3758 lines
135 KiB
C++
3758 lines
135 KiB
C++
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <mutex>
|
|
#include <string>
|
|
|
|
#ifdef _WIN32
|
|
# include <sal.h>
|
|
# ifndef _WINDOWS
|
|
# define _WINDOWS
|
|
# endif
|
|
#else
|
|
# include <semaphore.h>
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#pragma clang diagnostic ignored "-Wnested-anon-types"
|
|
#pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
|
|
|
|
#include "htp-utils.h"
|
|
|
|
#include <AEEStdErr.h>
|
|
#include <dspqueue.h>
|
|
#include <rpcmem.h>
|
|
|
|
#define GGML_COMMON_IMPL_CPP
|
|
#include "ggml-backend-impl.h"
|
|
#include "ggml-common.h"
|
|
#include "ggml-hexagon.h"
|
|
#include "ggml-impl.h"
|
|
#include "ggml-quants.h"
|
|
#include "htp-msg.h"
|
|
#include "htp_iface.h"
|
|
|
|
static size_t opt_ndev = 1;
|
|
static size_t opt_nhvx = 0; // use all
|
|
static int opt_arch = 0; // autodetect
|
|
static int opt_etm = 0;
|
|
static int opt_verbose = 0;
|
|
static int opt_profile = 0;
|
|
static int opt_hostbuf = 1;
|
|
static int opt_experimental = 0;
|
|
|
|
// Enable all stages by default
|
|
static int opt_opmask = HTP_OPMASK_QUEUE | HTP_OPMASK_QUANTIZE | HTP_OPMASK_COMPUTE;
|
|
static int opt_opsync = 0; // synchronous ops
|
|
|
|
#define HEX_VERBOSE(...) \
|
|
if (opt_verbose) GGML_LOG_DEBUG(__VA_ARGS__)
|
|
|
|
#define HEX_PROFILE(...) \
|
|
if (opt_profile) GGML_LOG_INFO(__VA_ARGS__)
|
|
|
|
static inline uint64_t hex_is_aligned(void * addr, uint32_t align) {
|
|
return ((size_t) addr & (align - 1)) == 0;
|
|
}
|
|
|
|
static inline size_t hex_round_up(size_t n, size_t m) {
|
|
return m * ((n + m - 1) / m);
|
|
}
|
|
|
|
static const char * status_to_str(uint32_t status) {
|
|
switch (status) {
|
|
case HTP_STATUS_OK:
|
|
return "OK";
|
|
case HTP_STATUS_NO_SUPPORT:
|
|
return "NO-SUPPORT";
|
|
case HTP_STATUS_INVAL_PARAMS:
|
|
return "INVAL-PARAMS";
|
|
case HTP_STATUS_VTCM_TOO_SMALL:
|
|
return "VTCM-TOO-SMALL";
|
|
case HTP_STATUS_INTERNAL_ERR:
|
|
return "INTERNAL-ERROR";
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
// ** debug helpers
|
|
|
|
static inline int hex_format_tensor_dims(char * str, const struct ggml_tensor * t) {
|
|
if (t->ne[2] == 1 && t->ne[3] == 1) {
|
|
return sprintf(str, "%d:%d", (int) t->ne[0], (int) t->ne[1]);
|
|
} else {
|
|
return sprintf(str, "%d:%d:%d:%d", (int) t->ne[0], (int) t->ne[1], (int) t->ne[2], (int) t->ne[3]);
|
|
}
|
|
}
|
|
|
|
static inline void hex_format_op_dims(char * str, const struct ggml_tensor * t) {
|
|
char * p = str;
|
|
|
|
// append src0 and src1 (if any)
|
|
if (t->src[0]) {
|
|
p += hex_format_tensor_dims(p, t->src[0]);
|
|
|
|
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
|
|
p += sprintf(p, " x ");
|
|
p += hex_format_tensor_dims(p, t->src[i]);
|
|
}
|
|
|
|
p += sprintf(p, " -> ");
|
|
}
|
|
|
|
// format self dims separately for better visual alignment
|
|
char self[64];
|
|
hex_format_tensor_dims(self, t);
|
|
|
|
p += sprintf(p, "%s", self);
|
|
}
|
|
|
|
static inline int hex_format_tensor_strides(char * str, const struct ggml_tensor * t) {
|
|
const char * c = ggml_is_contiguous(t) ? "" : "!";
|
|
|
|
if (t->ne[2] == 1 && t->ne[3] == 1) {
|
|
return sprintf(str, "%zu:%zu%s", (size_t) t->nb[0], (size_t) t->nb[1], c);
|
|
} else {
|
|
return sprintf(str, "%zu:%zu:%zu:%zu%s", (size_t) t->nb[0], (size_t) t->nb[1], (size_t) t->nb[2],
|
|
(size_t) t->nb[3], c);
|
|
}
|
|
}
|
|
|
|
static inline void hex_format_op_strides(char * str, const struct ggml_tensor * t) {
|
|
char * p = str;
|
|
|
|
// append src0 and src1 (if any)
|
|
if (t->src[0]) {
|
|
p += hex_format_tensor_strides(p, t->src[0]);
|
|
|
|
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
|
|
p += sprintf(p, " x ");
|
|
p += hex_format_tensor_strides(p, t->src[i]);
|
|
}
|
|
|
|
p += sprintf(p, " -> ");
|
|
}
|
|
|
|
// format self dims separately for better visual alignment
|
|
char self[64];
|
|
hex_format_tensor_strides(self, t);
|
|
|
|
p += sprintf(p, "%s", self);
|
|
}
|
|
|
|
static inline void hex_format_op_types(char * str, const struct ggml_tensor * t) {
|
|
char * p = str;
|
|
|
|
// append src0 and src1 (if any)
|
|
if (t->src[0]) {
|
|
p += sprintf(p, "%s", ggml_type_name(t->src[0]->type));
|
|
|
|
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
|
|
p += sprintf(p, " x ");
|
|
p += sprintf(p, "%s", ggml_type_name(t->src[i]->type));
|
|
}
|
|
|
|
p += sprintf(p, " -> ");
|
|
}
|
|
|
|
p += sprintf(p, "%s", ggml_type_name(t->type));
|
|
}
|
|
|
|
static inline const char * hex_tensor_buff_name(const struct ggml_tensor * t) {
|
|
if (t->buffer) {
|
|
return ggml_backend_buffer_name(t->buffer);
|
|
}
|
|
return "NONE";
|
|
}
|
|
|
|
