1197 lines
46 KiB
C++
1197 lines
46 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
#include "chat.h"
|
|
#include "sampling.h"
|
|
#include "json-schema-to-grammar.h"
|
|
|
|
#include <string>
|
|
#include <unordered_set>
|
|
#include <list>
|
|
|
|
#include "server-common.h"
|
|
#include "server-task.h"
|
|
|
|
using json = nlohmann::ordered_json;
|
|
|
|
//
|
|
// task_params
|
|
//
|
|
|
|
json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
|
|
json data = json::array();
|
|
for (const auto & lb : logit_bias) {
|
|
data.push_back(json{
|
|
{"bias", lb.bias},
|
|
{"token", lb.token},
|
|
});
|
|
}
|
|
return data;
|
|
}
|
|
|
|
json task_params::to_json(bool only_metrics) const {
|
|
std::vector<std::string> samplers;
|
|
samplers.reserve(sampling.samplers.size());
|
|
for (const auto & sampler : sampling.samplers) {
|
|
samplers.emplace_back(common_sampler_type_to_str(sampler));
|
|
}
|
|
|
|
json lora = json::array();
|
|
for (size_t i = 0; i < this->lora.size(); ++i) {
|
|
lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
|
|
}
|
|
|
|
if (only_metrics) {
|
|
return json {
|
|
{"seed", sampling.seed},
|
|
{"temperature", sampling.temp},
|
|
{"dynatemp_range", sampling.dynatemp_range},
|
|
{"dynatemp_exponent", sampling.dynatemp_exponent},
|
|
{"top_k", sampling.top_k},
|
|
{"top_p", sampling.top_p},
|
|
{"min_p", sampling.min_p},
|
|
{"top_n_sigma", sampling.top_n_sigma},
|
|
{"xtc_probability", sampling.xtc_probability},
|
|
{"xtc_threshold", sampling.xtc_threshold},
|
|
{"typical_p", sampling.typ_p},
|
|
{"repeat_last_n", sampling.penalty_last_n},
|
|
{"repeat_penalty", sampling.penalty_repeat},
|
|
{"presence_penalty", sampling.penalty_present},
|
|
{"frequency_penalty", sampling.penalty_freq},
|
|
{"dry_multiplier", sampling.dry_multiplier},
|
|
{"dry_base", sampling.dry_base},
|
|
{"dry_allowed_length", sampling.dry_allowed_length},
|
|
{"dry_penalty_last_n", sampling.dry_penalty_last_n},
|
|
{"mirostat", sampling.mirostat},
|
|
{"mirostat_tau", sampling.mirostat_tau},
|
|
{"mirostat_eta", sampling.mirostat_eta},
|
|
{"max_tokens", n_predict},
|
|
{"n_predict", n_predict}, // TODO: deduplicate?
|
|
{"n_keep", n_keep},
|
|
{"n_discard", n_discard},
|
|
{"ignore_eos", sampling.ignore_eos},
|
|
{"stream", stream},
|
|
{"n_probs", sampling.n_probs},
|
|
{"min_keep", sampling.min_keep},
|
|
{"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
|
|
{"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
|
|
{"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
|
|
{"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
|
|
{"samplers", samplers},
|
|
{"speculative.n_max", speculative.n_max},
|
|
{"speculative.n_min", speculative.n_min},
|
|
{"speculative.p_min", speculative.p_min},
|
|
{"timings_per_token", timings_per_token},
|
|
{"post_sampling_probs", post_sampling_probs},
|
|
{"lora", lora},
|
|
};
|
|
}
|
|
|
|
auto grammar_triggers = json::array();
|
|
for (const auto & trigger : sampling.grammar_triggers) {
|
|
server_grammar_trigger ct(trigger);
|
|
grammar_triggers.push_back(ct.to_json());
|
|
}
|
|
|
|
return json {
|
|
{"seed", sampling.seed},
|
|
{"temperature", sampling.temp},
|
|
{"dynatemp_range", sampling.dynatemp_range},
|
|
{"dynatemp_exponent", sampling.dynatemp_exponent},
|
|
{"top_k", sampling.top_k},
|
|
{"top_p", sampling.top_p},
|
|
{"min_p", sampling.min_p},
|
|
{"top_n_sigma", sampling.top_n_sigma},
|
|
{"xtc_probability", sampling.xtc_probability},
|
|
{"xtc_threshold", sampling.xtc_threshold},
|
|
{"typical_p", sampling.typ_p},
|
|
{"repeat_last_n", sampling.penalty_last_n},
|
|
{"repeat_penalty", sampling.penalty_repeat},
|
|
{"presence_penalty", sampling.penalty_present},
|
|
{"frequency_penalty", sampling.penalty_freq},
|
|
{"dry_multiplier", sampling.dry_multiplier},
|
|
{"dry_base", sampling.dry_base},
|
|
{"dry_allowed_length", sampling.dry_allowed_length},
|
|
{"dry_penalty_last_n", sampling.dry_penalty_last_n},
|
|
{"dry_sequence_breakers", sampling.dry_sequence_breakers},
|
|
{"mirostat", sampling.mirostat},
|
|
{"mirostat_tau", sampling.mirostat_tau},
|
|
{"mirostat_eta", sampling.mirostat_eta},
|
|
{"stop", antiprompt},
|
|
{"max_tokens", n_predict},
|
|
{"n_predict", n_predict}, // TODO: deduplicate?
