#include "common.h" #include "llama.h" #include "chat.h" #include "sampling.h" #include "json-schema-to-grammar.h" #include #include #include #include "server-common.h" #include "server-task.h" using json = nlohmann::ordered_json; // // task_params // json task_params::format_logit_bias(const std::vector & logit_bias) const { json data = json::array(); for (const auto & lb : logit_bias) { data.push_back(json{ {"bias", lb.bias}, {"token", lb.token}, }); } return data; } json task_params::to_json(bool only_metrics) const { std::vector samplers; samplers.reserve(sampling.samplers.size()); for (const auto & sampler : sampling.samplers) { samplers.emplace_back(common_sampler_type_to_str(sampler)); } json lora = json::array(); for (size_t i = 0; i < this->lora.size(); ++i) { lora.push_back({{"id", i}, {"scale", this->lora[i].scale}}); } if (only_metrics) { return json { {"seed", sampling.seed}, {"temperature", sampling.temp}, {"dynatemp_range", sampling.dynatemp_range}, {"dynatemp_exponent", sampling.dynatemp_exponent}, {"top_k", sampling.top_k}, {"top_p", sampling.top_p}, {"min_p", sampling.min_p}, {"top_n_sigma", sampling.top_n_sigma}, {"xtc_probability", sampling.xtc_probability}, {"xtc_threshold", sampling.xtc_threshold}, {"typical_p", sampling.typ_p}, {"repeat_last_n", sampling.penalty_last_n}, {"repeat_penalty", sampling.penalty_repeat}, {"presence_penalty", sampling.penalty_present}, {"frequency_penalty", sampling.penalty_freq}, {"dry_multiplier", sampling.dry_multiplier}, {"dry_base", sampling.dry_base}, {"dry_allowed_length", sampling.dry_allowed_length}, {"dry_penalty_last_n", sampling.dry_penalty_last_n}, {"mirostat", sampling.mirostat}, {"mirostat_tau", sampling.mirostat_tau}, {"mirostat_eta", sampling.mirostat_eta}, {"max_tokens", n_predict}, {"n_predict", n_predict}, // TODO: deduplicate? {"n_keep", n_keep}, {"n_discard", n_discard}, {"ignore_eos", sampling.ignore_eos}, {"stream", stream}, {"n_probs", sampling.n_probs}, {"min_keep", sampling.min_keep}, {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)}, {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)}, {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content}, {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open}, {"samplers", samplers}, {"speculative.n_max", speculative.n_max}, {"speculative.n_min", speculative.n_min}, {"speculative.p_min", speculative.p_min}, {"timings_per_token", timings_per_token}, {"post_sampling_probs", post_sampling_probs}, {"lora", lora}, }; } auto grammar_triggers = json::array(); for (const auto & trigger : sampling.grammar_triggers) { server_grammar_trigger ct(trigger); grammar_triggers.push_back(ct.to_json()); } return json { {"seed", sampling.seed}, {"temperature", sampling.temp}, {"dynatemp_range", sampling.dynatemp_range}, {"dynatemp_exponent", sampling.dynatemp_exponent}, {"top_k", sampling.top_k}, {"top_p", sampling.top_p}, {"min_p", sampling.min_p}, {"top_n_sigma", sampling.top_n_sigma}, {"xtc_probability", sampling.xtc_probability}, {"xtc_threshold", sampling.xtc_threshold}, {"typical_p", sampling.typ_p}, {"repeat_last_n", sampling.penalty_last_n}, {"repeat_penalty", sampling.penalty_repeat}, {"presence_penalty", sampling.penalty_present}, {"frequency_penalty", sampling.penalty_freq}, {"dry_multiplier", sampling.dry_multiplier}, {"dry_base", sampling.dry_base}, {"dry_allowed_length", sampling.dry_allowed_length}, {"dry_penalty_last_n", sampling.dry_penalty_last_n}, {"dry_sequence_breakers", sampling.dry_sequence_breakers}, {"mirostat", sampling.mirostat}, {"mirostat_tau", sampling.mirostat_tau}, {"mirostat_eta", sampling.mirostat_eta}, {"stop", antiprompt}, {"max_tokens", n_predict}, {"n_predict", n_predict}, // TODO: deduplicate? {"n_keep", n_keep}, {"n_discard", n_discard}, {"ignore_eos", sampling.ignore_eos}, {"stream", stream}, {"logit_bias", format_logit_bias(sampling.logit_bias)}, {"n_probs", sampling.n_probs}, {"min_keep", sampling.min_keep}, {"grammar", sampling.grammar}, {"grammar_lazy", sampling.grammar_lazy}, {"grammar_triggers", grammar_triggers}, {"preserved_tokens", sampling.preserved_tokens}, {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)}, {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)}, {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content}, {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open}, {"samplers", samplers}, {"speculative.n_max", speculative.n_max}, {"speculative.n_min", speculative.n_min}, {"speculative.p_min", speculative.p_min}, {"timings_per_token", timings_per_token}, {"post_sampling_probs", post_sampling_probs}, {"lora", lora}, }; } // // server_task // task_params server_task::params_from_json_cmpl( const llama_context * ctx, const common_params & params_base, const json & data) { const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); task_params params; // Sampling parameter defaults are loaded from the global server context (but individual requests can still them) task_params defaults; defaults.sampling = params_base.sampling; defaults.speculative = params_base.speculative; defaults.n_keep = params_base.n_keep; defaults.n_predict = params_base.n_predict; defaults.antiprompt = params_base.antiprompt; // enabling this will output extra debug information in the HTTP responses from the server params.verbose = params_base.verbosity > 9; params.timings_per_token = json_value(data, "timings_per_token", false); params.stream = json_value(data, "stream", false); auto stream_opt = json_value(data, "stream_options", json::object()); params.include_usage = json_value(stream_opt, "include_usage", false); params.cache_prompt = json_value(data, "cache_prompt", true); params.return_tokens = json_value(data, "return_tokens", false); params.return_progress = json_value(data, "return_progress", false); params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict)); params.n_indent = json_value(data, "n_indent", defaults.n_indent); params.n_keep = json_value(data, "n_keep", defaults.n_keep); params.n_discard = json_value(data, "n_discard", defaults.n_discard); //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms); params.response_fields = json_value(data, "response_fields", std::vector()); params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k); params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p); params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p); params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma); params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability); params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold); params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p); params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp); params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range); params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent); params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n); params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat); params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq); params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present); params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier); params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base); params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length); params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n); params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat); params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau); params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta); params.sampling.seed = json_value(data, "seed", defaults.sampling.seed); params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs); params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep); params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs); params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min); params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max); params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min); params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min); params.speculative.n_min = std::max(params.speculative.n_min, 0); params.speculative.n_max = std::max(params.speculative.n_max, 0); // Use OpenAI API logprobs only if n_probs wasn't provided if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){ params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs); } if (data.contains("lora")) { if (data.at("lora").is_array()) { params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora")); } else { throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields"); } } else { params.lora = params_base.lora_adapters; } // TODO: add more sanity checks for the input parameters if (params.sampling.penalty_last_n < -1) { throw std::runtime_error("Error: repeat_last_n must be >= -1"); } if (params.sampling.dry_penalty_last_n < -1) { throw std::runtime_error("Error: dry_penalty_last_n must be >= -1"); } if (params.sampling.penalty_last_n == -1) { // note: should be the slot's context and not the full context, but it's ok