static inline void hex_format_op_buffs(char * str, const struct ggml_tensor * t) {
|
|
char * p = str;
|
|
|
|
// append src0 and src1 (if any)
|
|
if (t->src[0]) {
|
|
p += sprintf(p, "%s", hex_tensor_buff_name(t->src[0]));
|
|
|
|
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
|
|
p += sprintf(p, " x ");
|
|
p += sprintf(p, "%s", hex_tensor_buff_name(t->src[i]));
|
|
}
|
|
|
|
p += sprintf(p, " -> ");
|
|
}
|
|
|
|
p += sprintf(p, "%s", hex_tensor_buff_name(t));
|
|
}
|
|
|
|
static inline void hex_format_op_names(char * str, const struct ggml_tensor * t) {
|
|
char * p = str;
|
|
|
|
// append src0 and src1 (if any)
|
|
if (t->src[0]) {
|
|
p += sprintf(p, "%s", t->src[0]->name);
|
|
|
|
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
|
|
p += sprintf(p, " x ");
|
|
p += sprintf(p, "%s", t->src[i]->name);
|
|
}
|
|
|
|
p += sprintf(p, " -> ");
|
|
}
|
|
|
|
p += sprintf(p, "%s", t->name);
|
|
}
|
|
|
|
// ** backend sessions
|
|
|
|
struct ggml_hexagon_session {
|
|
ggml_hexagon_session(int dev_id) noexcept(false);
|
|
~ggml_hexagon_session() noexcept(true);
|
|
|
|
void allocate(int dev_id) noexcept(false);
|
|
void release() noexcept(true);
|
|
|
|
ggml_backend_buffer_type buffer_type;
|
|
ggml_backend_buffer_type repack_buffer_type;
|
|
|
|
std::string name;
|
|
remote_handle64 handle;
|
|
dspqueue_t queue;
|
|
uint32_t session_id;
|
|
uint32_t domain_id;
|
|
uint64_t queue_id;
|
|
int dev_id;
|
|
bool valid_session;
|
|
bool valid_handle;
|
|
bool valid_queue;
|
|
bool valid_iface;
|
|
std::atomic<int> op_pending;
|
|
uint32_t prof_usecs;
|
|
uint32_t prof_cycles;
|
|
uint32_t prof_pkts;
|
|
};
|
|
|
|
// Packet callback
|
|
static void htp_packet_callback(dspqueue_t queue, AEEResult error, void * context) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(context);
|
|
|
|
// Repeatedly read packets from the queue until it's empty. We don't
|
|
// necessarily get a separate callback for each packet, and new packets
|
|
// may arrive while we're processing the previous one.
|
|
|
|
while (1) {
|
|
struct htp_general_rsp rsp;
|
|
uint32_t rsp_size;
|
|
uint32_t flags;
|
|
|
|
struct dspqueue_buffer bufs[HTP_MAX_PACKET_BUFFERS];
|
|
uint32_t n_bufs;
|
|
|
|
// Read packet from queue
|
|
int err = dspqueue_read_noblock(queue, &flags,
|
|
HTP_MAX_PACKET_BUFFERS, // Maximum number of buffer references
|
|
&n_bufs, // Number of buffer references
|
|
bufs, // Buffer references
|
|
sizeof(rsp), // Max message length
|
|
&rsp_size, // Message length
|
|
(uint8_t *) &rsp);
|
|
|
|
if (err == AEE_EWOULDBLOCK) {
|
|
// Consumed all packets available for now
|
|
return;
|
|
}
|
|
|
|
if (err != 0) {
|
|
GGML_ABORT("ggml-hex: dspqueue_read_noblock failed: 0x%08x\n", (unsigned) err);
|
|
}
|
|
|
|
// Basic sanity checks
|
|
if (rsp_size != sizeof(rsp)) {
|
|
GGML_ABORT("ggml-hex: dspcall : bad response (size)\n");
|
|
}
|
|
|
|
if (rsp.status != HTP_STATUS_OK) {
|
|
GGML_LOG_ERROR("ggml-hex: dspcall : dsp-rsp: %s\n", status_to_str(rsp.status));
|
|
// TODO: handle errors
|
|
}
|
|
|
|
// FIXME: update profiling implementation
|
|
sess->prof_usecs = rsp.prof_usecs;
|
|
sess->prof_cycles = rsp.prof_cycles;
|
|
sess->prof_pkts = rsp.prof_pkts;
|
|
|
|
sess->op_pending--; // atomic dec
|
|
}
|
|
}
|
|
|
|
// Error callback - simply terminates with an error. Used where we don't
|
|
// expect errors.
|
|
[[noreturn]] static void htp_error_callback(dspqueue_t queue, AEEResult error, void * context) {
|
|
GGML_ABORT("ggml-hex: dspcall general error 0x%x: for queue %p\n", error, (void *) queue);
|
|
}
|
|
|
|
// ** backend buffers
|
|
|
|
struct ggml_backend_hexagon_buffer_type_context {
|
|
ggml_backend_hexagon_buffer_type_context(const std::string & name, ggml_hexagon_session * sess) {
|
|
this->sess = sess;
|
|
this->name = name;
|
|
}
|
|
|
|
ggml_hexagon_session * sess;
|
|
std::string name;
|
|
};
|
|
|
|
struct ggml_backend_hexagon_buffer_context {
|
|
bool mmap_to(ggml_hexagon_session * s) {
|
|
HEX_VERBOSE("ggml-hex: %s mmaping buffer: base %p domain-id %d session-id %d size %zu fd %d repack %d\n",
|
|
s->name.c_str(), (void *) this->base, s->domain_id, s->session_id, this->size, this->fd,
|
|
(int) this->repack);
|
|
|
|
int err = fastrpc_mmap(s->domain_id, this->fd, (void *) this->base, 0, this->size, FASTRPC_MAP_FD);
|
|
if (err != 0) {
|
|
GGML_LOG_ERROR("ggml-hex: buffer mapping failed : domain_id %d size %zu fd %d error 0x%08x\n",
|
|
s->domain_id, this->size, this->fd, (unsigned) err);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool mmap() {
|
|
if (this->mapped) {
|
|
return true;
|
|
}
|
|
if (!mmap_to(this->sess)) {
|
|
return false;
|
|
}
|
|
this->mapped = true;
|
|
return true;
|
|
}
|
|
|
|
void munmap() {
|
|
