comma-separated values (format: FNAME:SCALE,...) |
|
|
| `--control-vector-layer-range START END` | layer range to apply the control vector(s) to, start and end inclusive |
|
|
| `-m, --model FNAME` | model path to load<br/>(env: LLAMA_ARG_MODEL) |
|
|
| `-mu, --model-url MODEL_URL` | model download url (default: unused)<br/>(env: LLAMA_ARG_MODEL_URL) |
|
|
| `-dr, --docker-repo [<repo>/]<model>[:quant]` | Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.<br/>example: gemma3<br/>(default: unused)<br/>(env: LLAMA_ARG_DOCKER_REPO) |
|
|
| `-hf, -hfr, --hf-repo <user>/<model>[:quant]` | Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.<br/>mmproj is also downloaded automatically if available. to disable, add --no-mmproj<br/>example: unsloth/phi-4-GGUF:q4_k_m<br/>(default: unused)<br/>(env: LLAMA_ARG_HF_REPO) |
|
|
| `-hfd, -hfrd, --hf-repo-draft <user>/<model>[:quant]` | Same as --hf-repo, but for the draft model (default: unused)<br/>(env: LLAMA_ARG_HFD_REPO) |
|
|
| `-hff, --hf-file FILE` | Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)<br/>(env: LLAMA_ARG_HF_FILE) |
|
|
| `-hfv, -hfrv, --hf-repo-v <user>/<model>[:quant]` | Hugging Face model repository for the vocoder model (default: unused)<br/>(env: LLAMA_ARG_HF_REPO_V) |
|
|
| `-hffv, --hf-file-v FILE` | Hugging Face model file for the vocoder model (default: unused)<br/>(env: LLAMA_ARG_HF_FILE_V) |
|
|
| `-hft, --hf-token TOKEN` | Hugging Face access token (default: value from HF_TOKEN environment variable)<br/>(env: HF_TOKEN) |
|
|
| `--log-disable` | Log disable |
|
|
| `--log-file FNAME` | Log to file<br/>(env: LLAMA_LOG_FILE) |
|
|
| `--log-colors [on\|off\|auto]` | Set colored logging ('on', 'off', or 'auto', default: 'auto')<br/>'auto' enables colors when output is to a terminal<br/>(env: LLAMA_LOG_COLORS) |
|
|
| `-v, --verbose, --log-verbose` | Set verbosity level to infinity (i.e. log all messages, useful for debugging) |
|
|
| `--offline` | Offline mode: forces use of cache, prevents network access<br/>(env: LLAMA_OFFLINE) |
|
|
| `-lv, --verbosity, --log-verbosity N` | Set the verbosity threshold. Messages with a higher verbosity will be ignored. Values:<br/> - 0: generic output<br/> - 1: error<br/> - 2: warning<br/> - 3: info<br/> - 4: debug<br/>(default: 3)<br/><br/>(env: LLAMA_LOG_VERBOSITY) |
|
|
| `--log-prefix` | Enable prefix in log messages<br/>(env: LLAMA_LOG_PREFIX) |
|
|
| `--log-timestamps` | Enable timestamps in log messages<br/>(env: LLAMA_LOG_TIMESTAMPS) |
|
|
| `-ctkd, --cache-type-k-draft TYPE` | KV cache data type for K for the draft model<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K_DRAFT) |
|
|
| `-ctvd, --cache-type-v-draft TYPE` | KV cache data type for V for the draft model<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V_DRAFT) |
|
|
|
|
|
|
### Sampling params
|
|
|
|
| Argument | Explanation |
|
|
| -------- | ----------- |
|
|
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: penalties;dry;top_n_sigma;top_k;typ_p;top_p;min_p;xtc;temperature) |
|
|
| `-s, --seed SEED` | RNG seed (default: -1, use random seed for -1) |
|
|
| `--sampler-seq, --sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: edskypmxt) |
|
|
| `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
|
|
| `--temp N` | temperature (default: 0.8) |
|
|
| `--top-k N` | top-k sampling (default: 40, 0 = disabled)<br/>(env: LLAMA_ARG_TOP_K) |
|
|
| `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) |
|
|
| `--min-p N` | min-p sampling (default: 0.1, 0.0 = disabled) |
|
|
| `--top-nsigma N` | top-n-sigma sampling (default: -1.0, -1.0 = disabled) |
|
|
| `--xtc-probability N` | xtc probability (default: 0.0, 0.0 = disabled) |
|
|
| `--xtc-threshold N` | xtc threshold (default: 0.1, 1.0 = disabled) |
|
|
| `--typical N` | locally typical sampling, parameter p (default: 1.0, 1.0 = disabled) |
|
|
| `--repeat-last-n N` | last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size) |
|
|
| `--repeat-penalty N` | penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled) |
|
|
| `--presence-penalty N` | repeat alpha presence penalty (default: 0.0, 0.0 = disabled) |
|
|
| `--frequency-penalty N` | repeat alpha frequency penalty (default: 0.0, 0.0 = disabled) |
|
|
| `--dry-multiplier N` | set DRY sampling multiplier (default: 0.0, 0.0 = disabled) |
|
|
| `--dry-base N` | set DRY sampling base value (default: 1.75) |
