222 lines
6.6 KiB
TypeScript
222 lines
6.6 KiB
TypeScript
/* eslint-disable no-irregular-whitespace */
|
||
// Math Formulas Content
|
||
export const MATH_FORMULAS_MD = String.raw`
|
||
# Mathematical Formulas and Expressions
|
||
|
||
This document demonstrates various mathematical notation and formulas that can be rendered using LaTeX syntax in markdown.
|
||
|
||
## Basic Arithmetic
|
||
|
||
### Addition and Summation
|
||
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
|
||
|
||
## Algebra
|
||
|
||
### Quadratic Formula
|
||
The solutions to $ax^2 + bx + c = 0$ are:
|
||
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
|
||
|
||
### Binomial Theorem
|
||
$$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$$
|
||
|
||
## Calculus
|
||
|
||
### Derivatives
|
||
The derivative of $f(x) = x^n$ is:
|
||
$$f'(x) = nx^{n-1}$$
|
||
|
||
### Integration
|
||
$$\int_a^b f(x) \, dx = F(b) - F(a)$$
|
||
|
||
### Fundamental Theorem of Calculus
|
||
$$\frac{d}{dx} \int_a^x f(t) \, dt = f(x)$$
|
||
|
||
## Linear Algebra
|
||
|
||
### Matrix Multiplication
|
||
If $A$ is an $m \times n$ matrix and $B$ is an $n \times p$ matrix, then:
|
||
$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$
|
||
|
||
### Eigenvalues and Eigenvectors
|
||
For a square matrix $A$, if $Av = \lambda v$ for some non-zero vector $v$, then:
|
||
- $\lambda$ is an eigenvalue
|
||
- $v$ is an eigenvector
|
||
|
||
## Statistics and Probability
|
||
|
||
### Normal Distribution
|
||
The probability density function is:
|
||
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
|
||
|
||
### Bayes' Theorem
|
||
$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
|
||
|
||
### Central Limit Theorem
|
||
For large $n$, the sample mean $\bar{X}$ is approximately:
|
||
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
|
||
|
||
## Trigonometry
|
||
|
||
### Pythagorean Identity
|
||
$$\sin^2\theta + \cos^2\theta = 1$$
|
||
|
||
### Euler's Formula
|
||
$$e^{i\theta} = \cos\theta + i\sin\theta$$
|
||
|
||
### Taylor Series for Sine
|
||
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
|
||
|
||
## Complex Analysis
|
||
|
||
### Complex Numbers
|
||
A complex number can be written as:
|
||
$$z = a + bi = r e^{i\theta}$$
|
||
|
||
where $r = |z| = \sqrt{a^2 + b^2}$ and $\theta = \arg(z)$
|
||
|
||
### Cauchy-Riemann Equations
|
||
For a function $f(z) = u(x,y) + iv(x,y)$ to be analytic:
|
||
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
|
||
|
||
## Differential Equations
|
||
|
||
### First-order Linear ODE
|
||
$$\frac{dy}{dx} + P(x)y = Q(x)$$
|
||
|
||
Solution: $y = e^{-\int P(x)dx}\left[\int Q(x)e^{\int P(x)dx}dx + C\right]$
|
||
|
||
### Heat Equation
|
||
$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$
|
||
|
||
## Number Theory
|
||
|
||
### Prime Number Theorem
|
||
$$\pi(x) \sim \frac{x}{\ln x}$$
|
||
|
||
where $\pi(x)$ is the number of primes less than or equal to $x$.
|
||
|
||
### Fermat's Last Theorem
|
||
For $n > 2$, there are no positive integers $a$, $b$, and $c$ such that:
|
||
$$a^n + b^n = c^n$$
|
||
|
||
## Set Theory
|
||
|
||
### De Morgan's Laws
|
||
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
|
||
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
|
||
|
||
## Advanced Topics
|
||
|
||
### Riemann Zeta Function
|
||
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}$$
|
||
|
||
### Maxwell's Equations
|
||
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$
|
||
$$\nabla \cdot \mathbf{B} = 0$$
|
||
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
|
||
$$\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t}$$
|
||
|
||
### Schrödinger Equation
|
||
$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t)$$
|
||
|
||
## Inline Math Examples
|
||
|
||
Here are some inline mathematical expressions:
|
||
|
||
- The golden ratio: $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$
|
||
- Euler's number: $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$
|
||
- Pi: $\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$
|
||
- Square root of 2: $\sqrt{2} = 1.41421356...$
|
||
|
||
## Fractions and Radicals
|
||
|
||
Complex fraction: $\frac{\frac{a}{b} + \frac{c}{d}}{\frac{e}{f} - \frac{g}{h}}$
|
||
|
||
Nested radicals: $\sqrt{2 + \sqrt{3 + \sqrt{4 + \sqrt{5}}}}$
|
||
|
||
## Summations and Products
|
||
|
||
### Geometric Series
|
||
$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad \text{for } |r| < 1$$
|
||
|
||
### Product Notation
|
||
$$n! = \prod_{k=1}^{n} k$$
|
||
|
||
### Double Summation
|
||
$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$$
|
||
|
||
## Limits
|
||
|
||
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
|
||
|
||
$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$$
|
||
|
||
## Further Bracket Styles and Amounts
|
||
|
||
- \( \mathrm{GL}_2(\mathbb{F}_7) \): Group of invertible matrices with entries in \(\mathbb{F}_7\).