if (!this->mapped) {
|
|
return;
|
|
}
|
|
|
|
fastrpc_munmap(this->sess->domain_id, this->fd, this->base, this->size);
|
|
this->mapped = false;
|
|
}
|
|
|
|
ggml_backend_hexagon_buffer_context(ggml_hexagon_session * sess, size_t size, bool repack) {
|
|
size += 4 * 1024; // extra page for padding
|
|
|
|
this->base = (uint8_t *) rpcmem_alloc2(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
|
|
if (!this->base) {
|
|
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer : size %zu\n", sess->name.c_str(), size);
|
|
throw std::runtime_error("ggml-hex: rpcmem_alloc failed (see log for details)");
|
|
}
|
|
|
|
this->fd = rpcmem_to_fd(this->base);
|
|
if (this->fd < 0) {
|
|
GGML_LOG_ERROR("ggml-hex: %s failed to get FD for buffer %p\n", sess->name.c_str(), (void *) this->base);
|
|
rpcmem_free(this->base);
|
|
this->base = NULL;
|
|
throw std::runtime_error("ggml-hex: rpcmem_to_fd failed (see log for details)");
|
|
}
|
|
|
|
HEX_VERBOSE("ggml-hex: %s allocated buffer: base %p size %zu fd %d repack %d\n", sess->name.c_str(),
|
|
(void *) this->base, size, this->fd, (int) repack);
|
|
|
|
this->sess = sess;
|
|
this->size = size;
|
|
this->mapped = false;
|
|
this->repack = repack;
|
|
}
|
|
|
|
~ggml_backend_hexagon_buffer_context() {
|
|
munmap();
|
|
if (this->base) {
|
|
rpcmem_free(this->base);
|
|
this->base = NULL;
|
|
}
|
|
}
|
|
|
|
ggml_hexagon_session * sess; // primary session
|
|
uint8_t * base;
|
|
size_t size;
|
|
int fd;
|
|
bool mapped; // mmap is done
|
|
bool repack; // repacked buffer
|
|
};
|
|
|
|
static ggml_hexagon_session * ggml_backend_hexagon_buffer_get_sess(ggml_backend_buffer_t buffer) {
|
|
return static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer->buft->context)->sess;
|
|
}
|
|
|
|
static void ggml_backend_hexagon_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
auto ctx = static_cast<ggml_backend_hexagon_buffer_context *>(buffer->context);
|
|
delete ctx;
|
|
}
|
|
|
|
static void * ggml_backend_hexagon_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
auto ctx = static_cast<ggml_backend_hexagon_buffer_context *>(buffer->context);
|
|
return ctx->base;
|
|
}
|
|
|
|
static enum ggml_status ggml_backend_hexagon_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
|
auto ctx = static_cast<ggml_backend_hexagon_buffer_context *>(buffer->context);
|
|
auto sess = ctx->sess;
|
|
|
|
HEX_VERBOSE("ggml-hex: %s init-tensor %s : base %p data %p nbytes %zu usage %d repack %d\n", sess->name.c_str(),
|
|
tensor->name, (void *) ctx->base, tensor->data, ggml_nbytes(tensor), (int) buffer->usage,
|
|
(int) ctx->repack);
|
|
|
|
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
|
; // nothing to do for the view
|
|
} else {
|
|
if (!ctx->mapped) {
|
|
ctx->mmap();
|
|
}
|
|
}
|
|
return GGML_STATUS_SUCCESS;
|
|
}
|
|
|
|
// ======== Q4x4x2 ====================
|
|
struct x2_q4 {
|
|
int v[2];
|
|
};
|
|
|
|
static x2_q4 unpack_q4(uint8_t v) {
|
|
x2_q4 x = { (int) (v & 0x0f) - 8, (int) (v >> 4) - 8 };
|
|
return x;
|
|
}
|
|
|
|
static void dump_block_q4_0(const block_q4_0 * b, int i) {
|
|
HEX_VERBOSE("ggml-hex: repack q4_0 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, unpack_q4(b->qs[0]).v[0],
|
|
unpack_q4(b->qs[1]).v[0], unpack_q4(b->qs[2]).v[0], unpack_q4(b->qs[3]).v[0], unpack_q4(b->qs[12]).v[1],
|
|
unpack_q4(b->qs[13]).v[1], unpack_q4(b->qs[14]).v[1], unpack_q4(b->qs[15]).v[1],
|
|
GGML_FP16_TO_FP32(b->d));
|
|
}
|
|
|
|
static void dump_packed_block_q4x4x2(const uint8_t * v, unsigned int i, size_t k) {
|
|
static const int qk = QK_Q4_0x4x2;
|
|
const int dblk_size = 8 * 2; // 8x __fp16
|
|
const int qblk_size = qk / 2; // int4
|
|
const int qrow_size = k / 2; // int4 (not padded)
|
|
|
|
const uint8_t * v_q = v + 0; // quants first
|
|
const uint8_t * v_d = v + qrow_size; // then scales
|
|
|
|
const uint8_t * q = v_q + i * qblk_size;
|
|
const ggml_half * d = (const ggml_half *) (v_d + i * dblk_size);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack q4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i,
|
|
unpack_q4(q[0]).v[0], unpack_q4(q[1]).v[0], unpack_q4(q[2]).v[0], unpack_q4(q[3]).v[0],
|
|
unpack_q4(q[60]).v[0], unpack_q4(q[61]).v[0], unpack_q4(q[62]).v[0], unpack_q4(q[63]).v[0],
|
|
unpack_q4(q[124]).v[0], unpack_q4(q[125]).v[0], unpack_q4(q[126]).v[0], unpack_q4(q[127]).v[0],
|
|
GGML_FP16_TO_FP32(d[0]), GGML_FP16_TO_FP32(d[1]), GGML_FP16_TO_FP32(d[2]), GGML_FP16_TO_FP32(d[3]));
|
|
|
|
HEX_VERBOSE("ggml-hex: repack q4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n",
|
|
i + 1, unpack_q4(q[0]).v[1], unpack_q4(q[1]).v[1], unpack_q4(q[2]).v[1], unpack_q4(q[3]).v[1],
|
|
unpack_q4(q[60]).v[1], unpack_q4(q[61]).v[1], unpack_q4(q[62]).v[1], unpack_q4(q[63]).v[1],
