llama.cpp/ggml/src/ggml-zendnn/ggml-zendnn.cpp

467 lines
16 KiB
C++

#include "ggml-zendnn.h"
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "zendnnl.hpp"
#include <cstring>
struct ggml_backend_zendnn_context {
int n_threads = GGML_DEFAULT_N_THREADS;
std::unique_ptr<char[]> work_data;
size_t work_size = 0;
};
template<typename T>
zendnnl::common::data_type_t ggml_to_zendnn_type() {
if constexpr (std::is_same_v<T, float>) {
return zendnnl::common::data_type_t::f32;
} else if constexpr (std::is_same_v<T, ggml_bf16_t>) {
return zendnnl::common::data_type_t::bf16;
} else {
return zendnnl::common::data_type_t::none;
}
}
/**
* ZenDNN matmul: computes C = B * A.
*
* - A: weights, shape (k, m), column-major (each column is a weight vector for one output).
* - B: input, shape (n, k), row-major (each row is an input sample).
* - C: output, shape (n, m), row-major.
*
* Dimensions:
* m = output features (columns of C, columns of A)
* n = batch size (rows of C, rows of B)
* k = inner dimension (columns of B, rows of A)
*/
template <typename TA, typename TB, typename TC>
static bool ggml_zendnn_matmul(ggml_backend_zendnn_context * ctx, int64_t m, int64_t n, int64_t k,
const TA * A, int64_t lda, const TB * B, int64_t ldb, TC * C,
int64_t ldc) {
zendnnl::lowoha::lowoha_params params;
params.dtypes.src = ggml_to_zendnn_type<TB>();
params.dtypes.wei = ggml_to_zendnn_type<TA>();
params.dtypes.dst = ggml_to_zendnn_type<TC>();
params.num_threads = ctx->n_threads;
zendnnl::lowoha::status_t status = zendnnl::lowoha::matmul_direct(
'r', false, true, // row-major, don't transpose B, transpose A (because it's column-major)
n, // M: rows of B and C
m, // N: cols of A^T and C
k, // K: cols of B, rows of A
1.0f, // alpha
B, ldb, // src: B[n,k]
A, lda, // weight: A[k,m] column-major (transposed)
nullptr, // bias
0.0f, // beta
C, ldc, // output C[n,m]
true, // is_weights_const
{}, // batch_params
params // params
);
if (status != zendnnl::lowoha::status_t::success) {
GGML_LOG_ERROR("%s, ZenDNN matmul failed: status=%d\n", __func__, static_cast<int>(status));
return false;
}
return true;
}
static bool ggml_zendnn_sgemm(ggml_backend_zendnn_context * ctx, int64_t m, int64_t n, int64_t k,
const void * A, int64_t lda, const void * B, int64_t ldb, void * C,
int64_t ldc, int Atype, int Btype, int Ctype) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
// categorize types
switch (Atype) {
case GGML_TYPE_F32:
if (Btype != GGML_TYPE_F32 || Ctype != GGML_TYPE_F32)
return false;
return ggml_zendnn_matmul<float, float, float>(
ctx, m, n, k,
(const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc);
case GGML_TYPE_BF16:
if (Btype != GGML_TYPE_BF16)
return false;
if (Ctype == GGML_TYPE_BF16)
return ggml_zendnn_matmul<ggml_bf16_t, ggml_bf16_t, ggml_bf16_t>(
ctx, m, n, k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(ggml_bf16_t *)C, ldc);
if (Ctype == GGML_TYPE_F32)
return ggml_zendnn_matmul<ggml_bf16_t, ggml_bf16_t, float>(
ctx, m, n, k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc);
return false;
default:
return false; // unsupported type
}
}
static void ggml_zendnn_compute_forward_mul_mat(
ggml_backend_zendnn_context * ctx,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // weights
const ggml_tensor * src1 = dst->src[1]; // inputs
GGML_TENSOR_BINARY_OP_LOCALS
ggml_type const vec_dot_type = ggml_get_type_traits_cpu(src0->type)->vec_dot_type;
ggml_from_float_t const from_float = ggml_get_type_traits_cpu(vec_dot_type)->from_float;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(src0->type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
void * work_data = ctx->work_data.get();
if (src1->type != vec_dot_type) {
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
const size_t nbw2 = nbw1 * ne11;
const size_t nbw3 = nbw2 * ne12;
const size_t desired_wsize = ne13 * nbw3;