|
|
{"n_keep", n_keep},
|
|
{"n_discard", n_discard},
|
|
{"ignore_eos", sampling.ignore_eos},
|
|
{"stream", stream},
|
|
{"logit_bias", format_logit_bias(sampling.logit_bias)},
|
|
{"n_probs", sampling.n_probs},
|
|
{"min_keep", sampling.min_keep},
|
|
{"grammar", sampling.grammar},
|
|
{"grammar_lazy", sampling.grammar_lazy},
|
|
{"grammar_triggers", grammar_triggers},
|
|
{"preserved_tokens", sampling.preserved_tokens},
|
|
{"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
|
|
{"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
|
|
{"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
|
|
{"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
|
|
{"samplers", samplers},
|
|
{"speculative.n_max", speculative.n_max},
|
|
{"speculative.n_min", speculative.n_min},
|
|
{"speculative.p_min", speculative.p_min},
|
|
{"timings_per_token", timings_per_token},
|
|
{"post_sampling_probs", post_sampling_probs},
|
|
{"lora", lora},
|
|
};
|
|
}
|
|
|
|
//
|
|
// server_task
|
|
//
|
|
|
|
task_params server_task::params_from_json_cmpl(
|
|
const llama_context * ctx,
|
|
const common_params & params_base,
|
|
const json & data) {
|
|
const llama_model * model = llama_get_model(ctx);
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
|
|
task_params params;
|
|
|
|
// Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
|
|
task_params defaults;
|
|
defaults.sampling = params_base.sampling;
|
|
defaults.speculative = params_base.speculative;
|
|
defaults.n_keep = params_base.n_keep;
|
|
defaults.n_predict = params_base.n_predict;
|
|
defaults.antiprompt = params_base.antiprompt;
|
|
|
|
// enabling this will output extra debug information in the HTTP responses from the server
|
|
params.verbose = params_base.verbosity > 9;
|
|
params.timings_per_token = json_value(data, "timings_per_token", false);
|
|
|
|
params.stream = json_value(data, "stream", false);
|
|
auto stream_opt = json_value(data, "stream_options", json::object());
|
|
params.include_usage = json_value(stream_opt, "include_usage", false);
|
|
params.cache_prompt = json_value(data, "cache_prompt", true);
|
|
params.return_tokens = json_value(data, "return_tokens", false);
|
|
params.return_progress = json_value(data, "return_progress", false);
|
|
params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
|
|
params.n_indent = json_value(data, "n_indent", defaults.n_indent);
|
|
params.n_keep = json_value(data, "n_keep", defaults.n_keep);
|
|
params.n_discard = json_value(data, "n_discard", defaults.n_discard);
|
|
//params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
|
|
params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
|
|
params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
|
|
|
|
params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
|
|
params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
|
|
params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
|
|
params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
|
|
params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
|
|
params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
|
|
params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
|
|
params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
|
|
params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
|
|
params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
|
|
params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
|
|
params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
|
|
params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
|
|
params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
|
|
params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
|
|
params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
|
|
params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
|
|
params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
|
|
params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
|
|
params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
|
|
params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
|
|
params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
|
|
params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
|
|
params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
|
|
params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
|
|
|
|
params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
|
|
params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
|
|
params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
|
|
|
|
params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