|
|
unpack_q4(q[124]).v[1], unpack_q4(q[125]).v[1], unpack_q4(q[126]).v[1], unpack_q4(q[127]).v[1],
|
|
GGML_FP16_TO_FP32(d[4]), GGML_FP16_TO_FP32(d[5]), GGML_FP16_TO_FP32(d[6]), GGML_FP16_TO_FP32(d[7]));
|
|
}
|
|
|
|
static void unpack_q4_0_quants(uint8_t * qs, const block_q4_0 * x, unsigned int bi) {
|
|
static const int qk = QK4_0;
|
|
|
|
for (unsigned int i = 0; i < qk / 2; ++i) {
|
|
const int x0 = (x->qs[i] & 0x0F);
|
|
const int x1 = (x->qs[i] >> 4);
|
|
qs[bi * qk + i + 0] = x0;
|
|
qs[bi * qk + i + qk / 2] = x1;
|
|
}
|
|
}
|
|
|
|
static void pack_q4_0_quants(block_q4_0 * x, const uint8_t * qs, unsigned int bi) {
|
|
static const int qk = QK4_0;
|
|
|
|
for (unsigned int i = 0; i < qk / 2; ++i) {
|
|
const uint8_t x0 = qs[bi * qk + i + 0];
|
|
const uint8_t x1 = qs[bi * qk + i + qk / 2];
|
|
x->qs[i] = x0 | (x1 << 4);
|
|
}
|
|
}
|
|
|
|
static void repack_row_q4x4x2(uint8_t * y, const block_q4_0 * x, int64_t k) {
|
|
static const int qk = QK_Q4_0x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
const int dblk_size = 8 * 2; // 8x __fp16
|
|
const int qblk_size = qk / 2; // int4
|
|
const int qrow_size = k / 2; // int4 (not padded to blocks)
|
|
|
|
uint8_t * y_q = y + 0; // quants first
|
|
uint8_t * y_d = y + qrow_size; // then scales
|
|
|
|
if (opt_verbose > 2) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_block_q4_0(&x[i * 8 + 0], 0);
|
|
dump_block_q4_0(&x[i * 8 + 1], 1);
|
|
dump_block_q4_0(&x[i * 8 + 2], 2);
|
|
dump_block_q4_0(&x[i * 8 + 3], 3);
|
|
dump_block_q4_0(&x[i * 8 + 4], 4);
|
|
dump_block_q4_0(&x[i * 8 + 5], 5);
|
|
dump_block_q4_0(&x[i * 8 + 6], 6);
|
|
dump_block_q4_0(&x[i * 8 + 7], 7);
|
|
}
|
|
}
|
|
|
|
// Repack the quants
|
|
for (int i = 0; i < nb; i++) {
|
|
uint8_t qs[QK_Q4_0x4x2]; // unpacked quants
|
|
unpack_q4_0_quants(qs, &x[i * 8 + 0], 0);
|
|
unpack_q4_0_quants(qs, &x[i * 8 + 1], 1);
|
|
unpack_q4_0_quants(qs, &x[i * 8 + 2], 2);
|
|
unpack_q4_0_quants(qs, &x[i * 8 + 3], 3);
|
|
unpack_q4_0_quants(qs, &x[i * 8 + 4], 4);
|
|
unpack_q4_0_quants(qs, &x[i * 8 + 5], 5);
|
|
unpack_q4_0_quants(qs, &x[i * 8 + 6], 6);
|
|
unpack_q4_0_quants(qs, &x[i * 8 + 7], 7);
|
|
|
|
uint8_t * q = y_q + (i * qblk_size);
|
|
for (int j = 0; j < qk / 2; j++) {
|
|
q[j] = (qs[j + 128] << 4) | qs[j];
|
|
}
|
|
}
|
|
|
|
// Repack the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Repack the scales
|
|
ggml_half * d = (ggml_half *) (y_d + i * dblk_size);
|
|
d[0] = x[i * 8 + 0].d;
|
|
d[1] = x[i * 8 + 1].d;
|
|
d[2] = x[i * 8 + 2].d;
|
|
d[3] = x[i * 8 + 3].d;
|
|
d[4] = x[i * 8 + 4].d;
|
|
d[5] = x[i * 8 + 5].d;
|
|
d[6] = x[i * 8 + 6].d;
|
|
d[7] = x[i * 8 + 7].d;
|
|
}
|
|
|
|
if (opt_verbose > 1) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_packed_block_q4x4x2(y, i, k);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void unpack_row_q4x4x2(block_q4_0 * x, const uint8_t * y, int64_t k) {
|
|
static const int qk = QK_Q4_0x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
const int dblk_size = 8 * 2; // 8x __fp16
|
|
const int qblk_size = qk / 2; // int4
|
|
const int qrow_size = k / 2; // int4 (not padded to blocks)
|
|
|
|
const uint8_t * y_q = y + 0; // quants first
|
|
const uint8_t * y_d = y + qrow_size; // then scales
|
|
|
|
if (opt_verbose > 1) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_packed_block_q4x4x2(y, i, k);
|
|
}
|
|
}
|
|
|
|
// Unpack the quants
|
|
for (int i = 0; i < nb; i++) {
|
|
uint8_t qs[QK_Q4_0x4x2]; // unpacked quants
|
|
|
|
const uint8_t * q = y_q + (i * qblk_size);
|
|
for (int j = 0; j < qk / 2; j++) {
|
|
qs[j] = q[j] & 0xf;
|
|
qs[j + 128] = q[j] >> 4;
|
|
}
|
|
|
|
pack_q4_0_quants(&x[i * 8 + 0], qs, 0);
|
|
pack_q4_0_quants(&x[i * 8 + 1], qs, 1);
|
|
pack_q4_0_quants(&x[i * 8 + 2], qs, 2);
|
|
pack_q4_0_quants(&x[i * 8 + 3], qs, 3);
|
|
pack_q4_0_quants(&x[i * 8 + 4], qs, 4);
|
|
pack_q4_0_quants(&x[i * 8 + 5], qs, 5);
|
|
pack_q4_0_quants(&x[i * 8 + 6], qs, 6);
|
|
pack_q4_0_quants(&x[i * 8 + 7], qs, 7);
|
|
}
|
|
|
|
// Repack the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Unpack the scales
|
|
const ggml_half * d = (const ggml_half *) (y_d + i * dblk_size);
|
|
x[i * 8 + 0].d = d[0];
|
|
x[i * 8 + 1].d = d[1];
|
|
x[i * 8 + 2].d = d[2];
|
|
x[i * 8 + 3].d = d[3];
|
|
x[i * 8 + 4].d = d[4];
|
|
x[i * 8 + 5].d = d[5];
|
|
x[i * 8 + 6].d = d[6];
|
|
x[i * 8 + 7].d = d[7];
|
|
}
|
|
|
|
if (opt_verbose > 2) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_block_q4_0(&x[i * 8 + 0], 0);
|
|
dump_block_q4_0(&x[i * 8 + 1], 1);
|
|
dump_block_q4_0(&x[i * 8 + 2], 2);
|
|
dump_block_q4_0(&x[i * 8 + 3], 3);
|
|
dump_block_q4_0(&x[i * 8 + 4], 4);
|
|
dump_block_q4_0(&x[i * 8 + 5], 5);
