llama.cpp/ggml/src/ggml-virtgpu/virtgpu-utils.cpp

180 lines
5.8 KiB
C++

#include "virtgpu-utils.h"
#include <malloc.h>
#include <stdlib.h>
#include <cstring>
#define NODE_ALLOC_ALIGN 64
#define NODE_PTR_MASK (~((uintptr_t) NODE_ALLOC_ALIGN - 1))
#define NODE_LEVEL_MASK ((uintptr_t) NODE_ALLOC_ALIGN - 1)
#define NULL_NODE 0
#define os_malloc_aligned(_size, _align) _aligned_malloc(_size, _align)
#define os_free_aligned(_ptr) free(_ptr)
#define p_atomic_cmpxchg(v, old, _new) __sync_val_compare_and_swap((v), (old), (_new))
static inline uint64_t util_logbase2_64(uint64_t n) {
#if defined(HAVE___BUILTIN_CLZLL)
return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1));
#else
uint64_t pos = 0ull;
if (n >= 1ull << 32) {
n >>= 32;
pos += 32;
}
if (n >= 1ull << 16) {
n >>= 16;
pos += 16;
}
if (n >= 1ull << 8) {
n >>= 8;
pos += 8;
}
if (n >= 1ull << 4) {
n >>= 4;
pos += 4;
}
if (n >= 1ull << 2) {
n >>= 2;
pos += 2;
}
if (n >= 1ull << 1) {
pos += 1;
}
return pos;
#endif
}
void util_sparse_array_init(util_sparse_array * arr, size_t elem_size, size_t node_size) {
memset(arr, 0, sizeof(*arr));
arr->elem_size = elem_size;
arr->node_size_log2 = util_logbase2_64(node_size);
assert(node_size >= 2 && node_size == (1ull << arr->node_size_log2));
}
static inline void * os_malloc_aligned(size_t size, size_t alignment) {
void * ptr;
alignment = (alignment + sizeof(void *) - 1) & ~(sizeof(void *) - 1);
if (posix_memalign(&ptr, alignment, size) != 0) {
return NULL;
}
return ptr;
}
static inline void * _util_sparse_array_node_data(uintptr_t handle) {
return (void *) (handle & NODE_PTR_MASK);
}
static inline unsigned _util_sparse_array_node_level(uintptr_t handle) {
return handle & NODE_LEVEL_MASK;
}
static inline void _util_sparse_array_node_finish(util_sparse_array * arr, uintptr_t node) {
if (_util_sparse_array_node_level(node) > 0) {
uintptr_t * children = (uintptr_t *) _util_sparse_array_node_data(node);
size_t node_size = 1ull << arr->node_size_log2;
for (size_t i = 0; i < node_size; i++) {
if (children[i]) {
_util_sparse_array_node_finish(arr, children[i]);
}
}
}
os_free_aligned(_util_sparse_array_node_data(node));
}
static inline uintptr_t _util_sparse_array_node(void * data, unsigned level) {
assert(data != NULL);
assert(((uintptr_t) data & NODE_LEVEL_MASK) == 0);
assert((level & NODE_PTR_MASK) == 0);
return (uintptr_t) data | level;
}
inline uintptr_t _util_sparse_array_node_alloc(util_sparse_array * arr, unsigned level) {
size_t size;
if (level == 0) {
size = arr->elem_size << arr->node_size_log2;
} else {
size = sizeof(uintptr_t) << arr->node_size_log2;
}
void * data = os_malloc_aligned(size, NODE_ALLOC_ALIGN);
memset(data, 0, size);
return _util_sparse_array_node(data, level);
}
static inline uintptr_t _util_sparse_array_set_or_free_node(uintptr_t * node_ptr, uintptr_t cmp_node, uintptr_t node) {
uintptr_t prev_node = p_atomic_cmpxchg(node_ptr, cmp_node, node);
if (prev_node != cmp_node) {
/* We lost the race. Free this one and return the one that was already
* allocated.
*/
os_free_aligned(_util_sparse_array_node_data(node));
return prev_node;
} else {
return node;
}
}
void * util_sparse_array_get(util_sparse_array * arr, uint64_t idx) {
const unsigned node_size_log2 = arr->node_size_log2;
uintptr_t root = p_atomic_read(&arr->root);
if (unlikely(!root)) {
unsigned root_level = 0;
uint64_t idx_iter = idx >> node_size_log2;
while (idx_iter) {
idx_iter >>= node_size_log2;
root_level++;
}
uintptr_t new_root = _util_sparse_array_node_alloc(arr, root_level);
root = _util_sparse_array_set_or_free_node(&arr->root, NULL_NODE, new_root);
}
while (1) {
unsigned root_level = _util_sparse_array_node_level(root);
uint64_t root_idx = idx >> (root_level * node_size_log2);
if (likely(root_idx < (1ull << node_size_log2))) {
break;
}
/* In this case, we have a root but its level is low enough that the
* requested index is out-of-bounds.
*/
uintptr_t new_root = _util_sparse_array_node_alloc(arr, root_level + 1);
uintptr_t * new_root_children = (uintptr_t *) _util_sparse_array_node_data(new_root);
new_root_children[0] = root;
/* We only add one at a time instead of the whole tree because it's
* easier to ensure correctness of both the tree building and the
* clean-up path. Because we're only adding one node we never have to
* worry about trying to free multiple things without freeing the old
* things.
*/
root = _util_sparse_array_set_or_free_node(&arr->root, root, new_root);
}
void * node_data = _util_sparse_array_node_data(root);
unsigned node_level = _util_sparse_array_node_level(root);
while (node_level > 0) {
uint64_t child_idx = (idx >> (node_level * node_size_log2)) & ((1ull << node_size_log2) - 1);
uintptr_t * children = (uintptr_t *) node_data;
uintptr_t child = p_atomic_read(&children[child_idx]);
if (unlikely(!child)) {
child = _util_sparse_array_node_alloc(arr, node_level - 1);
child = _util_sparse_array_set_or_free_node(&children[child_idx], NULL_NODE, child);
}
node_data = _util_sparse_array_node_data(child);
node_level = _util_sparse_array_node_level(child);
}
uint64_t elem_idx = idx & ((1ull << node_size_log2) - 1);
return (void *) ((char *) node_data + (elem_idx * arr->elem_size));
}