|
|
params.speculative.n_min = std::max(params.speculative.n_min, 0);
|
|
params.speculative.n_max = std::max(params.speculative.n_max, 0);
|
|
|
|
// Use OpenAI API logprobs only if n_probs wasn't provided
|
|
if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
|
|
params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
|
|
}
|
|
|
|
if (data.contains("lora")) {
|
|
if (data.at("lora").is_array()) {
|
|
params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
|
|
} else {
|
|
throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
|
|
}
|
|
} else {
|
|
params.lora = params_base.lora_adapters;
|
|
}
|
|
|
|
// TODO: add more sanity checks for the input parameters
|
|
|
|
if (params.sampling.penalty_last_n < -1) {
|
|
throw std::runtime_error("Error: repeat_last_n must be >= -1");
|
|
}
|
|
|
|
if (params.sampling.dry_penalty_last_n < -1) {
|
|
throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
|
|
}
|
|
|
|
if (params.sampling.penalty_last_n == -1) {
|
|
// note: should be the slot's context and not the full context, but it's ok
|
|
params.sampling.penalty_last_n = llama_n_ctx(ctx);
|
|
}
|
|
|
|
if (params.sampling.dry_penalty_last_n == -1) {
|
|
params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
|
|
}
|
|
|
|
if (params.sampling.dry_base < 1.0f) {
|
|
params.sampling.dry_base = defaults.sampling.dry_base;
|
|
}
|
|
|
|
// sequence breakers for DRY
|
|
{
|
|
// Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
|
|
// Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
|
|
|
|
if (data.contains("dry_sequence_breakers")) {
|
|
params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
|
|
if (params.sampling.dry_sequence_breakers.empty()) {
|
|
throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
|
|
}
|
|
}
|
|
}
|
|
|
|
// process "json_schema" and "grammar"
|
|
if (data.contains("json_schema") && !data.contains("grammar")) {
|
|
try {
|
|
auto schema = json_value(data, "json_schema", json::object());
|
|
SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
|
|
params.sampling.grammar = json_schema_to_grammar(schema);
|
|
SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
|
|
} catch (const std::exception & e) {
|
|
throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
|
|
}
|
|
} else {
|
|
params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
|
|
SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
|
|
params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
|
|
SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
|
|
}
|
|
|
|
{
|
|
auto it = data.find("chat_format");
|
|
if (it != data.end()) {
|
|
params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
|
|
SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
|
|
} else {
|
|
params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
|
|
}
|
|
common_reasoning_format reasoning_format = params_base.reasoning_format;
|
|
if (data.contains("reasoning_format")) {
|
|
reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
|
|
}
|
|
params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
|
|
params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
|
|
params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
|
|
params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
|
|
}
|
|
|
|
{
|
|
const auto preserved_tokens = data.find("preserved_tokens");
|
|
if (preserved_tokens != data.end()) {
|
|
for (const auto & t : *preserved_tokens) {
|
|
auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
|
|
if (ids.size() == 1) {
|
|
SRV_DBG("Preserved token: %d\n", ids[0]);
|
|
params.sampling.preserved_tokens.insert(ids[0]);
|
|
} else {
|
|
// This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
|
|
SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
|
|
}
|
|
}
|
|
}
|
|
const auto grammar_triggers = data.find("grammar_triggers");
|
|
if (grammar_triggers != data.end()) {
|
|
for (const auto & t : *grammar_triggers) {
|
|
server_grammar_trigger ct(t);
|
|
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
|
|
const auto & word = ct.value.value;
|
|
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
|
|
if (ids.size() == 1) {
|
|
auto token = ids[0];
|
|
if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
|
|
throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
|
|
}
|
|
SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
|
|
common_grammar_trigger trigger;
|
|
trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
|
|
trigger.value = word;
|
|
trigger.token = token;
|
|
params.sampling.grammar_triggers.push_back(std::move(trigger));
