llama.cpp/docs/backend/GGML-VirtGPU/ggml-virt.md

192 lines
7.6 KiB
Markdown

# GGML-VirtGPU Backend
The GGML-VirtGPU backend enables GGML applications to run machine
learning computations on host hardware while the application itself
runs inside a virtual machine. It uses host-guest shared memory to
efficiently share data buffers between the two sides.
This backend relies on the virtio-gpu, and VirglRenderer API Remoting
(APIR) component. The backend is split into two libraries:
- a GGML implementation (the "remoting frontend"), running in the
guest and interacting with the virtgpu device
- a VirglRenderer APIR compatible library (the "remoting backend"),
running in the host and interacting with Virglrenderer and an actual
GGML device backend.
## Architecture Overview
The GGML-VirtGPU backend consists of three main components:
```
┌─────────────────────────────────────────┐
│ GGML Application │
│ (llama.cpp, etc.) │
└─────────────────────────────────────────┘
┌─────────────────────────────────────────┐
│ Guest VM (Frontend) │
│ ggml-virtgpu library │
│ │
│ ┌─────────────────────────────────┐ │
│ │ GGML Backend Interface │ │
│ └─────────────────────────────────┘ │
│ ↓ │
│ ┌─────────────────────────────────┐ │
│ │ VirtGPU Communication │ │
│ │ (hypercalls + shared mem) │ │
│ └─────────────────────────────────┘ │
└─────────────────────────────────────────┘
virtio-gpu / virglrenderer APIR
┌─────────────────────────────────────────┐
│ Host System (Backend) │
│ │
│ ┌─────────────────────────────────┐ │
│ │ Backend Dispatcher │ │
│ └─────────────────────────────────┘ │
│ ↓ │
│ ┌─────────────────────────────────┐ │
│ │ GGML Backend Library │ │
│ │ (Metal/Vulkan/CPU/...) │ │
│ └─────────────────────────────────┘ │
└─────────────────────────────────────────┘
```
### Key Components
1. **Guest-side Frontend** (`ggml-virtgpu/`): Implements the GGML backend interface and forwards operations to the host
2. **Host-side Backend** (`ggml-virtgpu/backend/`): Receives forwarded operations and executes them on actual hardware backends
3. **Communication Layer**: Uses virtio-gpu hypercalls and shared memory for efficient data transfer
## Features
- **Dynamic backend loading** on the host side (CPU, CUDA, Metal, etc.)
- **Zero-copy data transfer** via host-guest shared memory pages
## Communication Protocol
### Hypercalls and Shared Memory
The backend uses two primary communication mechanisms:
1. **Hypercalls (`DRM_IOCTL_VIRTGPU_EXECBUFFER`)**: Trigger remote execution from guest to host
2. **Shared Memory Pages**: Zero-copy data transfer for tensors and parameters
#### Shared Memory Layout
Each connection uses two shared memory buffers:
- **Data Buffer** (24 MiB): For command/response data and tensor transfers
- **Reply Buffer** (16 KiB): For command replies and status information
- **Data Buffers**: Dynamically allocated host-guest shared buffers
served as GGML buffers.
### APIR Protocol
The Virglrender API Remoting protocol defines three command types:
- `HANDSHAKE`: Protocol version negotiation and capability discovery
- `LOADLIBRARY`: Dynamic loading of backend libraries on the host
- `FORWARD`: API function call forwarding
### Binary Serialization
Commands and data are serialized using a custom binary protocol with:
- Fixed-size encoding for basic types
- Variable-length arrays with size prefixes
- Buffer bounds checking
- Error recovery mechanisms
## Supported Operations
### Device Operations
- Device enumeration and capability queries
- Memory information (total/free)
- Backend type detection
### Buffer Operations
- Buffer allocation and deallocation
- Tensor data transfer (host ↔ guest)
- Memory copying and clearing
### Computation Operations
- Graph execution forwarding
## Build Requirements
### Guest-side Dependencies
- `libdrm` for DRM/virtio-gpu communication
- C++20 compatible compiler
- CMake 3.14+
### Host-side Dependencies
- virglrenderer with APIR support (pending upstream review)
- Target backend libraries (libggml-metal, libggml-vulkan, etc.)
## Configuration
### Environment Variables
- `GGML_VIRTGPU_BACKEND_LIBRARY`: Path to the host-side backend library
- `GGML_VIRTGPU_DEBUG`: Enable debug logging
### Build Options
- `GGML_VIRTGPU`: Enable the VirtGPU backend (`ON` or `OFF`, default: `OFF`)
- `GGML_VIRTGPU_BACKEND`: Build the host-side backend component (`ON`, `OFF` or `ONLY`, default: `OFF`)
### System Requirements
- VM with virtio-gpu support
- VirglRenderer with APIR patches
- Compatible backend libraries on host
## Limitations
- **VM-specific**: Only works in virtual machines with virtio-gpu support
- **Host dependency**: Requires properly configured host-side backend
- **Latency**: Small overhead from VM escaping for each operation
## Development
### Code Generation
The backend uses code generation from YAML configuration:
```bash
# Regenerate protocol code
cd ggml-virtgpu/
python regenerate_remoting.py
```
### Adding New Operations
1. Add function definition to `ggmlremoting_functions.yaml`
2. Regenerate code with `regenerate_remoting.py`
3. Implement guest-side forwarding in `virtgpu-forward-*.cpp`
4. Implement host-side handling in `backend-dispatched-*.cpp`
## Limitations
* This work is pending upstream changes in the VirglRenderer
project.
* The backend can be tested with Virglrenderer compiled from source
using this PR:
https://gitlab.freedesktop.org/virgl/virglrenderer/-/merge_requests/1590
* This work is pending changes in the VMM/hypervisor running the
virtual machine, which need to know how to route the newly
introduced APIR capset.
* The environment variable `VIRGL_ROUTE_VENUS_TO_APIR=1` allows
using the Venus capset, until the relevant hypervisors have been
patched. However, setting this flag breaks the Vulkan/Venus normal
behavior.
* The environment variable `GGML_REMOTING_USE_APIR_CAPSET` tells the
`ggml-virtgpu` backend to use the APIR capset. This will become
the default when the relevant hypervisors have been patched.
* This work focused on improving the performance of llama.cpp running
on MacOS containers, and is mainly tested on this platform. The
linux support (via `krun`) is in progress.