llama.cpp/gguf-py
ymcki 3688c4f504
Kimi-Linear support (backend agnostic + MLA KV cache) (#18755)
* kimi linear model implementation

* kimi linear convert_hf_to_gguf

* kimi linear constants.py tensor_mapping.py

* Kimi Linear ggml.h

* kimi linear ggml-cpu

* Kimi Linear ggml-cuda

* Kimi Linear ggml.c

* kimi linear src/llama

* remove "const int64_t n_seq_tokens = q->ne[2];" to get rid of unused variable warning

* remove type mismatch warning

* read MoE params

* removed some hard coded code

* removed all hard code

* use DeepseekV2 tokenizer

* removed unnecessary internal methods called by the old set_vocab of KimiLinear

* rewrite get_vocab for KimiLinear. Removed all kda_scan code

* removed all traces of kda_scan

* reduce OP count by 1 due to removal of kda_scan

* Move KIMI_LINEAR to llm_arch_is_hybrid to enable KV cache

* set n_embd_head_k/v to ensure kv cache works

* don't quantize conv1d of Kimi Linear

* Kimi Linear backend agnostic

* removed LOG_INFO

* naive chunking form implemented

* fixed some comments

* add Kimi-K2 specific tokens to be recognized as EOG

* build_kda_autoregressive is implemented to replace build_kda_recurrent for faster inference. sync'd to b7682

* replaced Akk and Aqk with mul_mat and clamp

* no clamp version

* Moved Aqk computation out of the loop

* fixed typo and split wkv_b into wk_b and wv_b

* MLA KV cache support

* fix trailing spaces

* moved const llama_model & model; around to follow qwen3next format and see if it cna pass the -Wunused-private-field error

* fix trailing whitespace

* removed traling whitespaces in empty line + make sure indentation is multiple of 4

* try to make lint happy

* remove blank lines to make lint happy

* removed at least blank line containing white space

* fixed flake8 complaints locally

* return ggml_tensor * pair in kda_autoregressive and kda_chunking as in ngxson's Qwen3Next improvement

* removed Kimi-Linear specific change that causes failure at server-windows

* removed private: from kimi_linear to make build checks happy

* removed unnecessary ggml_cont before ggml_reshape

* created static function causal_conv1d to abtract similar code for q/k/v

* merged dt_bias to SSM_DT. Do -exp(log_A) in convert_hf_to_gguf.py.

* reverted to original

* fixed find_hparam calls. Fixed e_score_correction_bias to use bias instead of weight. Removed all ssm_conv bias terms.

* remove DT_B from constants.py. remove one comment line in llama-model.cpp

* new class llm_graph_input_mem_hybrid_k to get around the new MLA change. switch the concat order of ggml_concat calls in kimi-linear.cpp to accommodate MLA changes. Removed support for exp_probs_b.weight

* remove ssm_o_norm_b

* remove ssm_o_norm_b

* changed hparams.kda_head_dim to hparams.n_embd_head_kda. added TODO comment for class llama_graph_mem_hybrid_k

* removed all ggml_cont b4 ggml_reshape_4d

* Whitespace

* replaced all hparams.get with find_hparams

* added new names for n_experts, n_experts_used and score_func in TextModel and removed their code in KimiLinear in convert_hf_to_gguf.py. Removed unnecessary ggml_cont and GGML_ASSERT in kimi-linear.cpp

* use is_mla to switch between different mem_hybrid types

* fixed logical errors in convert_hf_to_gguf.py pointed out by CISC

* removed if else for required parameters kv_lora_rank and qk_rope_head_dim

* add back ggml_cont for Vcur

* minor changes

* removed extra line in llama-vocab.cpp. Added back the comment in llama-graph.cpp

* f16 gguf cannot run without context length

* made a mistake of adding back n_ctx parsing

---------

Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
2026-02-06 11:39:58 +01:00
..
examples Refactor gguf scripts to improve metadata handling (#11909) 2025-02-26 08:04:48 -05:00
gguf Kimi-Linear support (backend agnostic + MLA KV cache) (#18755) 2026-02-06 11:39:58 +01:00
tests gguf-py : add Numpy MXFP4 de/quantization support (#15111) 2025-08-08 17:48:26 -04:00
LICENSE gguf : make gguf pip-installable 2023-08-25 09:26:05 +03:00
README.md gguf-py : GGUF Editor GUI - Python + Qt6 (#12930) 2025-04-18 20:30:41 +02:00
pyproject.toml gguf-py : add requests to dependencies (#18629) 2026-01-06 08:56:38 +01:00

README.md

gguf

This is a Python package for writing binary files in the GGUF (GGML Universal File) format.

See convert_hf_to_gguf.py as an example for its usage.

Installation

pip install gguf

Optionally, you can install gguf with the extra 'gui' to enable the visual GGUF editor.

pip install gguf[gui]

API Examples/Simple Tools

examples/writer.py — Generates example.gguf in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.

examples/reader.py — Extracts and displays key-value pairs and tensor details from a GGUF file in a readable format.

gguf/scripts/gguf_dump.py — Dumps a GGUF file's metadata to the console.

gguf/scripts/gguf_set_metadata.py — Allows changing simple metadata values in a GGUF file by key.

gguf/scripts/gguf_convert_endian.py — Allows converting the endianness of GGUF files.

gguf/scripts/gguf_new_metadata.py — Copies a GGUF file with added/modified/removed metadata values.

gguf/scripts/gguf_editor_gui.py — Allows for viewing, editing, adding, or removing metadata values within a GGUF file as well as viewing its tensors with a Qt interface.

Development

Maintainers who participate in development of this package are advised to install it in editable mode:

cd /path/to/llama.cpp/gguf-py

pip install --editable .

Note: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires setup.py. In this case, upgrade Pip to the latest:

pip install --upgrade pip

Automatic publishing with CI

There's a GitHub workflow to make a release automatically upon creation of tags in a specified format.

  1. Bump the version in pyproject.toml.
  2. Create a tag named gguf-vx.x.x where x.x.x is the semantic version number.
git tag -a gguf-v1.0.0 -m "Version 1.0 release"
  1. Push the tags.
git push origin --tags

Manual publishing

If you want to publish the package manually for any reason, you need to have twine and build installed:

pip install build twine

Then, follow these steps to release a new version:

  1. Bump the version in pyproject.toml.
  2. Build the package:
python -m build
  1. Upload the generated distribution archives:
python -m twine upload dist/*

Run Unit Tests

From root of this repository you can run this command to run all the unit tests

python -m unittest discover ./gguf-py -v

TODO

  • Include conversion scripts as command line entry points in this package.