|
|
} else {
|
|
SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
|
|
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
|
|
}
|
|
} else {
|
|
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
|
|
SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
|
|
} else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
|
|
SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
|
|
} else {
|
|
throw std::runtime_error("Unknown grammar trigger type");
|
|
}
|
|
params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
|
|
}
|
|
}
|
|
}
|
|
if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
|
|
throw std::runtime_error("Error: no triggers set for lazy grammar!");
|
|
}
|
|
}
|
|
|
|
{
|
|
params.sampling.logit_bias.clear();
|
|
|
|
const auto & logit_bias = data.find("logit_bias");
|
|
if (logit_bias != data.end() && logit_bias->is_array()) {
|
|
const int n_vocab = llama_vocab_n_tokens(vocab);
|
|
for (const auto & el : *logit_bias) {
|
|
// TODO: we may want to throw errors here, in case "el" is incorrect
|
|
if (el.is_array() && el.size() == 2) {
|
|
float bias;
|
|
if (el[1].is_number()) {
|
|
bias = el[1].get<float>();
|
|
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
|
|
bias = -INFINITY;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (el[0].is_number_integer()) {
|
|
llama_token tok = el[0].get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab) {
|
|
params.sampling.logit_bias.push_back({tok, bias});
|
|
}
|
|
} else if (el[0].is_string()) {
|
|
auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
|
|
for (auto tok : toks) {
|
|
params.sampling.logit_bias.push_back({tok, bias});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (logit_bias != data.end() && logit_bias->is_object()) {
|
|
const int n_vocab = llama_vocab_n_tokens(vocab);
|
|
for (const auto & el : logit_bias->items()) {
|
|
float bias;
|
|
const auto & key = el.key();
|
|
const auto & value = el.value();
|
|
if (value.is_number()) {
|
|
bias = value.get<float>();
|
|
} else if (value.is_boolean() && !value.get<bool>()) {
|
|
bias = -INFINITY;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
char *end;
|
|
llama_token tok = strtol(key.c_str(), &end, 10);
|
|
if (*end == 0) {
|
|
if (tok >= 0 && tok < n_vocab) {
|
|
params.sampling.logit_bias.push_back({tok, bias});
|
|
}
|
|
} else {
|
|
auto toks = common_tokenize(vocab, key, false);
|
|
for (auto tok : toks) {
|
|
params.sampling.logit_bias.push_back({tok, bias});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
|
|
if (params.sampling.ignore_eos) {
|
|
params.sampling.logit_bias.insert(
|
|
params.sampling.logit_bias.end(),
|
|
defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
|
|
}
|
|
}
|
|
|
|
{
|
|
params.antiprompt.clear();
|
|
|
|
const auto & stop = data.find("stop");
|
|
if (stop != data.end() && stop->is_array()) {
|
|
for (const auto & word : *stop) {
|
|
if (!word.empty()) {
|
|
params.antiprompt.push_back(word);
|
|
}
|
|
}
|
|
}
|
|
// set reverse prompt from cli args if not set in the request
|
|
if (params.antiprompt.empty()) {
|
|
params.antiprompt = defaults.antiprompt;
|
|
}
|
|
}
|
|
|
|
{
|
|
const auto samplers = data.find("samplers");
|
|
if (samplers != data.end()) {
|
|
if (samplers->is_array()) {
|
|
params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
|
|
} else if (samplers->is_string()){
|
|
params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
|
|
}
|
|
} else {
|
|
params.sampling.samplers = defaults.sampling.samplers;
|
|
}
|
|
}
|
|
|
|
std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
|
|
params.oaicompat_model = json_value(data, "model", model_name);
|
|
|
|
return params;
|
|
}
|
|
|
|
//
|
|
// result_timings
|
|
//
|
|
|
|
json result_timings::to_json() const {
|
|
json base = {
|
|
{"cache_n", cache_n},
|
|
|
|
{"prompt_n", prompt_n},
|
|
{"prompt_ms", prompt_ms},
|
|
{"prompt_per_token_ms", prompt_per_token_ms},
|
|
{"prompt_per_second", prompt_per_second},
|
|
|
|
{"predicted_n", predicted_n},
|
|
{"predicted_ms", predicted_ms},
|
|
{"predicted_per_token_ms", predicted_per_token_ms},
|
|
{"predicted_per_second", predicted_per_second},
|
|
};
|
|
|
|
if (draft_n > 0) {
|
|
base["draft_n"] = draft_n;
|
|
base["draft_n_accepted"] = draft_n_accepted;
|
|
}
|
|
|
|
return base;
|
|
}
|
|
|
|
//
|
|
// result_prompt_progress
|
|
//
|
|
json result_prompt_progress::to_json() const {
|
|
return json {
|
|
{"total", total},
|
|
{"cache", cache},
|
|
{"processed", processed},
|
|
{"time_ms", time_ms},
|
|
};
|
|
}
|
|
|
|
