#include "ggml-zendnn.h" #include "ggml-backend-impl.h" #include "ggml-impl.h" #include "ggml-cpu.h" #include "zendnnl.hpp" #include struct ggml_backend_zendnn_context { int n_threads = GGML_DEFAULT_N_THREADS; std::unique_ptr work_data; size_t work_size = 0; }; template zendnnl::common::data_type_t ggml_to_zendnn_type() { if constexpr (std::is_same_v) { return zendnnl::common::data_type_t::f32; } else if constexpr (std::is_same_v) { return zendnnl::common::data_type_t::bf16; } else { return zendnnl::common::data_type_t::none; } } /** * ZenDNN matmul: computes C = B * A. * * - A: weights, shape (k, m), column-major (each column is a weight vector for one output). * - B: input, shape (n, k), row-major (each row is an input sample). * - C: output, shape (n, m), row-major. * * Dimensions: * m = output features (columns of C, columns of A) * n = batch size (rows of C, rows of B) * k = inner dimension (columns of B, rows of A) */ template static bool ggml_zendnn_matmul(ggml_backend_zendnn_context * ctx, int64_t m, int64_t n, int64_t k, const TA * A, int64_t lda, const TB * B, int64_t ldb, TC * C, int64_t ldc) { zendnnl::lowoha::lowoha_params params; params.dtypes.src = ggml_to_zendnn_type(); params.dtypes.wei = ggml_to_zendnn_type(); params.dtypes.dst = ggml_to_zendnn_type(); params.num_threads = ctx->n_threads; zendnnl::lowoha::status_t status = zendnnl::lowoha::matmul_direct( 'r', false, true, // row-major, don't transpose B, transpose A (because it's column-major) n, // M: rows of B and C m, // N: cols of A^T and C k, // K: cols of B, rows of A 1.0f, // alpha B, ldb, // src: B[n,k] A, lda, // weight: A[k,m] column-major (transposed) nullptr, // bias 0.0f, // beta C, ldc, // output C[n,m] true, // is_weights_const {}, // batch_params params // params ); if (status != zendnnl::lowoha::status_t::success) { GGML_LOG_ERROR("%s, ZenDNN matmul failed: status=%d\n", __func__, static_cast(status)); return false; } return true; } static bool ggml_zendnn_sgemm(ggml_backend_zendnn_context * ctx, int64_t m, int64_t n, int64_t k, const void * A, int64_t lda, const void * B, int64_t ldb, void * C, int64_t ldc, int Atype, int Btype, int Ctype) { assert(m >= 0); assert(n >= 0); assert(k >= 0); assert(lda >= k); assert(ldb >= k); assert(ldc >= m); // categorize types switch (Atype) { case GGML_TYPE_F32: if (Btype != GGML_TYPE_F32 || Ctype != GGML_TYPE_F32) return false; return ggml_zendnn_matmul( ctx, m, n, k, (const float *)A, lda, (const float *)B, ldb, (float *)C, ldc); case GGML_TYPE_BF16: if (Btype != GGML_TYPE_BF16) return false; if (Ctype == GGML_TYPE_BF16) return ggml_zendnn_matmul( ctx, m, n, k, (const ggml_bf16_t *)A, lda, (const ggml_bf16_t *)B, ldb, (ggml_bf16_t *)C, ldc); if (Ctype == GGML_TYPE_F32) return ggml_zendnn_matmul( ctx, m, n, k, (const ggml_bf16_t *)A, lda, (const ggml_bf16_t *)B, ldb, (float *)C, ldc); return false; default: return false; // unsupported type } } static void ggml_zendnn_compute_forward_mul_mat( ggml_backend_zendnn_context * ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; // weights const ggml_tensor * src1 = dst->src[1]; // inputs GGML_TENSOR_BINARY_OP_LOCALS ggml_type const vec_dot_type = ggml_get_type_traits_cpu(src0->type)->vec_dot_type; ggml_from_float_t const from_float = ggml_get_type_traits_cpu(vec_dot_type)->from_float; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(src0->type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); // broadcast factors const int64_t r2 = ne12/ne02; const int64_t r3 = ne13/ne03; void * work_data = ctx->work_data.get(); if (src1->type != vec_dot_type) { const size_t nbw1 = ggml_row_size(vec_dot_type, ne10); const size_t nbw2 = nbw1 * ne11; const size_t nbw3 = nbw2 * ne12; const size_t desired_wsize = ne13 * nbw3; if (ctx->work_size < desired_wsize) { ctx->work_data.reset(new char[desired_wsize]); ctx->work_size = desired_wsize; } work_data = ctx->work_data.get(); // #pragma omp parallel for num_threads(ctx->n_threads) #pragma omp parallel for