|
|
dump_block_q4_0(&x[i * 8 + 6], 6);
|
|
dump_block_q4_0(&x[i * 8 + 7], 7);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_row_q4x4x2(block_q4_0 * x, int64_t k) {
|
|
static const int qk = QK_Q4_0x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
// Init the quants such that they unpack into zeros
|
|
uint8_t qs[QK_Q4_0x4x2]; // unpacked quants
|
|
memset(qs, 8, sizeof(qs));
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
pack_q4_0_quants(&x[i * 8 + 0], qs, 0);
|
|
pack_q4_0_quants(&x[i * 8 + 1], qs, 1);
|
|
pack_q4_0_quants(&x[i * 8 + 2], qs, 2);
|
|
pack_q4_0_quants(&x[i * 8 + 3], qs, 3);
|
|
pack_q4_0_quants(&x[i * 8 + 4], qs, 4);
|
|
pack_q4_0_quants(&x[i * 8 + 5], qs, 5);
|
|
pack_q4_0_quants(&x[i * 8 + 6], qs, 6);
|
|
pack_q4_0_quants(&x[i * 8 + 7], qs, 7);
|
|
}
|
|
|
|
// Init the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Unpack the scales
|
|
x[i * 8 + 0].d = 0;
|
|
x[i * 8 + 1].d = 0;
|
|
x[i * 8 + 2].d = 0;
|
|
x[i * 8 + 3].d = 0;
|
|
x[i * 8 + 4].d = 0;
|
|
x[i * 8 + 5].d = 0;
|
|
x[i * 8 + 6].d = 0;
|
|
x[i * 8 + 7].d = 0;
|
|
}
|
|
}
|
|
|
|
// repack q4_0 data into q4x4x2 tensor
|
|
static void repack_q4_0_q4x4x2(ggml_tensor * t, const void * data, size_t size) {
|
|
int64_t nrows = ggml_nrows(t);
|
|
|
|
size_t row_size = ggml_row_size(t->type, t->ne[0]);
|
|
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q4_0x4x2)); // extra elements for the pad
|
|
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
|
|
|
|
void * buf_pd = ggml_aligned_malloc(row_size_pd);
|
|
GGML_ASSERT(buf_pd != NULL);
|
|
|
|
void * buf_rp = ggml_aligned_malloc(row_size_rp);
|
|
GGML_ASSERT(buf_rp != NULL);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack-q4_0-q4x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size,
|
|
t->ne[0], nrows, row_size);
|
|
|
|
init_row_q4x4x2((block_q4_0 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros
|
|
|
|
for (int64_t i = 0; i < nrows; i++) {
|
|
const uint8_t * src = (const uint8_t *) data + (i * row_size);
|
|
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
|
|
|
|
memcpy(buf_pd, src, row_size);
|
|
repack_row_q4x4x2((uint8_t *) buf_rp, (const block_q4_0 *) buf_pd, t->ne[0]);
|
|
memcpy(dst, buf_rp, row_size);
|
|
}
|
|
|
|
ggml_aligned_free(buf_pd, row_size_pd);
|
|
ggml_aligned_free(buf_rp, row_size_rp);
|
|
}
|
|
|
|
// repack q4x4x2 tensor into q4_0 data
|
|
static void repack_q4x4x2_q4_0(void * data, const ggml_tensor * t, size_t size) {
|
|
int64_t nrows = ggml_nrows(t);
|
|
|
|
size_t row_size = ggml_row_size(t->type, t->ne[0]);
|
|
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q4_0x4x2)); // extra elements for the pad
|
|
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
|
|
|
|
void * buf_pd = ggml_aligned_malloc(row_size_pd);
|
|
GGML_ASSERT(buf_pd != NULL);
|
|
|
|
void * buf_rp = ggml_aligned_malloc(row_size_rp);
|
|
GGML_ASSERT(buf_rp != NULL);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack-q4x4x2-q4_0 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size,
|
|
t->ne[0], nrows, row_size);
|
|
|
|
memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros
|
|
|
|
for (int64_t i = 0; i < nrows; i++) {
|
|
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
|
|
uint8_t * dst = (uint8_t *) data + (i * row_size);
|
|
|
|
memcpy(buf_pd, src, row_size);
|
|
unpack_row_q4x4x2((block_q4_0 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]);
|
|
memcpy(dst, buf_rp, row_size);
|
|
}
|
|
|
|
ggml_aligned_free(buf_pd, row_size_pd);
|
|
ggml_aligned_free(buf_rp, row_size_rp);
|
|
}
|
|
|
|
// ======== Q8x4x2 ====================
|
|
static void dump_block_q8_0(const block_q8_0 * b, int i) {
|
|
HEX_VERBOSE("ggml-hex: repack q8_0 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, b->qs[0], b->qs[1], b->qs[2],
|
|
b->qs[3], b->qs[28], b->qs[29], b->qs[30], b->qs[31], GGML_FP16_TO_FP32(b->d));
|
|
}
|
|
|
|
static void dump_packed_block_q8x4x2(const uint8_t * v, unsigned int i, size_t k) {
|
|
static const int qk = QK_Q8_0x4x2;
|
|
const int dblk_size = 8 * 2; // 8x __fp16
|
|
const int qblk_size = qk; // int8
|
|
const int qrow_size = k; // int8 (not padded)
|
|
|
|
const uint8_t * v_q = v + 0; // quants first
|
|
const uint8_t * v_d = v + qrow_size; // then scales
|
|
|
|
const uint8_t * q = v_q + i * qblk_size;
|
|
const ggml_half * d = (const ggml_half *) (v_d + i * dblk_size);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack q8x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i,
|
|
q[0], q[1], q[2], q[3], q[60], q[61], q[62], q[63], q[124], q[125], q[126], q[127],
|
|
GGML_FP16_TO_FP32(d[0]), GGML_FP16_TO_FP32(d[1]), GGML_FP16_TO_FP32(d[2]), GGML_FP16_TO_FP32(d[3]));
|
|
|
|