params.sampling.penalty_last_n = llama_n_ctx(ctx); } if (params.sampling.dry_penalty_last_n == -1) { params.sampling.dry_penalty_last_n = llama_n_ctx(ctx); } if (params.sampling.dry_base < 1.0f) { params.sampling.dry_base = defaults.sampling.dry_base; } // sequence breakers for DRY { // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39 if (data.contains("dry_sequence_breakers")) { params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector()); if (params.sampling.dry_sequence_breakers.empty()) { throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings"); } } } // process "json_schema" and "grammar" if (data.contains("json_schema") && !data.contains("grammar")) { try { auto schema = json_value(data, "json_schema", json::object()); SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str()); params.sampling.grammar = json_schema_to_grammar(schema); SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str()); } catch (const std::exception & e) { throw std::runtime_error(std::string("\"json_schema\": ") + e.what()); } } else { params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar); SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str()); params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy); SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false"); } { auto it = data.find("chat_format"); if (it != data.end()) { params.oaicompat_chat_syntax.format = static_cast(it->get()); SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format)); } else { params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format; } common_reasoning_format reasoning_format = params_base.reasoning_format; if (data.contains("reasoning_format")) { reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get()); } params.oaicompat_chat_syntax.reasoning_format = reasoning_format; params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY); params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false); params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false); } { const auto preserved_tokens = data.find("preserved_tokens"); if (preserved_tokens != data.end()) { for (const auto & t : *preserved_tokens) { auto ids = common_tokenize(vocab, t.get(), /* add_special= */ false, /* parse_special= */ true); if (ids.size() == 1) { SRV_DBG("Preserved token: %d\n", ids[0]); params.sampling.preserved_tokens.insert(ids[0]); } else { // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get().c_str()); } } } const auto grammar_triggers = data.find("grammar_triggers"); if (grammar_triggers != data.end()) { for (const auto & t : *grammar_triggers) { server_grammar_trigger ct(t); if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) { const auto & word = ct.value.value; auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true); if (ids.size() == 1) { auto token = ids[0]; if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) { throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word); } SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str()); common_grammar_trigger trigger; trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN; trigger.value = word; trigger.token = token; params.sampling.grammar_triggers.push_back(std::move(trigger)); } else { SRV_DBG("Grammar trigger word: `%s`\n", word.c_str()); params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word}); } } else { if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) { SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str()); } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) { SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str()); } else { throw std::runtime_error("Unknown grammar trigger type"); } params.sampling.grammar_triggers.emplace_back(std::move(ct.value)); } } } if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) { throw std::runtime_error("Error: no triggers set for lazy grammar!"); } } { params.sampling.logit_bias.clear(); const auto & logit_bias = data.find("logit_bias"); if (logit_bias != data.end() && logit_bias->is_array()) { const int n_vocab = llama_vocab_n_tokens(vocab); for (const auto & el : *logit_bias) { // TODO: we may want to throw errors here, in case "el" is incorrect if (el.is_array() && el.size() == 2) { float bias; if (el[1].is_number()) { bias = el[1].get(); } else if (el[1].is_boolean() && !el[1].get()) { bias = -INFINITY; } else { continue; } if (el[0].is_number_integer()) { llama_token tok = el[0].get(); if (tok >= 0 && tok < n_vocab) { params.sampling.logit_bias.push_back({tok, bias}); } } else