/* eslint-disable no-irregular-whitespace */ // Math Formulas Content export const MATH_FORMULAS_MD = String.raw` # Mathematical Formulas and Expressions This document demonstrates various mathematical notation and formulas that can be rendered using LaTeX syntax in markdown. ## Basic Arithmetic ### Addition and Summation $$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$ ## Algebra ### Quadratic Formula The solutions to $ax^2 + bx + c = 0$ are: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ ### Binomial Theorem $$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$$ ## Calculus ### Derivatives The derivative of $f(x) = x^n$ is: $$f'(x) = nx^{n-1}$$ ### Integration $$\int_a^b f(x) \, dx = F(b) - F(a)$$ ### Fundamental Theorem of Calculus $$\frac{d}{dx} \int_a^x f(t) \, dt = f(x)$$ ## Linear Algebra ### Matrix Multiplication If $A$ is an $m \times n$ matrix and $B$ is an $n \times p$ matrix, then: $$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$ ### Eigenvalues and Eigenvectors For a square matrix $A$, if $Av = \lambda v$ for some non-zero vector $v$, then: - $\lambda$ is an eigenvalue - $v$ is an eigenvector ## Statistics and Probability ### Normal Distribution The probability density function is: $$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$ ### Bayes' Theorem $$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$ ### Central Limit Theorem For large $n$, the sample mean $\bar{X}$ is approximately: $$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$ ## Trigonometry ### Pythagorean Identity $$\sin^2\theta + \cos^2\theta = 1$$ ### Euler's Formula $$e^{i\theta} = \cos\theta + i\sin\theta$$ ### Taylor Series for Sine $$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$ ## Complex Analysis ### Complex Numbers A complex number can be written as: $$z = a + bi = r e^{i\theta}$$ where $r = |z| = \sqrt{a^2 + b^2}$ and $\theta = \arg(z)$ ### Cauchy-Riemann Equations For a function $f(z) = u(x,y) + iv(x,y)$ to be analytic: $$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$ ## Differential Equations ### First-order Linear ODE $$\frac{dy}{dx} + P(x)y = Q(x)$$ Solution: $y = e^{-\int P(x)dx}\left[\int Q(x)e^{\int P(x)dx}dx + C\right]$ ### Heat Equation $$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$ ## Number Theory ### Prime Number Theorem $$\pi(x) \sim \frac{x}{\ln x}$$ where $\pi(x)$ is the number of primes less than or equal to $x$. ### Fermat's Last Theorem For $n > 2$, there are no positive integers $a$, $b$, and $c$ such that: $$a^n + b^n = c^n$$ ## Set Theory ### De Morgan's Laws $$\overline{A \cup B} = \overline{A} \cap \overline{B}$$ $$\overline{A \cap B} = \overline{A} \cup \overline{B}$$ ## Advanced Topics ### Riemann Zeta Function $$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}$$ ### Maxwell's Equations $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$ $$\nabla \cdot \mathbf{B} = 0$$ $$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$ $$\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t}$$ ### Schrödinger Equation $$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t)$$ ## Inline Math Examples Here are some inline mathematical expressions: - The golden ratio: $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$ - Euler's number: $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ - Pi: $\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ - Square root of 2: $\sqrt{2} = 1.41421356...$ ## Fractions and Radicals Complex fraction: $\frac{\frac{a}{b} + \frac{c}{d}}{\frac{e}{f} - \frac{g}{h}}$ Nested radicals: $\sqrt{2 + \sqrt{3 + \sqrt{4 + \sqrt{5}}}}$ ## Summations and Products ### Geometric Series $$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad \text{for } |r| < 1$$ ### Product Notation $$n! = \prod_{k=1}^{n} k$$ ### Double Summation $$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$$ ## Limits $$\lim_{x \to 0} \frac{\sin x}{x} = 1$$ $$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$$ ## Further Bracket Styles and Amounts - \( \mathrm{GL}_2(\mathbb{F}_7) \): Group of invertible matrices with entries in \(\mathbb{F}_7\). - Some kernel of \(\mathrm{SL}_2(\mathbb{F}_7)\): \[ \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} = \{\pm I\} \] - Algebra: \[ x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a} \] - $100 and $12.99 are amounts, not LaTeX. - I have $10, $3.99 and $x + y$ and $100x$. The amount is $2,000. - Emma buys 2 cupcakes for $3 each and 1 cookie for $1.50. How much money does she spend in total? - Maria has $20. She buys a notebook for $4.75 and a pack of pencils for $3.25. How much change does she receive? - 1 kg の質量は \[ E = (1\ \text{kg}) \times (3.0 \times 10^8\ \text{m/s})^2 \approx 9.0 \times 10^{16}\ \text{J} \] というエネルギーに相当します。これは約 21 百万トンの TNT が爆発したときのエネルギーに匹敵します。 - Algebra: \[ x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a} \] - Algebraic topology, Homotopy Groups of $\mathbb{S}^3$: $$\pi_n(\mathbb{S}^3) = \begin{cases} \mathbb{Z} & n = 3 \\ 0 & n > 3, n \neq 4 \\ \mathbb{Z}_2 & n = 4 \\ \end{cases}$$ - Spacer preceded by backslash: \[ \boxed{ \begin{aligned} N_{\text{att}}^{\text{(MHA)}} &= h \bigl[\, d_{\text{model}}\;d_{k} + d_{\text{model}}\;d_{v}\, \bigr] && (\text{Q,K,V の重み})\\ &\quad+ h(d_{k}+d_{k}+d_{v}) && (\text{バイアス Q,K,V)}\\[4pt] &\quad+ (h d_{v})\, d_{\text{model}} && (\text{出力射影 }W^{O})\\ &\quad+ d_{\text{model}} && (\text{バイアス }b^{O}) \end{aligned}} \] ## Formulas in a Table | Area | Expression | Comment | |------|------------|---------| | **Algebra** | \[ x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a} \] | Quadratic formula | | | \[ (a+b)^{n} = \sum_{k=0}^{n}\binom{n}{k}\,a^{\,n-k}\,b^{\,k} \] | Binomial theorem | | | \(\displaystyle \prod_{k=1}^{n}k = n! \) | Factorial definition | | **Geometry** | \( \mathbf{a}\cdot \mathbf{b} = \|\mathbf{a}\|\,\|\mathbf{b}\|\,\cos\theta \) | Dot product & angle | ## No math (but chemical) Balanced chemical reaction with states: \[ \ce{2H2(g) + O2(g) -> 2H2O(l)} \] The standard enthalpy change for the reaction is: $\Delta H^\circ = \pu{-572 kJ mol^{-1}}$. --- *This document showcases various mathematical notation and formulas that can be rendered in markdown using LaTeX syntax.* `;