collapse(3) num_threads(ctx->n_threads) schedule(static) for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = 0; i11 < ne11; ++i11) { const float * src1_f32 = (float *)((char *)src1->data + i11*nb11 + i12*nb12 + i13*nb13); void * src1_conv = (char *)work_data + i11*nbw1 + i12*nbw2 + i13*nbw3; from_float(src1_f32, src1_conv, ne10); } } } } for (int64_t i13 = 0; i13 < ne13; i13++) { for (int64_t i12 = 0; i12 < ne12; i12++) { const void* wdata = src1->type == vec_dot_type ? src1->data : work_data; const size_t row_size = ggml_row_size(vec_dot_type, ne10); if (!ggml_zendnn_sgemm(ctx, ne01, // m ne11, // n ne10, // k static_cast(src0->data) + (i12/r2)*nb02 + (i13/r3)*nb03, ne00, // lda static_cast(wdata) + (i12*ne11 + i13*ne12*ne11)*row_size, ne10, // ldb static_cast(dst->data) + i12*nb2 + i13*nb3, ne01, // ldc src0->type, vec_dot_type, dst->type)) GGML_ABORT("%s: ZenDNN sgemm failed\n", __func__); } } } // backend interface static const char * ggml_backend_zendnn_get_name(ggml_backend_t backend) { return "ZenDNN"; GGML_UNUSED(backend); } static void ggml_backend_zendnn_free(ggml_backend_t backend) { ggml_backend_zendnn_context * ctx = (ggml_backend_zendnn_context *)backend->context; delete ctx; delete backend; } static ggml_status ggml_backend_zendnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_zendnn_context * ctx = (ggml_backend_zendnn_context *)backend->context; for (int i = 0; i < cgraph->n_nodes; i++) { struct ggml_tensor * node = cgraph->nodes[i]; switch (node->op) { case GGML_OP_MUL_MAT: ggml_zendnn_compute_forward_mul_mat(ctx, node); break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: break; default: GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node)); } } return GGML_STATUS_SUCCESS; GGML_UNUSED(backend); } static struct ggml_backend_i ggml_backend_zendnn_i = { /* .get_name = */ ggml_backend_zendnn_get_name, /* .free = */ ggml_backend_zendnn_free, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_zendnn_graph_compute, /* .event_record = */ NULL, /* .event_wait = */ NULL, /* .graph_optimize = */ NULL, }; static ggml_guid_t ggml_backend_zendnn_guid(void) { static const char * guid_str = "AMD-ZENDNN-ACCEL"; return reinterpret_cast(const_cast(guid_str)); } ggml_backend_t ggml_backend_zendnn_init(void) { ggml_backend_zendnn_context * ctx = new ggml_backend_zendnn_context; ggml_backend_t backend = new ggml_backend { /* .guid = */ ggml_backend_zendnn_guid(), /* .iface = */ ggml_backend_zendnn_i, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_zendnn_reg(), 0), /* .context = */ ctx, }; return backend; } bool ggml_backend_is_zendnn(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_zendnn_guid()); } void ggml_backend_zendnn_set_n_threads(ggml_backend_t backend_zendnn, int n_threads) { GGML_ASSERT(ggml_backend_is_zendnn(backend_zendnn)); ggml_backend_zendnn_context * ctx = (ggml_backend_zendnn_context *)backend_zendnn->context; ctx->n_threads = n_threads; } // device interface static const char * ggml_backend_zendnn_device_get_name(ggml_backend_dev_t dev) { return "ZenDNN"; GGML_UNUSED(dev); } /** * ZenDNN is AMD's performance library providing optimized primitives and implementations * for deep learning workloads on AMD CPUs. It targets improved performance for common * neural network operations on AMD architectures. For more information, see: * https://www.amd.com/en/developer/zendnn.html */ static const char * ggml_backend_zendnn_device_get_description(ggml_backend_dev_t dev) { return "ZenDNN: AMD optimized primitives backend for GGML (optimized for AMD CPUs)"; GGML_UNUSED(dev); } static void ggml_backend_zendnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { *free = 0; *total = 0; GGML_UNUSED(dev); } static enum ggml_backend_dev_type ggml_backend_zendnn_device_get_type(ggml_backend_dev_t dev) { return GGML_BACKEND_DEVICE_TYPE_ACCEL; GGML_UNUSED(dev); } static void ggml_backend_zendnn_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { props->name = ggml_backend_zendnn_device_get_name(dev); props->description = ggml_backend_zendnn_device_get_description(dev); props->type = ggml_backend_zendnn_device_get_type(dev); ggml_backend_zendnn_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = { /* .async = */ false, /* .host_buffer = */ false, /* .buffer_from_host_ptr = */ true, /* .events = */ false }; } static ggml_backend_t ggml_backend_zendnn_device_init_backend(ggml_backend_dev_t dev, const char * params) { ggml_backend_t backend = ggml_backend_zendnn_init(); if (backend == NULL) { GGML_LOG_ERROR("%s: error: failed to initialize ZenDNN backend\n", __func__); return NULL; } return backend; GGML_UNUSED(dev); GGML_UNUSED(params); } static ggml_backend_buffer_type_t ggml_backend_zendnn_device_get_buffer_type(ggml_backend_dev_t dev) { return ggml_backend_cpu_buffer_type(); GGML_UNUSED(dev); } static ggml_backend_buffer_t ggml_backend_zendnn_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { return ggml_backend_cpu_buffer_from_ptr(ptr, size); GGML_UNUSED(dev); GGML_UNUSED(max_tensor_size); } static bool ggml_backend_zendnn_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { switch (op->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: return true; case GGML_OP_MUL_MAT: { const ggml_tensor * weights = op->src[0]; const ggml_tensor * inputs = op->src[1]; const int64_t ne10 = inputs->ne[0]; const int64_t ne0 = op->ne[0]; const int64_t ne1 = op->ne[1]; const int64_t min_batch = 1; if (!ggml_is_contiguous(weights) || !ggml_is_contiguous(inputs) || ne0 < min_batch || ne1 < min_batch || ne10 < min_batch) { return false; } switch (weights->type) { case GGML_TYPE_F32: case GGML_TYPE_BF16: return true; default: return false; } } break; default: return false; } GGML_UNUSED(dev); } static bool ggml_backend_zendnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { return ggml_backend_buft_is_host(buft); GGML_UNUSED(dev); } static const struct ggml_backend_device_i ggml_backend_zendnn_device_i = { /* .get_name = */ ggml_backend_zendnn_device_get_name, /* .get_description = */ ggml_backend_zendnn_device_get_description, /* .get_memory = */ ggml_backend_zendnn_device_get_memory, /* .get_type = */ ggml_backend_zendnn_device_get_type, /* .get_props = */ ggml_backend_zendnn_device_get_props, /* .init_backend = */ ggml_backend_zendnn_device_init_backend, /* .get_buffer_type = */ ggml_backend_zendnn_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, /* .buffer_from_host_ptr = */ ggml_backend_zendnn_device_buffer_from_host_ptr, /* .supports_op = */ ggml_backend_zendnn_device_supports_op, /* .supports_buft = */ ggml_backend_zendnn_device_supports_buft, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; // backend reg interface static const char * ggml_backend_zendnn_reg_get_name(ggml_backend_reg_t reg) { return "ZenDNN"; GGML_UNUSED(reg); } static size_t ggml_backend_zendnn_reg_get_device_count(ggml_backend_reg_t reg) { return 1; GGML_UNUSED(reg); } static ggml_backend_dev_t ggml_backend_zendnn_reg_get_device(ggml_backend_reg_t reg, size_t index) { GGML_ASSERT(index == 0); static ggml_backend_device ggml_backend_zendnn_device = { /* .iface = */ ggml_backend_zendnn_device_i, /* .reg = */ reg, /* .context = */ nullptr, }; return &ggml_backend_zendnn_device; } static void * ggml_backend_zendnn_get_proc_address(ggml_backend_reg_t reg, const char * name) { if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) { return (void *) ggml_backend_zendnn_set_n_threads; } return NULL; GGML_UNUSED(reg); GGML_UNUSED(name); } static const struct ggml_backend_reg_i ggml_backend_zendnn_reg_i = { /* .get_name = */ ggml_backend_zendnn_reg_get_name, /* .get_device_count = */ ggml_backend_zendnn_reg_get_device_count, /* .get_device = */ ggml_backend_zendnn_reg_get_device, /* .get_proc_address = */ ggml_backend_zendnn_get_proc_address, }; ggml_backend_reg_t ggml_backend_zendnn_reg(void) { static struct ggml_backend_reg ggml_backend_zendnn_reg = { /* .api_version = */ GGML_BACKEND_API_VERSION, /* .iface = */ ggml_backend_zendnn_reg_i, /* .context = */ NULL, }; return &ggml_backend_zendnn_reg; } GGML_BACKEND_DL_IMPL(ggml_backend_zendnn_reg)