static inline std::string stop_type_to_str(stop_type type) {
|
|
switch (type) {
|
|
case STOP_TYPE_EOS: return "eos";
|
|
case STOP_TYPE_WORD: return "word";
|
|
case STOP_TYPE_LIMIT: return "limit";
|
|
default: return "none";
|
|
}
|
|
}
|
|
|
|
//
|
|
// completion_token_output
|
|
//
|
|
|
|
json completion_token_output::to_json(bool post_sampling_probs) const {
|
|
json probs_for_token = json::array();
|
|
for (const auto & p : probs) {
|
|
std::string txt(p.txt);
|
|
txt.resize(validate_utf8(txt));
|
|
probs_for_token.push_back(json {
|
|
{"id", p.tok},
|
|
{"token", txt},
|
|
{"bytes", str_to_bytes(p.txt)},
|
|
{
|
|
post_sampling_probs ? "prob" : "logprob",
|
|
post_sampling_probs ? p.prob : logarithm(p.prob)
|
|
},
|
|
});
|
|
}
|
|
return probs_for_token;
|
|
}
|
|
|
|
json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
|
|
json out = json::array();
|
|
for (const auto & p : probs) {
|
|
std::string txt(p.text_to_send);
|
|
txt.resize(validate_utf8(txt));
|
|
out.push_back(json {
|
|
{"id", p.tok},
|
|
{"token", txt},
|
|
{"bytes", str_to_bytes(p.text_to_send)},
|
|
{
|
|
post_sampling_probs ? "prob" : "logprob",
|
|
post_sampling_probs ? p.prob : logarithm(p.prob)
|
|
},
|
|
{
|
|
post_sampling_probs ? "top_probs" : "top_logprobs",
|
|
p.to_json(post_sampling_probs)
|
|
},
|
|
});
|
|
}
|
|
return out;
|
|
}
|
|
|
|
float completion_token_output::logarithm(float x) {
|
|
// nlohmann::json converts -inf to null, so we need to prevent that
|
|
return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
|
|
}
|
|
|
|
std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
|
|
std::vector<unsigned char> bytes;
|
|
for (unsigned char c : str) {
|
|
bytes.push_back(c);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
//
|
|
// server_task_result_cmpl_final
|
|
//
|
|
json server_task_result_cmpl_final::to_json() {
|
|
switch (oaicompat) {
|
|
case OAICOMPAT_TYPE_NONE:
|
|
return to_json_non_oaicompat();
|
|
case OAICOMPAT_TYPE_COMPLETION:
|
|
return to_json_oaicompat();
|
|
case OAICOMPAT_TYPE_CHAT:
|
|
return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
|
|
default:
|
|
GGML_ASSERT(false && "Invalid oaicompat_type");
|
|
}
|
|
}
|
|
|
|
json server_task_result_cmpl_final::to_json_non_oaicompat() {
|
|
json res = json {
|
|
{"index", index},
|
|
{"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
|
|
{"tokens", stream ? llama_tokens {} : tokens},
|
|
{"id_slot", id_slot},
|
|
{"stop", true},
|
|
{"model", oaicompat_model},
|
|
{"tokens_predicted", n_decoded},
|
|
{"tokens_evaluated", n_prompt_tokens},
|
|
{"generation_settings", generation_params.to_json()},
|
|
{"prompt", prompt},
|
|
{"has_new_line", has_new_line},
|
|
{"truncated", truncated},
|
|
{"stop_type", stop_type_to_str(stop)},
|
|
{"stopping_word", stopping_word},
|
|
{"tokens_cached", n_tokens_cached},
|
|
{"timings", timings.to_json()},
|
|
};
|
|
if (!stream && !probs_output.empty()) {
|
|
res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
|
|
}
|
|
return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
|
|
}
|
|
|
|
json server_task_result_cmpl_final::to_json_oaicompat() {
|
|
std::time_t t = std::time(0);
|
|
json logprobs = json(nullptr); // OAI default to null
|
|
if (!stream && probs_output.size() > 0) {
|
|
logprobs = json{
|
|
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
|
|
};
|
|
}
|
|
json finish_reason = "length";
|
|
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
|
|
finish_reason = "stop";
|
|
}
|
|
json res = json {
|
|
{"choices", json::array({
|
|
json{
|
|
{"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
|
|
{"index", index},
|
|
{"logprobs", logprobs},
|
|
{"finish_reason", finish_reason},
|
|
}
|
|
})},
|
|
{"created", t},
|
|
{"model", oaicompat_model},
|
|
{"system_fingerprint", build_info},
|
|
{"object", "text_completion"},
|
|
{"usage", json {
|
|
{"completion_tokens", n_decoded},
|
|
{"prompt_tokens", n_prompt_tokens},
|
|
{"total_tokens", n_decoded + n_prompt_tokens}
|
|
}},
|
|
{"id", oaicompat_cmpl_id}
|
|
};
|
|
|
|
// extra fields for debugging purposes
|
|
if (verbose) {
|
|
res["__verbose"] = to_json_non_oaicompat();
|
|
}
|
|
if (timings.prompt_n >= 0) {
|
|
res.push_back({"timings", timings.to_json()});
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
json server_task_result_cmpl_final::to_json_oaicompat_chat() {
|
|
std::string finish_reason = "length";
|
|
common_chat_msg msg;
|
|
if (!oaicompat_msg.empty()) {
|
|
msg = oaicompat_msg;
|
|
} else {
|
|
msg.role = "assistant";
|
|
msg.content = content;
|
|
}
|
|