HEX_VERBOSE("ggml-hex: repack q8x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n",
|
|
i + 1, q[128], q[129], q[130], q[131], q[192], q[193], q[194], q[195], q[252], q[253], q[254], q[255],
|
|
GGML_FP16_TO_FP32(d[4]), GGML_FP16_TO_FP32(d[5]), GGML_FP16_TO_FP32(d[6]), GGML_FP16_TO_FP32(d[7]));
|
|
}
|
|
|
|
static void unpack_q8_0_quants(uint8_t * qs, const block_q8_0 * x, unsigned int bi) {
|
|
static const int qk = QK8_0;
|
|
|
|
for (unsigned int i = 0; i < qk; ++i) {
|
|
qs[bi * qk + i] = x->qs[i];
|
|
}
|
|
}
|
|
|
|
static void pack_q8_0_quants(block_q8_0 * x, const uint8_t * qs, unsigned int bi) {
|
|
static const int qk = QK8_0;
|
|
|
|
for (unsigned int i = 0; i < qk; ++i) {
|
|
x->qs[i] = qs[bi * qk + i];
|
|
}
|
|
}
|
|
|
|
static void repack_row_q8x4x2(uint8_t * y, const block_q8_0 * x, int64_t k) {
|
|
static const int qk = QK_Q8_0x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
const int dblk_size = 8 * 2; // 8x __fp16
|
|
const int qblk_size = qk; // int8
|
|
const int qrow_size = k; // int8 (not padded to blocks)
|
|
|
|
uint8_t * y_q = y + 0; // quants first
|
|
uint8_t * y_d = y + qrow_size; // then scales
|
|
|
|
if (opt_verbose > 2) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_block_q8_0(&x[i * 8 + 0], 0);
|
|
dump_block_q8_0(&x[i * 8 + 1], 1);
|
|
dump_block_q8_0(&x[i * 8 + 2], 2);
|
|
dump_block_q8_0(&x[i * 8 + 3], 3);
|
|
dump_block_q8_0(&x[i * 8 + 4], 4);
|
|
dump_block_q8_0(&x[i * 8 + 5], 5);
|
|
dump_block_q8_0(&x[i * 8 + 6], 6);
|
|
dump_block_q8_0(&x[i * 8 + 7], 7);
|
|
}
|
|
}
|
|
|
|
// Repack the quants
|
|
for (int i = 0; i < nb; i++) {
|
|
uint8_t qs[QK_Q8_0x4x2]; // unpacked quants
|
|
|
|
unpack_q8_0_quants(qs, &x[i * 8 + 0], 0);
|
|
unpack_q8_0_quants(qs, &x[i * 8 + 1], 1);
|
|
unpack_q8_0_quants(qs, &x[i * 8 + 2], 2);
|
|
unpack_q8_0_quants(qs, &x[i * 8 + 3], 3);
|
|
unpack_q8_0_quants(qs, &x[i * 8 + 4], 4);
|
|
unpack_q8_0_quants(qs, &x[i * 8 + 5], 5);
|
|
unpack_q8_0_quants(qs, &x[i * 8 + 6], 6);
|
|
unpack_q8_0_quants(qs, &x[i * 8 + 7], 7);
|
|
|
|
uint8_t * q = y_q + (i * qblk_size);
|
|
for (int j = 0; j < qk; j++) {
|
|
q[j] = qs[j];
|
|
}
|
|
}
|
|
|
|
// Repack the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Repack the scales
|
|
ggml_half * d = (ggml_half *) (y_d + i * dblk_size);
|
|
d[0] = x[i * 8 + 0].d;
|
|
d[1] = x[i * 8 + 1].d;
|
|
d[2] = x[i * 8 + 2].d;
|
|
d[3] = x[i * 8 + 3].d;
|
|
d[4] = x[i * 8 + 4].d;
|
|
d[5] = x[i * 8 + 5].d;
|
|
d[6] = x[i * 8 + 6].d;
|
|
d[7] = x[i * 8 + 7].d;
|
|
}
|
|
|
|
if (opt_verbose > 1) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_packed_block_q8x4x2(y, i, k);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void unpack_row_q8x4x2(block_q8_0 * x, const uint8_t * y, int64_t k) {
|
|
static const int qk = QK_Q8_0x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
const int dblk_size = 8 * 2; // 8x __fp16
|
|
const int qblk_size = qk; // int8
|
|
const int qrow_size = k; // int8 (not padded to blocks)
|
|
|
|
const uint8_t * y_q = y + 0; // quants first
|
|
const uint8_t * y_d = y + qrow_size; // then scales
|
|
|
|
if (opt_verbose > 1) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_packed_block_q8x4x2(y, i, k);
|
|
}
|
|
}
|
|
|
|
// Unpack the quants
|
|
for (int i = 0; i < nb; i++) {
|
|
uint8_t qs[QK_Q4_0x4x2]; // unpacked quants
|
|
|
|
const uint8_t * q = y_q + (i * qblk_size);
|
|
for (int j = 0; j < qk; j++) {
|
|
qs[j] = q[j];
|
|
}
|
|
|
|
pack_q8_0_quants(&x[i * 8 + 0], qs, 0);
|
|
pack_q8_0_quants(&x[i * 8 + 1], qs, 1);
|
|
pack_q8_0_quants(&x[i * 8 + 2], qs, 2);
|
|
pack_q8_0_quants(&x[i * 8 + 3], qs, 3);
|
|
pack_q8_0_quants(&x[i * 8 + 4], qs, 4);
|
|
pack_q8_0_quants(&x[i * 8 + 5], qs, 5);
|
|
pack_q8_0_quants(&x[i * 8 + 6], qs, 6);
|
|
pack_q8_0_quants(&x[i * 8 + 7], qs, 7);
|
|
}
|
|
|
|
// Repack the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Unpack the scales
|
|
const ggml_half * d = (const ggml_half *) (y_d + i * dblk_size);
|
|
x[i * 8 + 0].d = d[0];
|
|
x[i * 8 + 1].d = d[1];
|
|
x[i * 8 + 2].d = d[2];
|
|
x[i * 8 + 3].d = d[3];
|
|
x[i * 8 + 4].d = d[4];
|
|
x[i * 8 + 5].d = d[5];
|
|
x[i * 8 + 6].d = d[6];
|
|
x[i * 8 + 7].d = d[7];
|
|
}
|
|
|
|
if (opt_verbose > 2) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_block_q8_0(&x[i * 8 + 0], 0);
|
|
dump_block_q8_0(&x[i * 8 + 1], 1);
|
|
dump_block_q8_0(&x[i * 8 + 2], 2);
|
|
dump_block_q8_0(&x[i * 8 + 3], 3);
|
|
dump_block_q8_0(&x[i * 8 + 4], 4);
|
|
dump_block_q8_0(&x[i * 8 + 5], 5);
|
|
dump_block_q8_0(&x[i * 8 + 6], 6);
|
|
dump_block_q8_0(&x[i * 8 + 7], 7);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_row_q8x4x2(block_q8_0 * x, int64_t k) {
|
|
static const int qk = QK_Q8_0x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