|
|
| `--dry-allowed-length N` | set allowed length for DRY sampling (default: 2) |
|
|
| `--dry-penalty-last-n N` | set DRY penalty for the last n tokens (default: -1, 0 = disable, -1 = context size) |
|
|
| `--dry-sequence-breaker STRING` | add sequence breaker for DRY sampling, clearing out default breakers ('\n', ':', '"', '*') in the process; use "none" to not use any sequence breakers |
|
|
| `--dynatemp-range N` | dynamic temperature range (default: 0.0, 0.0 = disabled) |
|
|
| `--dynatemp-exp N` | dynamic temperature exponent (default: 1.0) |
|
|
| `--mirostat N` | use Mirostat sampling.<br/>Top K, Nucleus and Locally Typical samplers are ignored if used.<br/>(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
|
|
| `--mirostat-lr N` | Mirostat learning rate, parameter eta (default: 0.1) |
|
|
| `--mirostat-ent N` | Mirostat target entropy, parameter tau (default: 5.0) |
|
|
| `-l, --logit-bias TOKEN_ID(+/-)BIAS` | modifies the likelihood of token appearing in the completion,<br/>i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',<br/>or `--logit-bias 15043-1` to decrease likelihood of token ' Hello' |
|
|
| `--grammar GRAMMAR` | BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') |
|
|
| `--grammar-file FNAME` | file to read grammar from |
|
|
| `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
|
|
| `-jf, --json-schema-file FILE` | File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
|
|
|
|
|
|
### CLI-specific params
|
|
|
|
| Argument | Explanation |
|
|
| -------- | ----------- |
|
|
| `--display-prompt, --no-display-prompt` | whether to print prompt at generation (default: true) |
|
|
| `-co, --color [on\|off\|auto]` | Colorize output to distinguish prompt and user input from generations ('on', 'off', or 'auto', default: 'auto')<br/>'auto' enables colors when output is to a terminal |
|
|
| `--ctx-checkpoints, --swa-checkpoints N` | max number of context checkpoints to create per slot (default: 8)[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)<br/>(env: LLAMA_ARG_CTX_CHECKPOINTS) |
|
|
| `-cram, --cache-ram N` | set the maximum cache size in MiB (default: 8192, -1 - no limit, 0 - disable)[(more info)](https://github.com/ggml-org/llama.cpp/pull/16391)<br/>(env: LLAMA_ARG_CACHE_RAM) |
|
|
| `--context-shift, --no-context-shift` | whether to use context shift on infinite text generation (default: disabled)<br/>(env: LLAMA_ARG_CONTEXT_SHIFT) |
|
|
| `-sys, --system-prompt PROMPT` | system prompt to use with model (if applicable, depending on chat template) |
|
|
| `--show-timings, --no-show-timings` | whether to show timing information after each response (default: true)<br/>(env: LLAMA_ARG_SHOW_TIMINGS) |
|
|
| `-sysf, --system-prompt-file FNAME` | a file containing the system prompt (default: none) |
|
|
| `-r, --reverse-prompt PROMPT` | halt generation at PROMPT, return control in interactive mode |
|
|
| `-sp, --special` | special tokens output enabled (default: false) |
|
|
| `-cnv, --conversation, -no-cnv, --no-conversation` | whether to run in conversation mode:<br/>- does not print special tokens and suffix/prefix<br/>- interactive mode is also enabled<br/>(default: auto enabled if chat template is available) |
|
|
| `-st, --single-turn` | run conversation for a single turn only, then exit when done<br/>will not be interactive if first turn is predefined with --prompt<br/>(default: false) |
|
|
| `-mli, --multiline-input` | allows you to write or paste multiple lines without ending each in '\' |
|
|
| `--warmup, --no-warmup` | whether to perform warmup with an empty run (default: enabled) |
|
|
| `-mm, --mmproj FILE` | path to a multimodal projector file. see tools/mtmd/README.md<br/>note: if -hf is used, this argument can be omitted<br/>(env: LLAMA_ARG_MMPROJ) |
|
|
| `-mmu, --mmproj-url URL` | URL to a multimodal projector file. see tools/mtmd/README.md<br/>(env: LLAMA_ARG_MMPROJ_URL) |
|
|
| `--mmproj-auto, --no-mmproj, --no-mmproj-auto` | whether to use multimodal projector file (if available), useful when using -hf (default: enabled)<br/>(env: LLAMA_ARG_MMPROJ_AUTO) |
|
|
| `--mmproj-offload, --no-mmproj-offload` | whether to enable GPU offloading for multimodal projector (default: enabled)<br/>(env: LLAMA_ARG_MMPROJ_OFFLOAD) |
|
|
| `--image, --audio FILE` | path to an image or audio file. use with multimodal models, use comma-separated values for multiple files |