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
|
|
finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
|
|
}
|
|
|
|
json choice {
|
|
{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"message", msg.to_json_oaicompat<json>()},
|
|
};
|
|
|
|
if (!stream && probs_output.size() > 0) {
|
|
choice["logprobs"] = json{
|
|
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
|
|
};
|
|
}
|
|
|
|
std::time_t t = std::time(0);
|
|
|
|
json res = json {
|
|
{"choices", json::array({choice})},
|
|
{"created", t},
|
|
{"model", oaicompat_model},
|
|
{"system_fingerprint", build_info},
|
|
{"object", "chat.completion"},
|
|
{"usage", json {
|
|
{"completion_tokens", n_decoded},
|
|
{"prompt_tokens", n_prompt_tokens},
|
|
{"total_tokens", n_decoded + n_prompt_tokens}
|
|
}},
|
|
{"id", oaicompat_cmpl_id}
|
|
};
|
|
|
|
// extra fields for debugging purposes
|
|
if (verbose) {
|
|
res["__verbose"] = to_json_non_oaicompat();
|
|
}
|
|
if (timings.prompt_n >= 0) {
|
|
res.push_back({"timings", timings.to_json()});
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
|
|
std::time_t t = std::time(0);
|
|
std::string finish_reason = "length";
|
|
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
|
|
finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
|
|
}
|
|
|
|
json deltas = json::array();
|
|
for (const auto & diff : oaicompat_msg_diffs) {
|
|
deltas.push_back({
|
|
{"choices", json::array({
|
|
json {
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
|
|
},
|
|
})},
|
|
{"created", t},
|
|
{"id", oaicompat_cmpl_id},
|
|
{"model", oaicompat_model},
|
|
{"system_fingerprint", build_info},
|
|
{"object", "chat.completion.chunk"},
|
|
});
|
|
}
|
|
|
|
deltas.push_back({
|
|
{"choices", json::array({
|
|
json {
|
|
{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"delta", json::object()},
|
|
},
|
|
})},
|
|
{"created", t},
|
|
{"id", oaicompat_cmpl_id},
|
|
{"model", oaicompat_model},
|
|
{"system_fingerprint", build_info},
|
|
{"object", "chat.completion.chunk"},
|
|
});
|
|
|
|
if (include_usage) {
|
|
// OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
|
|
// https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
|
|
deltas.push_back({
|
|
{"choices", json::array()},
|
|
{"created", t},
|
|
{"id", oaicompat_cmpl_id},
|
|
{"model", oaicompat_model},
|
|
{"system_fingerprint", build_info},
|
|
{"object", "chat.completion.chunk"},
|
|
{"usage", json {
|
|
{"completion_tokens", n_decoded},
|
|
{"prompt_tokens", n_prompt_tokens},
|
|
{"total_tokens", n_decoded + n_prompt_tokens},
|
|
}},
|
|
});
|
|
}
|
|
|
|
if (timings.prompt_n >= 0) {
|
|
deltas.back().push_back({"timings", timings.to_json()});
|
|
}
|
|
|
|
// extra fields for debugging purposes
|
|
if (verbose && !deltas.empty()) {
|
|
deltas.front()["__verbose"] = to_json_non_oaicompat();
|
|
}
|
|
|
|
return deltas;
|
|
}
|
|
|
|
//
|
|
// server_task_result_cmpl_partial
|
|
//
|
|
json server_task_result_cmpl_partial::to_json() {
|
|
switch (oaicompat) {
|
|
case OAICOMPAT_TYPE_NONE:
|
|
return to_json_non_oaicompat();
|
|
case OAICOMPAT_TYPE_COMPLETION:
|
|
return to_json_oaicompat();
|
|
case OAICOMPAT_TYPE_CHAT:
|
|
return to_json_oaicompat_chat();
|
|
default:
|
|
GGML_ASSERT(false && "Invalid oaicompat_type");
|
|
}
|
|
}
|
|
|
|
json server_task_result_cmpl_partial::to_json_non_oaicompat() {
|
|
// non-OAI-compat JSON
|
|
json res = json {
|
|
{"index", index},
|
|
{"content", content},
|
|
{"tokens", tokens},
|
|
{"stop", false},
|
|
{"id_slot", id_slot},
|
|
{"tokens_predicted", n_decoded},
|
|
{"tokens_evaluated", n_prompt_tokens},
|
|
};
|
|
// populate the timings object when needed (usually for the last response or with timings_per_token enabled)
|
|
if (timings.prompt_n > 0) {
|
|
res.push_back({"timings", timings.to_json()});
|
|
}
|
|
if (is_progress) {
|
|
res.push_back({"prompt_progress", progress.to_json()});
|
|
}
|
|
if (!prob_output.probs.empty()) {
|
|
res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
json server_task_result_cmpl_partial::to_json_oaicompat() {
|
|
std::time_t t = std::time(0);
|
|
json logprobs = json(nullptr); // OAI default to null
|
|
if (prob_output.probs.size() > 0) {
|
|
logprobs = json{
|
|
{"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
|
|
};
|
|
}
|
|
json res = json {
|
|
{"choices", json::array({
|
|
json{
|
|
{"text", content},
|
|
{"index", index},
|
|
{"logprobs", logprobs},
|
|
{"finish_reason", nullptr},
|
|
}
|
|
})},
|
|
{"created", t},
|
|
{"model", oaicompat_model},
|
|
{"system_fingerprint", build_info},
|
|