// Init the quants such that they unpack into zeros
|
|
uint8_t qs[QK_Q8_0x4x2]; // unpacked quants
|
|
memset(qs, 0, sizeof(qs));
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
pack_q8_0_quants(&x[i * 8 + 0], qs, 0);
|
|
pack_q8_0_quants(&x[i * 8 + 1], qs, 1);
|
|
pack_q8_0_quants(&x[i * 8 + 2], qs, 2);
|
|
pack_q8_0_quants(&x[i * 8 + 3], qs, 3);
|
|
pack_q8_0_quants(&x[i * 8 + 4], qs, 4);
|
|
pack_q8_0_quants(&x[i * 8 + 5], qs, 5);
|
|
pack_q8_0_quants(&x[i * 8 + 6], qs, 6);
|
|
pack_q8_0_quants(&x[i * 8 + 7], qs, 7);
|
|
}
|
|
|
|
// Init the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q8_0x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Unpack the scales
|
|
x[i * 8 + 0].d = 0;
|
|
x[i * 8 + 1].d = 0;
|
|
x[i * 8 + 2].d = 0;
|
|
x[i * 8 + 3].d = 0;
|
|
x[i * 8 + 4].d = 0;
|
|
x[i * 8 + 5].d = 0;
|
|
x[i * 8 + 6].d = 0;
|
|
x[i * 8 + 7].d = 0;
|
|
}
|
|
}
|
|
|
|
// repack q8_0 data into q8x4x2 tensor
|
|
static void repack_q8_0_q8x4x2(ggml_tensor * t, const void * data, size_t size) {
|
|
int64_t nrows = ggml_nrows(t);
|
|
|
|
size_t row_size = ggml_row_size(t->type, t->ne[0]);
|
|
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q8_0x4x2)); // extra elements for the pad
|
|
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
|
|
|
|
void * buf_pd = ggml_aligned_malloc(row_size_pd);
|
|
GGML_ASSERT(buf_pd != NULL);
|
|
|
|
void * buf_rp = ggml_aligned_malloc(row_size_rp);
|
|
GGML_ASSERT(buf_rp != NULL);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack-q8_0-q8x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size,
|
|
t->ne[0], nrows, row_size);
|
|
|
|
init_row_q8x4x2((block_q8_0 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros
|
|
|
|
for (int64_t i = 0; i < nrows; i++) {
|
|
const uint8_t * src = (const uint8_t *) data + (i * row_size);
|
|
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
|
|
|
|
memcpy(buf_pd, src, row_size);
|
|
repack_row_q8x4x2((uint8_t *) buf_rp, (const block_q8_0 *) buf_pd, t->ne[0]);
|
|
memcpy(dst, buf_rp, row_size);
|
|
}
|
|
|
|
ggml_aligned_free(buf_pd, row_size_pd);
|
|
ggml_aligned_free(buf_rp, row_size_rp);
|
|
}
|
|
|
|
// repack q8x4x2 tensor into q8_0 data
|
|
static void repack_q8x4x2_q8_0(void * data, const ggml_tensor * t, size_t size) {
|
|
int64_t nrows = ggml_nrows(t);
|
|
|
|
size_t row_size = ggml_row_size(t->type, t->ne[0]);
|
|
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q8_0x4x2)); // extra elements for the pad
|
|
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
|
|
|
|
void * buf_pd = ggml_aligned_malloc(row_size_pd);
|
|
GGML_ASSERT(buf_pd != NULL);
|
|
|
|
void * buf_rp = ggml_aligned_malloc(row_size_rp);
|
|
GGML_ASSERT(buf_rp != NULL);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack-q8x4x2-q8_0 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size,
|
|
t->ne[0], nrows, row_size);
|
|
|
|
memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros
|
|
|
|
for (int64_t i = 0; i < nrows; i++) {
|
|
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
|
|
uint8_t * dst = (uint8_t *) data + (i * row_size);
|
|
|
|
memcpy(buf_pd, src, row_size);
|
|
unpack_row_q8x4x2((block_q8_0 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]);
|
|
memcpy(dst, buf_rp, row_size);
|
|
}
|
|
|
|
ggml_aligned_free(buf_pd, row_size_pd);
|
|
ggml_aligned_free(buf_rp, row_size_rp);
|
|
}
|
|
|
|
// ======== MXFP4x4x2 ====================
|
|
struct x2_mxfp4 {
|
|
int v[2];
|
|
};
|
|
|
|
static x2_mxfp4 unpack_mxfp4(uint8_t v) {
|
|
x2_mxfp4 x;
|
|
x.v[0] = kvalues_mxfp4[(v & 0x0f)];
|
|
x.v[1] = kvalues_mxfp4[(v >> 4)];
|
|
return x;
|
|
}
|
|
|
|
static void dump_block_mxfp4(const block_mxfp4 * b, int i) {
|
|
HEX_VERBOSE("ggml-hex: repack mxfp4 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, unpack_mxfp4(b->qs[0]).v[0],
|
|
unpack_mxfp4(b->qs[1]).v[0], unpack_mxfp4(b->qs[2]).v[0], unpack_mxfp4(b->qs[3]).v[0],
|
|
unpack_mxfp4(b->qs[12]).v[1], unpack_mxfp4(b->qs[13]).v[1], unpack_mxfp4(b->qs[14]).v[1],
|
|
unpack_mxfp4(b->qs[15]).v[1], GGML_E8M0_TO_FP32_HALF(b->e));
|
|
}
|
|
|
|
static void dump_packed_block_mxfp4x4x2(const uint8_t * v, unsigned int i, size_t k) {
|
|
static const int qk = QK_MXFP4x4x2;
|
|
const int eblk_size = 8 * 1; // 8x E8M0
|
|
const int qblk_size = qk / 2; // int4
|
|
const int qrow_size = k / 2; // int4 (not padded)
|
|
|
|
const uint8_t * v_q = v + 0; // quants first
|
|
const uint8_t * v_e = v + qrow_size; // then scales
|
|
|
|
const uint8_t * q = v_q + i * qblk_size;
|
|
const uint8_t * e = (const uint8_t *) (v_e + i * eblk_size);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack mxfp4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i,
