* kimi linear model implementation * kimi linear convert_hf_to_gguf * kimi linear constants.py tensor_mapping.py * Kimi Linear ggml.h * kimi linear ggml-cpu * Kimi Linear ggml-cuda * Kimi Linear ggml.c * kimi linear src/llama * remove "const int64_t n_seq_tokens = q->ne[2];" to get rid of unused variable warning * remove type mismatch warning * read MoE params * removed some hard coded code * removed all hard code * use DeepseekV2 tokenizer * removed unnecessary internal methods called by the old set_vocab of KimiLinear * rewrite get_vocab for KimiLinear. Removed all kda_scan code * removed all traces of kda_scan * reduce OP count by 1 due to removal of kda_scan * Move KIMI_LINEAR to llm_arch_is_hybrid to enable KV cache * set n_embd_head_k/v to ensure kv cache works * don't quantize conv1d of Kimi Linear * Kimi Linear backend agnostic * removed LOG_INFO * naive chunking form implemented * fixed some comments * add Kimi-K2 specific tokens to be recognized as EOG * build_kda_autoregressive is implemented to replace build_kda_recurrent for faster inference. sync'd to b7682 * replaced Akk and Aqk with mul_mat and clamp * no clamp version * Moved Aqk computation out of the loop * fixed typo and split wkv_b into wk_b and wv_b * MLA KV cache support * fix trailing spaces * moved const llama_model & model; around to follow qwen3next format and see if it cna pass the -Wunused-private-field error * fix trailing whitespace * removed traling whitespaces in empty line + make sure indentation is multiple of 4 * try to make lint happy * remove blank lines to make lint happy * removed at least blank line containing white space * fixed flake8 complaints locally * return ggml_tensor * pair in kda_autoregressive and kda_chunking as in ngxson's Qwen3Next improvement * removed Kimi-Linear specific change that causes failure at server-windows * removed private: from kimi_linear to make build checks happy * removed unnecessary ggml_cont before ggml_reshape * created static function causal_conv1d to abtract similar code for q/k/v * merged dt_bias to SSM_DT. Do -exp(log_A) in convert_hf_to_gguf.py. * reverted to original * fixed find_hparam calls. Fixed e_score_correction_bias to use bias instead of weight. Removed all ssm_conv bias terms. * remove DT_B from constants.py. remove one comment line in llama-model.cpp * new class llm_graph_input_mem_hybrid_k to get around the new MLA change. switch the concat order of ggml_concat calls in kimi-linear.cpp to accommodate MLA changes. Removed support for exp_probs_b.weight * remove ssm_o_norm_b * remove ssm_o_norm_b * changed hparams.kda_head_dim to hparams.n_embd_head_kda. added TODO comment for class llama_graph_mem_hybrid_k * removed all ggml_cont b4 ggml_reshape_4d * Whitespace * replaced all hparams.get with find_hparams * added new names for n_experts, n_experts_used and score_func in TextModel and removed their code in KimiLinear in convert_hf_to_gguf.py. Removed unnecessary ggml_cont and GGML_ASSERT in kimi-linear.cpp * use is_mla to switch between different mem_hybrid types * fixed logical errors in convert_hf_to_gguf.py pointed out by CISC * removed if else for required parameters kv_lora_rank and qk_rope_head_dim * add back ggml_cont for Vcur * minor changes * removed extra line in llama-vocab.cpp. Added back the comment in llama-graph.cpp * f16 gguf cannot run without context length * made a mistake of adding back n_ctx parsing --------- Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com> |
||
|---|---|---|
| .. | ||
| scripts | ||
| __init__.py | ||
| constants.py | ||
| gguf.py | ||
| gguf_reader.py | ||
| gguf_writer.py | ||
| lazy.py | ||
| metadata.py | ||
| py.typed | ||
| quants.py | ||
| tensor_mapping.py | ||
| utility.py | ||
| vocab.py | ||