{"object", "text_completion"},
|
|
{"id", oaicompat_cmpl_id}
|
|
};
|
|
|
|
// extra fields for debugging purposes
|
|
if (verbose) {
|
|
res["__verbose"] = to_json_non_oaicompat();
|
|
}
|
|
if (timings.prompt_n >= 0) {
|
|
res.push_back({"timings", timings.to_json()});
|
|
}
|
|
if (is_progress) {
|
|
res.push_back({"prompt_progress", progress.to_json()});
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
|
|
bool first = n_decoded == 1;
|
|
std::time_t t = std::time(0);
|
|
json choices;
|
|
|
|
std::vector<json> deltas;
|
|
auto add_delta = [&](const json & delta) {
|
|
deltas.push_back({
|
|
{"choices", json::array({
|
|
json {
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", delta},
|
|
},
|
|
})},
|
|
{"created", t},
|
|
{"id", oaicompat_cmpl_id},
|
|
{"model", oaicompat_model},
|
|
{"system_fingerprint", build_info},
|
|
{"object", "chat.completion.chunk"},
|
|
});
|
|
};
|
|
// We have to send an initial update to conform to openai behavior
|
|
if (first || is_progress) {
|
|
add_delta({
|
|
{"role", "assistant"},
|
|
{"content", nullptr},
|
|
});
|
|
}
|
|
|
|
for (const auto & diff : oaicompat_msg_diffs) {
|
|
add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
|
|
}
|
|
|
|
if (!deltas.empty()) {
|
|
auto & last_json = deltas[deltas.size() - 1];
|
|
GGML_ASSERT(last_json.at("choices").size() >= 1);
|
|
|
|
if (prob_output.probs.size() > 0) {
|
|
last_json.at("choices").at(0)["logprobs"] = json {
|
|
{"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
|
|
};
|
|
}
|
|
|
|
if (timings.prompt_n >= 0) {
|
|
last_json.push_back({"timings", timings.to_json()});
|
|
}
|
|
if (is_progress) {
|
|
last_json.push_back({"prompt_progress", progress.to_json()});
|
|
}
|
|
}
|
|
|
|
return deltas;
|
|
}
|
|
|
|
//
|
|
// server_task_result_embd
|
|
//
|
|
json server_task_result_embd::to_json() {
|
|
return oaicompat == OAICOMPAT_TYPE_EMBEDDING
|
|
? to_json_oaicompat()
|
|
: to_json_non_oaicompat();
|
|
}
|
|
|
|
json server_task_result_embd::to_json_non_oaicompat() {
|
|
return json {
|
|
{"index", index},
|
|
{"embedding", embedding},
|
|
};
|
|
}
|
|
|
|
json server_task_result_embd::to_json_oaicompat() {
|
|
return json {
|
|
{"index", index},
|
|
{"embedding", embedding[0]},
|
|
{"tokens_evaluated", n_tokens},
|
|
};
|
|
}
|
|
|
|
//
|
|
// server_task_result_rerank
|
|
//
|
|
json server_task_result_rerank::to_json() {
|
|
return json {
|
|
{"index", index},
|
|
{"score", score},
|
|
{"tokens_evaluated", n_tokens},
|
|
};
|
|
}
|
|
|
|
//
|
|
// server_task_result_error
|
|
//
|
|
json server_task_result_error::to_json() {
|
|
json res = format_error_response(err_msg, err_type);
|
|
if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
|
|
res["n_prompt_tokens"] = n_prompt_tokens;
|
|
res["n_ctx"] = n_ctx;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//
|
|
// server_task_result_metrics
|
|
//
|
|
json server_task_result_metrics::to_json() {
|
|
return json {
|
|
{ "idle", n_idle_slots },
|
|
{ "processing", n_processing_slots },
|
|
{ "deferred", n_tasks_deferred },
|
|
{ "t_start", t_start },
|
|
|
|
{ "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
|
|
{ "t_tokens_generation_total", t_tokens_generation_total },
|
|
{ "n_tokens_predicted_total", n_tokens_predicted_total },
|
|
{ "t_prompt_processing_total", t_prompt_processing_total },
|
|
|
|
{ "n_tokens_max", n_tokens_max },
|
|
|
|
{ "n_prompt_tokens_processed", n_prompt_tokens_processed },
|
|
{ "t_prompt_processing", t_prompt_processing },
|
|
{ "n_tokens_predicted", n_tokens_predicted },
|
|
{ "t_tokens_generation", t_tokens_generation },
|
|
|
|
{ "n_decode_total", n_decode_total },
|
|
{ "n_busy_slots_total", n_busy_slots_total },
|
|
|
|
{ "slots", slots_data },
|
|
};
|
|
}
|
|
|
|
//
|
|
// server_task_result_slot_save_load
|
|
//
|
|
json server_task_result_slot_save_load::to_json() {
|
|
if (is_save) {
|
|
return json {
|
|
{ "id_slot", id_slot },
|
|
{ "filename", filename },
|
|
{ "n_saved", n_tokens },
|
|
{ "n_written", n_bytes },
|
|
{ "timings", {
|
|
{ "save_ms", t_ms }
|
|
}},
|
|
};
|
|
}
|
|
|
|
return json {
|
|
{ "id_slot", id_slot },
|
|
{ "filename", filename },
|
|
{ "n_restored", n_tokens },
|
|
{ "n_read", n_bytes },
|
|
{ "timings", {
|
|
{ "restore_ms", t_ms }
|
|
}},
|
|
};
|
|
}
|
|
|
|
//
|
|
// server_task_result_slot_erase
|
|
//
|
|
json server_task_result_slot_erase::to_json() {
|
|
return json {
|
|
{ "id_slot", id_slot },
|
|
{ "n_erased", n_erased },
|
|
};
|
|
}
|
|
|
|
//
|
|
// server_task_result_apply_lora
|
|
//
|
|
|
|
json server_task_result_apply_lora::to_json() {