if (ctx->work_size < desired_wsize) {
ctx->work_data.reset(new char[desired_wsize]);
ctx->work_size = desired_wsize;
}
work_data = ctx->work_data.get();
// #pragma omp parallel for num_threads(ctx->n_threads)
#pragma omp parallel for collapse(3) num_threads(ctx->n_threads) schedule(static)
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
const float * src1_f32 = (float *)((char *)src1->data + i11*nb11 + i12*nb12 + i13*nb13);
void * src1_conv = (char *)work_data + i11*nbw1 + i12*nbw2 + i13*nbw3;
from_float(src1_f32, src1_conv, ne10);
}
}
}
}
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
const void* wdata = src1->type == vec_dot_type ? src1->data : work_data;
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
if (!ggml_zendnn_sgemm(ctx,
ne01, // m
ne11, // n
ne10, // k
static_cast<const char *>(src0->data) + (i12/r2)*nb02 + (i13/r3)*nb03,
ne00, // lda
static_cast<const char *>(wdata) + (i12*ne11 + i13*ne12*ne11)*row_size,
ne10, // ldb
static_cast<char *>(dst->data) + i12*nb2 + i13*nb3,
ne01, // ldc
src0->type,
vec_dot_type,
dst->type))
GGML_ABORT("%s: ZenDNN sgemm failed\n", __func__);
}
}
}
// backend interface
static const char * ggml_backend_zendnn_get_name(ggml_backend_t backend) {
return "ZenDNN";
GGML_UNUSED(backend);
}
static void ggml_backend_zendnn_free(ggml_backend_t backend) {
ggml_backend_zendnn_context * ctx = (ggml_backend_zendnn_context *)backend->context;
delete ctx;
delete backend;
}
static ggml_status ggml_backend_zendnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_zendnn_context * ctx = (ggml_backend_zendnn_context *)backend->context;
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
switch (node->op) {
case GGML_OP_MUL_MAT:
ggml_zendnn_compute_forward_mul_mat(ctx, node);
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
default:
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
}
}
return GGML_STATUS_SUCCESS;
GGML_UNUSED(backend);
}
static struct ggml_backend_i ggml_backend_zendnn_i = {
/* .get_name = */ ggml_backend_zendnn_get_name,
/* .free = */ ggml_backend_zendnn_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_zendnn_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .graph_optimize = */ NULL,
};
static ggml_guid_t ggml_backend_zendnn_guid(void) {
static const char * guid_str = "AMD-ZENDNN-ACCEL";
return reinterpret_cast<ggml_guid_t>(const_cast<char*>(guid_str));
}
ggml_backend_t ggml_backend_zendnn_init(void) {
ggml_backend_zendnn_context * ctx = new ggml_backend_zendnn_context;
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_zendnn_guid(),
/* .iface = */ ggml_backend_zendnn_i,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_zendnn_reg(), 0),
/* .context = */ ctx,
};
return backend;
}
bool ggml_backend_is_zendnn(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_zendnn_guid());
}
void ggml_backend_zendnn_set_n_threads(ggml_backend_t backend_zendnn, int n_threads) {
GGML_ASSERT(ggml_backend_is_zendnn(backend_zendnn));
ggml_backend_zendnn_context * ctx = (ggml_backend_zendnn_context *)backend_zendnn->context;
ctx->n_threads = n_threads;
}
// device interface
static const char * ggml_backend_zendnn_device_get_name(ggml_backend_dev_t dev) {
return "ZenDNN";
GGML_UNUSED(dev);
}
/**
* ZenDNN is AMD's performance library providing optimized primitives and implementations
* for deep learning workloads on AMD CPUs. It targets improved performance for common
* neural network operations on AMD architectures. For more information, see:
* https://www.amd.com/en/developer/zendnn.html
*/
static const char * ggml_backend_zendnn_device_get_description(ggml_backend_dev_t dev) {
return "ZenDNN: AMD optimized primitives backend for GGML (optimized for AMD CPUs)";
GGML_UNUSED(dev);
}
static void ggml_backend_zendnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
*free = 0;
*total = 0;
GGML_UNUSED(dev);