|
|
| `--image-min-tokens N` | minimum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)<br/>(env: LLAMA_ARG_IMAGE_MIN_TOKENS) |
|
|
| `--image-max-tokens N` | maximum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)<br/>(env: LLAMA_ARG_IMAGE_MAX_TOKENS) |
|
|
| `-otd, --override-tensor-draft <tensor name pattern>=<buffer type>,...` | override tensor buffer type for draft model |
|
|
| `-cmoed, --cpu-moe-draft` | keep all Mixture of Experts (MoE) weights in the CPU for the draft model<br/>(env: LLAMA_ARG_CPU_MOE_DRAFT) |
|
|
| `-ncmoed, --n-cpu-moe-draft N` | keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model<br/>(env: LLAMA_ARG_N_CPU_MOE_DRAFT) |
|
|
| `--chat-template-kwargs STRING` | sets additional params for the json template parser<br/>(env: LLAMA_CHAT_TEMPLATE_KWARGS) |
|
|
| `--jinja, --no-jinja` | whether to use jinja template engine for chat (default: enabled)<br/>(env: LLAMA_ARG_JINJA) |
|
|
| `--reasoning-format FORMAT` | controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:<br/>- none: leaves thoughts unparsed in `message.content`<br/>- deepseek: puts thoughts in `message.reasoning_content`<br/>- deepseek-legacy: keeps `<think>` tags in `message.content` while also populating `message.reasoning_content`<br/>(default: auto)<br/>(env: LLAMA_ARG_THINK) |
|
|
| `--reasoning-budget N` | controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)<br/>(env: LLAMA_ARG_THINK_BUDGET) |
|
|
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted (unless --jinja is set before this flag):<br/>list of built-in templates:<br/>bailing, bailing-think, bailing2, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, deepseek3, exaone3, exaone4, falcon3, gemma, gigachat, glmedge, gpt-oss, granite, grok-2, hunyuan-dense, hunyuan-moe, kimi-k2, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat, orion, pangu-embedded, phi3, phi4, rwkv-world, seed_oss, smolvlm, vicuna, vicuna-orca, yandex, zephyr<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
|
|
| `--chat-template-file JINJA_TEMPLATE_FILE` | set custom jinja chat template file (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted (unless --jinja is set before this flag):<br/>list of built-in templates:<br/>bailing, bailing-think, bailing2, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, deepseek3, exaone3, exaone4, falcon3, gemma, gigachat, glmedge, gpt-oss, granite, grok-2, hunyuan-dense, hunyuan-moe, kimi-k2, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat, orion, pangu-embedded, phi3, phi4, rwkv-world, seed_oss, smolvlm, vicuna, vicuna-orca, yandex, zephyr<br/>(env: LLAMA_ARG_CHAT_TEMPLATE_FILE) |
|
|
| `--simple-io` | use basic IO for better compatibility in subprocesses and limited consoles |
|
|
| `--draft, --draft-n, --draft-max N` | number of tokens to draft for speculative decoding (default: 16)<br/>(env: LLAMA_ARG_DRAFT_MAX) |
|
|
| `--draft-min, --draft-n-min N` | minimum number of draft tokens to use for speculative decoding (default: 0)<br/>(env: LLAMA_ARG_DRAFT_MIN) |
|
|
| `--draft-p-min P` | minimum speculative decoding probability (greedy) (default: 0.8)<br/>(env: LLAMA_ARG_DRAFT_P_MIN) |
|
|
| `-cd, --ctx-size-draft N` | size of the prompt context for the draft model (default: 0, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE_DRAFT) |
|
|
| `-devd, --device-draft <dev1,dev2,..>` | comma-separated list of devices to use for offloading the draft model (none = don't offload)<br/>use --list-devices to see a list of available devices |
|
|
| `-ngld, --gpu-layers-draft, --n-gpu-layers-draft N` | number of layers to store in VRAM for the draft model<br/>(env: LLAMA_ARG_N_GPU_LAYERS_DRAFT) |
|
|
| `-md, --model-draft FNAME` | draft model for speculative decoding (default: unused)<br/>(env: LLAMA_ARG_MODEL_DRAFT) |
|
|
| `--spec-replace TARGET DRAFT` | translate the string in TARGET into DRAFT if the draft model and main model are not compatible |
|
|
| `--gpt-oss-20b-default` | use gpt-oss-20b (note: can download weights from the internet) |
|
|
| `--gpt-oss-120b-default` | use gpt-oss-120b (note: can download weights from the internet) |
|
|
| `--vision-gemma-4b-default` | use Gemma 3 4B QAT (note: can download weights from the internet) |
|
|
| `--vision-gemma-12b-default` | use Gemma 3 12B QAT (note: can download weights from the internet) |
|
|
|
|
<!-- HELP_END -->
|