|
|
return json {{ "success", true }};
|
|
}
|
|
|
|
//
|
|
// server_prompt_cache
|
|
//
|
|
size_t server_prompt_cache::size() const {
|
|
size_t res = 0;
|
|
|
|
for (const auto & state : states) {
|
|
res += state.size();
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
size_t server_prompt_cache::n_tokens() const {
|
|
size_t res = 0;
|
|
|
|
for (const auto & state : states) {
|
|
res += state.n_tokens();
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
|
|
// first check if the current state is contained fully in the cache
|
|
for (auto it = states.begin(); it != states.end(); ++it) {
|
|
const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
|
|
|
|
if (cur_lcp_len == (int) prompt.tokens.size()) {
|
|
SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// next, remove any cached prompts that are fully contained in the current prompt
|
|
for (auto it = states.begin(); it != states.end();) {
|
|
const int len = it->tokens.get_common_prefix(prompt.tokens);
|
|
|
|
if (len == (int) it->tokens.size()) {
|
|
SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
|
|
|
|
it = states.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
|
|
std::vector<uint8_t> state_data;
|
|
|
|
// check if we can allocate enough memory for the new state
|
|
try {
|
|
state_data.resize(state_size);
|
|
} catch (const std::bad_alloc & e) {
|
|
SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
|
|
|
|
limit_size = std::max<size_t>(1, 0.4*size());
|
|
|
|
SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
|
|
|
|
update();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// TODO: for some reason we can't copy server_tokens, so we have to do this workaround
|
|
auto & cur = states.emplace_back();
|
|
cur = {
|
|
/*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
|
|
/*.data =*/ std::move(state_data),
|
|
/*.checkpoints =*/ prompt.checkpoints,
|
|
};
|
|
|
|
return &cur;
|
|
}
|
|
|
|
bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
|
|
const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
|
|
|
|
float f_keep_best = float(lcp_best) / prompt.tokens.size();
|
|
float sim_best = float(lcp_best) / tokens_new.size();
|
|
|
|
SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
|
|
|
|
auto it_best = states.end();
|
|
|
|
// find the most similar cached prompt, that would also preserve the most context
|
|
for (auto it = states.begin(); it != states.end(); ++it) {
|
|
const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
|
|
|
|
const float f_keep_cur = float(lcp_cur) / it->tokens.size();
|
|
const float sim_cur = float(lcp_cur) / tokens_new.size();
|
|
|
|
// don't trash large prompts
|
|
if (f_keep_cur < 0.25f) {
|
|
continue;
|
|
}
|
|
|
|
if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
|
|
f_keep_best = f_keep_cur;
|
|
sim_best = sim_cur;
|
|
|
|
it_best = it;
|
|
}
|
|
}
|
|
|
|
if (it_best != states.end()) {
|
|
SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
|
|
|
|
const size_t size = it_best->data.size();
|
|
const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
|
|
if (n != size) {
|
|
SRV_WRN("failed to restore state with size %zu\n", size);
|
|
|
|
return false;
|
|
}
|
|
|
|
it_best->data.clear();
|
|
it_best->data.shrink_to_fit();
|
|
|
|
prompt = std::move(*it_best);
|
|
|
|
states.erase(it_best);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void server_prompt_cache::update() {
|
|
if (limit_size > 0) {
|
|
// always keep at least one state, regardless of the limits
|
|
while (states.size() > 1 && size() > limit_size) {
|
|
if (states.empty()) {
|
|
break;
|
|
}
|
|
|
|
SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
|
|
|
|
states.pop_front();
|
|
}
|
|
}
|
|
|
|
// average size per token
|
|
const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
|
|
|
|
// dynamically increase the token limit if it can fit in the memory limit
|
|
const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
|
|
|
|
if (limit_tokens > 0) {
|
|
while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
|
|
if (states.empty()) {
|
|
break;
|
|
}
|
|
|
|
SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
|
|
limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
|
|
|
|
states.pop_front();
|
|
}
|
|
}
|
|
|
|
SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
|
|
states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
|
|
|
|
for (const auto & state : states) {
|
|
SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
|
|
(const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
|
|
}
|
|
}
|