|
||
- Some kernel of \(\mathrm{SL}_2(\mathbb{F}_7)\):
|
||
\[
|
||
\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} = \{\pm I\}
|
||
\]
|
||
- Algebra:
|
||
\[
|
||
x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a}
|
||
\]
|
||
- $100 and $12.99 are amounts, not LaTeX.
|
||
- I have $10, $3.99 and $x + y$ and $100x$. The amount is $2,000.
|
||
- Emma buys 2 cupcakes for $3 each and 1 cookie for $1.50. How much money does she spend in total?
|
||
- Maria has $20. She buys a notebook for $4.75 and a pack of pencils for $3.25. How much change does she receive?
|
||
- 1 kg の質量は
|
||
\[
|
||
E = (1\ \text{kg}) \times (3.0 \times 10^8\ \text{m/s})^2 \approx 9.0 \times 10^{16}\ \text{J}
|
||
\]
|
||
というエネルギーに相当します。これは約 21 百万トンの TNT が爆発したときのエネルギーに匹敵します。
|
||
- Algebra: \[
|
||
x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a}
|
||
\]
|
||
- Algebraic topology, Homotopy Groups of $\mathbb{S}^3$:
|
||
$$\pi_n(\mathbb{S}^3) = \begin{cases}
|
||
\mathbb{Z} & n = 3 \\
|
||
0 & n > 3, n \neq 4 \\
|
||
\mathbb{Z}_2 & n = 4 \\
|
||
\end{cases}$$
|
||
- Spacer preceded by backslash:
|
||
\[
|
||
\boxed{
|
||
\begin{aligned}
|
||
N_{\text{att}}^{\text{(MHA)}} &=
|
||
h \bigl[\, d_{\text{model}}\;d_{k} + d_{\text{model}}\;d_{v}\, \bigr] && (\text{Q,K,V の重み})\\
|
||
&\quad+ h(d_{k}+d_{k}+d_{v}) && (\text{バイアス Q,K,V)}\\[4pt]
|
||
&\quad+ (h d_{v})\, d_{\text{model}} && (\text{出力射影 }W^{O})\\
|
||
&\quad+ d_{\text{model}} && (\text{バイアス }b^{O})
|
||
\end{aligned}}
|
||
\]
|
||
|
||
## Formulas in a Table
|
||
|
||
| Area | Expression | Comment |
|
||
|------|------------|---------|
|
||
| **Algebra** | \[
|
||
x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a}
|
||
\] | Quadratic formula |
|
||
| | \[
|
||
(a+b)^{n} = \sum_{k=0}^{n}\binom{n}{k}\,a^{\,n-k}\,b^{\,k}
|
||
\] | Binomial theorem |
|
||
| | \(\displaystyle \prod_{k=1}^{n}k = n! \) | Factorial definition |
|
||
| **Geometry** | \( \mathbf{a}\cdot \mathbf{b} = \|\mathbf{a}\|\,\|\mathbf{b}\|\,\cos\theta \) | Dot product & angle |
|
||
|
||
## No math (but chemical)
|
||
|
||
Balanced chemical reaction with states:
|
||
|
||
\[
|
||
\ce{2H2(g) + O2(g) -> 2H2O(l)}
|
||
\]
|
||
|
||
The standard enthalpy change for the reaction is: $\Delta H^\circ = \pu{-572 kJ mol^{-1}}$.
|
||
|
||
---
|
||
|
||
*This document showcases various mathematical notation and formulas that can be rendered in markdown using LaTeX syntax.*
|
||
`;
|