if (el[0].is_string()) { auto toks = common_tokenize(vocab, el[0].get(), false); for (auto tok : toks) { params.sampling.logit_bias.push_back({tok, bias}); } } } } } else if (logit_bias != data.end() && logit_bias->is_object()) { const int n_vocab = llama_vocab_n_tokens(vocab); for (const auto & el : logit_bias->items()) { float bias; const auto & key = el.key(); const auto & value = el.value(); if (value.is_number()) { bias = value.get(); } else if (value.is_boolean() && !value.get()) { bias = -INFINITY; } else { continue; } char *end; llama_token tok = strtol(key.c_str(), &end, 10); if (*end == 0) { if (tok >= 0 && tok < n_vocab) { params.sampling.logit_bias.push_back({tok, bias}); } } else { auto toks = common_tokenize(vocab, key, false); for (auto tok : toks) { params.sampling.logit_bias.push_back({tok, bias}); } } } } params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos); if (params.sampling.ignore_eos) { params.sampling.logit_bias.insert( params.sampling.logit_bias.end(), defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end()); } } { params.antiprompt.clear(); const auto & stop = data.find("stop"); if (stop != data.end() && stop->is_array()) { for (const auto & word : *stop) { if (!word.empty()) { params.antiprompt.push_back(word); } } } // set reverse prompt from cli args if not set in the request if (params.antiprompt.empty()) { params.antiprompt = defaults.antiprompt; } } { const auto samplers = data.find("samplers"); if (samplers != data.end()) { if (samplers->is_array()) { params.sampling.samplers = common_sampler_types_from_names(*samplers, false); } else if (samplers->is_string()){ params.sampling.samplers = common_sampler_types_from_chars(samplers->get()); } } else { params.sampling.samplers = defaults.sampling.samplers; } } std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias; params.oaicompat_model = json_value(data, "model", model_name); return params; } // // result_timings // json result_timings::to_json() const { json base = { {"cache_n", cache_n}, {"prompt_n", prompt_n}, {"prompt_ms", prompt_ms}, {"prompt_per_token_ms", prompt_per_token_ms}, {"prompt_per_second", prompt_per_second}, {"predicted_n", predicted_n}, {"predicted_ms", predicted_ms}, {"predicted_per_token_ms", predicted_per_token_ms}, {"predicted_per_second", predicted_per_second}, }; if (draft_n > 0) { base["draft_n"] = draft_n; base["draft_n_accepted"] = draft_n_accepted; } return base; } // // result_prompt_progress // json result_prompt_progress::to_json() const { return json { {"total", total}, {"cache", cache}, {"processed", processed}, {"time_ms", time_ms}, }; } static inline std::string stop_type_to_str(stop_type type) { switch (type) { case STOP_TYPE_EOS: return "eos"; case STOP_TYPE_WORD: return "word"; case STOP_TYPE_LIMIT: return "limit"; default: return "none"; } } // // completion_token_output // json completion_token_output::to_json(bool post_sampling_probs) const { json probs_for_token = json::array(); for (const auto & p : probs) { std::string txt(p.txt); txt.resize(validate_utf8(txt)); probs_for_token.push_back(json { {"id", p.tok}, {"token", txt}, {"bytes", str_to_bytes(p.txt)}, { post_sampling_probs ? "prob" : "logprob", post_sampling_probs ? p.prob : logarithm(p.prob) }, }); } return probs_for_token; } json completion_token_output::probs_vector_to_json(const std::vector & probs, bool post_sampling_probs) { json out = json::array(); for (const auto & p : probs) { std::string txt(p.text_to_send); txt.resize(validate_utf8(txt)); out.push_back(json { {"id", p.tok}, {"token", txt}, {"bytes", str_to_bytes(p.text_to_send)}, { post_sampling_probs ? "prob" : "logprob", post_sampling_probs ? p.prob : logarithm(p.prob) }, { post_sampling_probs ? "top_probs" : "top_logprobs", p.to_json(post_sampling_probs) }, }); } return out; } float completion_token_output::logarithm(float x) { // nlohmann::json converts -inf to null, so we need to prevent that return x == 0.0f ? std::numeric_limits::lowest() : std::log(x); } std::vector completion_token_output::str_to_bytes(const std::string & str) { std::vector bytes; for (unsigned char c : str) { bytes.push_back(c); } return bytes; } // // server_task_result_cmpl_final // json server_task_result_cmpl_final::to_json() { switch (oaicompat) { case OAICOMPAT_TYPE_NONE: return to_json_non_oaicompat(); case OAICOMPAT_TYPE_COMPLETION: return to_json_oaicompat(); case OAICOMPAT_TYPE_CHAT: return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat(); default: GGML_ASSERT(false && "Invalid