}
static enum ggml_backend_dev_type ggml_backend_zendnn_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
GGML_UNUSED(dev);
}
static void ggml_backend_zendnn_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_zendnn_device_get_name(dev);
props->description = ggml_backend_zendnn_device_get_description(dev);
props->type = ggml_backend_zendnn_device_get_type(dev);
ggml_backend_zendnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ false
};
}
static ggml_backend_t ggml_backend_zendnn_device_init_backend(ggml_backend_dev_t dev, const char * params) {
ggml_backend_t backend = ggml_backend_zendnn_init();
if (backend == NULL) {
GGML_LOG_ERROR("%s: error: failed to initialize ZenDNN backend\n", __func__);
return NULL;
}
return backend;
GGML_UNUSED(dev);
GGML_UNUSED(params);
}
static ggml_backend_buffer_type_t ggml_backend_zendnn_device_get_buffer_type(ggml_backend_dev_t dev) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_zendnn_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
GGML_UNUSED(dev);
GGML_UNUSED(max_tensor_size);
}
static bool ggml_backend_zendnn_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
case GGML_OP_MUL_MAT:
{
const ggml_tensor * weights = op->src[0];
const ggml_tensor * inputs = op->src[1];
const int64_t ne10 = inputs->ne[0];
const int64_t ne0 = op->ne[0];
const int64_t ne1 = op->ne[1];
const int64_t min_batch = 1;
if (!ggml_is_contiguous(weights) || !ggml_is_contiguous(inputs) ||
ne0 < min_batch || ne1 < min_batch || ne10 < min_batch) {
return false;
}
switch (weights->type) {
case GGML_TYPE_F32:
case GGML_TYPE_BF16:
return true;
default:
return false;
}
} break;
default:
return false;
}
GGML_UNUSED(dev);
}
static bool ggml_backend_zendnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
GGML_UNUSED(dev);
}
static const struct ggml_backend_device_i ggml_backend_zendnn_device_i = {
/* .get_name = */ ggml_backend_zendnn_device_get_name,
/* .get_description = */ ggml_backend_zendnn_device_get_description,
/* .get_memory = */ ggml_backend_zendnn_device_get_memory,
/* .get_type = */ ggml_backend_zendnn_device_get_type,
/* .get_props = */ ggml_backend_zendnn_device_get_props,
/* .init_backend = */ ggml_backend_zendnn_device_init_backend,
/* .get_buffer_type = */ ggml_backend_zendnn_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_zendnn_device_buffer_from_host_ptr,
/* .supports_op = */ ggml_backend_zendnn_device_supports_op,
/* .supports_buft = */ ggml_backend_zendnn_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
// backend reg interface
static const char * ggml_backend_zendnn_reg_get_name(ggml_backend_reg_t reg) {
return "ZenDNN";
GGML_UNUSED(reg);
}
static size_t ggml_backend_zendnn_reg_get_device_count(ggml_backend_reg_t reg) {
return 1;
GGML_UNUSED(reg);
}
static ggml_backend_dev_t ggml_backend_zendnn_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
static ggml_backend_device ggml_backend_zendnn_device = {
/* .iface = */ ggml_backend_zendnn_device_i,
/* .reg = */ reg,
/* .context = */ nullptr,
};
return &ggml_backend_zendnn_device;
}
static void * ggml_backend_zendnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
return (void *) ggml_backend_zendnn_set_n_threads;
}
return NULL;
GGML_UNUSED(reg);
GGML_UNUSED(name);
}
static const struct ggml_backend_reg_i ggml_backend_zendnn_reg_i = {
/* .get_name = */ ggml_backend_zendnn_reg_get_name,
/* .get_device_count = */ ggml_backend_zendnn_reg_get_device_count,
/* .get_device = */ ggml_backend_zendnn_reg_get_device,
/* .get_proc_address = */ ggml_backend_zendnn_get_proc_address,
};
ggml_backend_reg_t ggml_backend_zendnn_reg(void) {
static struct ggml_backend_reg ggml_backend_zendnn_reg = {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_zendnn_reg_i,
/* .context = */ NULL,
};
return &ggml_backend_zendnn_reg;
}
GGML_BACKEND_DL_IMPL(ggml_backend_zendnn_reg)