oaicompat_type"); } } json server_task_result_cmpl_final::to_json_non_oaicompat() { json res = json { {"index", index}, {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk {"tokens", stream ? llama_tokens {} : tokens}, {"id_slot", id_slot}, {"stop", true}, {"model", oaicompat_model}, {"tokens_predicted", n_decoded}, {"tokens_evaluated", n_prompt_tokens}, {"generation_settings", generation_params.to_json()}, {"prompt", prompt}, {"has_new_line", has_new_line}, {"truncated", truncated}, {"stop_type", stop_type_to_str(stop)}, {"stopping_word", stopping_word}, {"tokens_cached", n_tokens_cached}, {"timings", timings.to_json()}, }; if (!stream && !probs_output.empty()) { res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs); } return response_fields.empty() ? res : json_get_nested_values(response_fields, res); } json server_task_result_cmpl_final::to_json_oaicompat() { std::time_t t = std::time(0); json logprobs = json(nullptr); // OAI default to null if (!stream && probs_output.size() > 0) { logprobs = json{ {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)}, }; } json finish_reason = "length"; if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) { finish_reason = "stop"; } json res = json { {"choices", json::array({ json{ {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk {"index", index}, {"logprobs", logprobs}, {"finish_reason", finish_reason}, } })}, {"created", t}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "text_completion"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, {"total_tokens", n_decoded + n_prompt_tokens} }}, {"id", oaicompat_cmpl_id} }; // extra fields for debugging purposes if (verbose) { res["__verbose"] = to_json_non_oaicompat(); } if (timings.prompt_n >= 0) { res.push_back({"timings", timings.to_json()}); } return res; } json server_task_result_cmpl_final::to_json_oaicompat_chat() { std::string finish_reason = "length"; common_chat_msg msg; if (!oaicompat_msg.empty()) { msg = oaicompat_msg; } else { msg.role = "assistant"; msg.content = content; } if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) { finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls"; } json choice { {"finish_reason", finish_reason}, {"index", 0}, {"message", msg.to_json_oaicompat()}, }; if (!stream && probs_output.size() > 0) { choice["logprobs"] = json{ {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)}, }; } std::time_t t = std::time(0); json res = json { {"choices", json::array({choice})}, {"created", t}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "chat.completion"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, {"total_tokens", n_decoded + n_prompt_tokens} }}, {"id", oaicompat_cmpl_id} }; // extra fields for debugging purposes if (verbose) { res["__verbose"] = to_json_non_oaicompat(); } if (timings.prompt_n >= 0) { res.push_back({"timings", timings.to_json()}); } return res; } json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() { std::time_t t = std::time(0); std::string finish_reason = "length"; if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) { finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls"; } json deltas = json::array(); for (const auto & diff : oaicompat_msg_diffs) { deltas.push_back({ {"choices", json::array({ json { {"finish_reason", nullptr}, {"index", 0}, {"delta", common_chat_msg_diff_to_json_oaicompat(diff)}, }, })}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "chat.completion.chunk"}, }); } deltas.push_back({ {"choices", json::array({ json { {"finish_reason", finish_reason}, {"index", 0}, {"delta", json::object()}, }, })}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "chat.completion.chunk"}, }); if (include_usage) { // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices deltas.push_back({ {"choices", json::array()}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "chat.completion.chunk"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, {"total_tokens", n_decoded + n_prompt_tokens}, }}, }); } if (timings.prompt_n >= 0) { deltas.back().push_back({"timings", timings.to_json()}); } // extra fields for debugging purposes if (verbose && !deltas.empty()) { deltas.front()["__verbose"] = to_json_non_oaicompat(); } return deltas; } // // server_task_result_cmpl_partial // json server_task_result_cmpl_partial::to_json() { switch (oaicompat) { case OAICOMPAT_TYPE_NONE: return to_json_non_oaicompat(); case OAICOMPAT_TYPE_COMPLETION: return to_json_oaicompat(); case OAICOMPAT_TYPE_CHAT: return to_json_oaicompat_chat(); default: GGML_ASSERT(false && "Invalid oaicompat_type"); } } json server_task_result_cmpl_partial::to_json_non_oaicompat() { // non-OAI-compat JSON json res = json { {"index", index}, {"content", content}, {"tokens", tokens}, {"stop", false}, {"id_slot", id_slot}, {"tokens_predicted", n_decoded}, {"tokens_evaluated", n_prompt_tokens}, }; // populate the timings object when needed (usually for the last response or with timings_per_token enabled) if (timings.prompt_n > 0) { res.push_back({"timings", timings.to_json()}); } if (is_progress) { res.push_back({"prompt_progress", progress.to_json()}); } if (!prob_output.probs.empty()) { res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs); } return res; } json server_task_result_cmpl_partial::to_json_oaicompat() { std::time_t t = std::time(0); json logprobs = json(nullptr); // OAI default to null if (prob_output.probs.size() > 0) { logprobs = json{ {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)}, }; } json res = json { {"choices", json::array({ json{ {"text", content}, {"index", index}, {"logprobs", logprobs}, {"finish_reason", nullptr}, } })}, {"created", t}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "text_completion"}, {"id", oaicompat_cmpl_id} }; // extra fields for debugging purposes if (verbose) { res["__verbose"] = to_json_non_oaicompat(); } if (timings.prompt_n >= 0) { res.push_back({"timings", timings.to_json()}); } if (is_progress) { res.push_back({"prompt_progress", progress.to_json()}); } return res; } json server_task_result_cmpl_partial::to_json_oaicompat_chat() { bool first = n_decoded == 1; std::time_t t = std::time(0); json choices; std::vector deltas; auto add_delta = [&](const json & delta) { deltas.push_back({ {"choices", json::array({ json { {"finish_reason", nullptr}, {"index", 0}, {"delta", delta}, }, })}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "chat.completion.chunk"}, }); }; // We have to send an initial update to conform to openai behavior if (first || is_progress) { add_delta({ {"role", "assistant"}, {"content", nullptr}, }); } for (const auto & diff : oaicompat_msg_diffs) { add_delta(common_chat_msg_diff_to_json_oaicompat(diff)); } if (!deltas.empty()) { auto & last_json = deltas[deltas.size() - 1]; GGML_ASSERT(last_json.at("choices").size() >= 1); if (prob_output.probs.size() > 0) { last_json.at("choices").at(0)["logprobs"] = json { {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)}, }; } if (timings.prompt_n >= 0) { last_json.push_back({"timings", timings.to_json()}); } if (is_progress) { last_json.push_back({"prompt_progress", progress.to_json()}); } } return deltas; } // // server_task_result_embd // json server_task_result_embd::to_json() { return oaicompat == OAICOMPAT_TYPE_EMBEDDING ? to_json_oaicompat() : to_json_non_oaicompat(); } json server_task_result_embd::to_json_non_oaicompat() { return json { {"index", index}, {"embedding", embedding}, }; } json server_task_result_embd::to_json_oaicompat() { return json { {"index", index}, {"embedding", embedding[0]}, {"tokens_evaluated", n_tokens}, }; } // // server_task_result_rerank // json server_task_result_rerank::to_json() { return json { {"index", index}, {"score", score}, {"tokens_evaluated", n_tokens}, }; } // // server_task_result_error // json server_task_result_error::to_json() { json res = format_error_response(err_msg, err_type); if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) { res["n_prompt_tokens"] = n_prompt_tokens; res["n_ctx"] = n_ctx; } return res; } // // server_task_result_metrics // json server_task_result_metrics::to_json() { return json { { "idle", n_idle_slots }, { "processing", n_processing_slots }, { "deferred", n_tasks_deferred }, { "t_start", t_start }, { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total }, { "t_tokens_generation_total", t_tokens_generation_total }, { "n_tokens_predicted_total", n_tokens_predicted_total }, { "t_prompt_processing_total", t_prompt_processing_total }, { "n_tokens_max", n_tokens_max }, { "n_prompt_tokens_processed", n_prompt_tokens_processed }, { "t_prompt_processing", t_prompt_processing }, { "n_tokens_predicted", n_tokens_predicted }, { "t_tokens_generation", t_tokens_generation }, { "n_decode_total", n_decode_total }, { "n_busy_slots_total", n_busy_slots_total }, { "slots", slots_data }, }; } // // server_task_result_slot_save_load // json server_task_result_slot_save_load::to_json() { if (is_save) { return json { { "id_slot", id_slot }, { "filename", filename }, { "n_saved", n_tokens }, { "n_written", n_bytes }, { "timings", { { "save_ms", t_ms } }}, }; } return json { { "id_slot", id_slot }, { "filename", filename }, { "n_restored", n_tokens }, { "n_read", n_bytes }, { "timings", { { "restore_ms", t_ms } }}, }; } // // server_task_result_slot_erase // json server_task_result_slot_erase::to_json() { return json { { "id_slot", id_slot }, { "n_erased", n_erased }, }; } // // server_task_result_apply_lora // json server_task_result_apply_lora::to_json() { return json {{ "success", true }}; } // // server_prompt_cache // size_t server_prompt_cache::size() const { size_t res = 0; for (const auto & state : states) { res += state.size(); } return res; } size_t server_prompt_cache::n_tokens() const { size_t res = 0; for (const auto & state : states) { res += state.n_tokens(); } return res; } server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) { // first check if the current state is contained fully in the cache for (auto it = states.begin(); it != states.end(); ++it) { const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens); if (cur_lcp_len == (int) prompt.tokens.size()) { SRV_WRN("%s", " - prompt is already in the cache, skipping\n"); return nullptr; } } // next, remove any cached prompts that are fully contained in the current prompt for (auto it = states.begin(); it != states.end();) { const int len = it->tokens.get_common_prefix(prompt.tokens); if (len == (int) it->tokens.size()) { SRV_WRN(" - removing obsolete cached prompt with length %d\n", len); it = states.erase(it); } else { ++it; } } std::vector state_data; // check if we can allocate enough memory for the new state try { state_data.resize(state_size); } catch (const std::bad_alloc & e) { SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what()); limit_size = std::max(1, 0.4*size()); SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0)); update(); return nullptr; } // TODO: for some reason we can't copy server_tokens, so we have to do this workaround auto & cur = states.emplace_back(); cur = { /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false), /*.data =*/ std::move(state_data), /*.checkpoints =*/ prompt.checkpoints, }; return &cur; } bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) { const int lcp_best = prompt.tokens.get_common_prefix(tokens_new); float f_keep_best = float(lcp_best) / prompt.tokens.size(); float sim_best = float(lcp_best) / tokens_new.size(); SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best); auto it_best = states.end(); // find the most similar cached prompt, that would also preserve the most context for (auto it = states.begin(); it != states.end(); ++it) { const int lcp_cur = it->tokens.get_common_prefix(tokens_new); const float f_keep_cur = float(lcp_cur) / it->tokens.size(); const float sim_cur = float(lcp_cur) / tokens_new.size(); // don't trash large prompts if (f_keep_cur < 0.25f) { continue; } if (f_keep_best < f_keep_cur && sim_best < sim_cur) { f_keep_best = f_keep_cur; sim_best = sim_cur; it_best = it; } } if (it_best != states.end()) { SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best); const size_t size = it_best->data.size(); const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0); if (n != size) { SRV_WRN("failed to restore state with size %zu\n", size); return false; } it_best->data.clear(); it_best->data.shrink_to_fit(); prompt = std::move(*it_best); states.erase(it_best); } return true; } void server_prompt_cache::update() { if (limit_size > 0) { // always keep at least one state, regardless of the limits while (states.size() > 1 && size() > limit_size) { if (states.empty()) { break; } SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0)); states.pop_front(); } } // average size per token const float size_per_token = std::max(1.0f, float(size()) / (std::max(1, n_tokens()))); // dynamically increase the token limit if it can fit in the memory limit const size_t limit_tokens_cur = limit_size > 0 ? std::max(limit_tokens, limit_size/size_per_token) : limit_tokens; if (limit_tokens > 0) { while (states.size() > 1 && n_tokens() > limit_tokens_cur) { if (states.empty()) { break; } SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n", limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0)); states.pop_front(); } } SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n", states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur); for (const auto & state : states) { SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n", (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0)); } }