|
|
unpack_mxfp4(q[0]).v[0], unpack_mxfp4(q[1]).v[0], unpack_mxfp4(q[2]).v[0], unpack_mxfp4(q[3]).v[0],
|
|
unpack_mxfp4(q[60]).v[0], unpack_mxfp4(q[61]).v[0], unpack_mxfp4(q[62]).v[0], unpack_mxfp4(q[63]).v[0],
|
|
unpack_mxfp4(q[124]).v[0], unpack_mxfp4(q[125]).v[0], unpack_mxfp4(q[126]).v[0],
|
|
unpack_mxfp4(q[127]).v[0], GGML_E8M0_TO_FP32_HALF(e[0]), GGML_E8M0_TO_FP32_HALF(e[1]),
|
|
GGML_E8M0_TO_FP32_HALF(e[2]), GGML_E8M0_TO_FP32_HALF(e[3]));
|
|
|
|
HEX_VERBOSE("ggml-hex: repack mxfp4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n",
|
|
i + 1, unpack_mxfp4(q[0]).v[1], unpack_mxfp4(q[1]).v[1], unpack_mxfp4(q[2]).v[1],
|
|
unpack_mxfp4(q[3]).v[1], unpack_mxfp4(q[60]).v[1], unpack_mxfp4(q[61]).v[1], unpack_mxfp4(q[62]).v[1],
|
|
unpack_mxfp4(q[63]).v[1], unpack_mxfp4(q[124]).v[1], unpack_mxfp4(q[125]).v[1],
|
|
unpack_mxfp4(q[126]).v[1], unpack_mxfp4(q[127]).v[1], GGML_E8M0_TO_FP32_HALF(e[4]),
|
|
GGML_E8M0_TO_FP32_HALF(e[5]), GGML_E8M0_TO_FP32_HALF(e[6]), GGML_E8M0_TO_FP32_HALF(e[7]));
|
|
}
|
|
|
|
static void unpack_mxfp4_quants(uint8_t * qs, const block_mxfp4 * x, unsigned int bi) {
|
|
static const int qk = QK_MXFP4;
|
|
|
|
for (unsigned int i = 0; i < qk / 2; ++i) {
|
|
const uint8_t x0 = (x->qs[i] & 0x0F);
|
|
const uint8_t x1 = (x->qs[i] >> 4);
|
|
qs[bi * qk + i + 0] = x0;
|
|
qs[bi * qk + i + qk / 2] = x1;
|
|
}
|
|
}
|
|
|
|
static void pack_mxfp4_quants(block_mxfp4 * x, const uint8_t * qs, unsigned int bi) {
|
|
static const int qk = QK4_0;
|
|
|
|
for (unsigned int i = 0; i < qk / 2; ++i) {
|
|
const uint8_t x0 = qs[bi * qk + i + 0];
|
|
const uint8_t x1 = qs[bi * qk + i + qk / 2];
|
|
x->qs[i] = x0 | (x1 << 4);
|
|
}
|
|
}
|
|
|
|
static void repack_row_mxfp4x4x2(uint8_t * y, const block_mxfp4 * x, int64_t k) {
|
|
static const int qk = QK_MXFP4x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
const int eblk_size = 8 * 1; // 8x E8M0
|
|
const int qblk_size = qk / 2; // int4
|
|
const int qrow_size = k / 2; // int4 (not padded to blocks)
|
|
|
|
uint8_t * y_q = y + 0; // quants first
|
|
uint8_t * y_e = y + qrow_size; // then scales
|
|
|
|
if (opt_verbose > 2) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_block_mxfp4(&x[i * 8 + 0], 0);
|
|
dump_block_mxfp4(&x[i * 8 + 1], 1);
|
|
dump_block_mxfp4(&x[i * 8 + 2], 2);
|
|
dump_block_mxfp4(&x[i * 8 + 3], 3);
|
|
dump_block_mxfp4(&x[i * 8 + 4], 4);
|
|
dump_block_mxfp4(&x[i * 8 + 5], 5);
|
|
dump_block_mxfp4(&x[i * 8 + 6], 6);
|
|
dump_block_mxfp4(&x[i * 8 + 7], 7);
|
|
}
|
|
}
|
|
|
|
// Repack the quants
|
|
for (int i = 0; i < nb; i++) {
|
|
uint8_t qs[QK_MXFP4x4x2]; // unpacked quants
|
|
|
|
unpack_mxfp4_quants(qs, &x[i * 8 + 0], 0);
|
|
unpack_mxfp4_quants(qs, &x[i * 8 + 1], 1);
|
|
unpack_mxfp4_quants(qs, &x[i * 8 + 2], 2);
|
|
unpack_mxfp4_quants(qs, &x[i * 8 + 3], 3);
|
|
unpack_mxfp4_quants(qs, &x[i * 8 + 4], 4);
|
|
unpack_mxfp4_quants(qs, &x[i * 8 + 5], 5);
|
|
unpack_mxfp4_quants(qs, &x[i * 8 + 6], 6);
|
|
unpack_mxfp4_quants(qs, &x[i * 8 + 7], 7);
|
|
|
|
uint8_t * q = y_q + (i * qblk_size);
|
|
for (int j = 0; j < qk / 2; j++) {
|
|
q[j] = (qs[j + 128] << 4) | qs[j];
|
|
}
|
|
}
|
|
|
|
// Repack the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Repack the scales
|
|
uint8_t * e = (uint8_t *) (y_e + i * eblk_size);
|
|
e[0] = x[i * 8 + 0].e;
|
|
e[1] = x[i * 8 + 1].e;
|
|
e[2] = x[i * 8 + 2].e;
|
|
e[3] = x[i * 8 + 3].e;
|
|
e[4] = x[i * 8 + 4].e;
|
|
e[5] = x[i * 8 + 5].e;
|
|
e[6] = x[i * 8 + 6].e;
|
|
e[7] = x[i * 8 + 7].e;
|
|
}
|
|
|
|
if (opt_verbose > 1) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_packed_block_mxfp4x4x2(y, i, k);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void unpack_row_mxfp4x4x2(block_mxfp4 * x, const uint8_t * y, int64_t k) {
|
|
static const int qk = QK_MXFP4x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
const int eblk_size = 8 * 1; // 8x E8M0
|
|
const int qblk_size = qk / 2; // int4
|
|
const int qrow_size = k / 2; // int4 (not padded to blocks)
|
|
|
|
const uint8_t * y_q = y + 0; // quants first
|
|
const uint8_t * y_e = y + qrow_size; // then scales
|
|
|
|
if (opt_verbose > 1) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_packed_block_mxfp4x4x2(y, i, k);
|
|
}
|
|
}
|
|
|
|
// Unpack the quants
|
|
for (int i = 0; i < nb; i++) {
|
|
uint8_t qs[QK_MXFP4x4x2]; // unpacked quants
|
|
|
|
const uint8_t * q = y_q + (i * qblk_size);
|
|
for (int j = 0; j < qk / 2; j++) {
|
|
qs[j] = q[j] & 0xf;
|
|
qs[j + 128] = q[j] >> 4;
|
|
}
|
|
|
|
pack_mxfp4_quants(&x[i * 8 + 0], qs, 0);
|
|
pack_mxfp4_quants(&x[i * 8 + 1], qs, 1);
|
|
pack_mxfp4_quants(&x[i * 8 + 2], qs, 2);
|
|
pack_mxfp4_quants(&x[i * 8 + 3], qs, 3);
|
|
pack_mxfp4_quants(&x[i * 8 + 4], qs, 4);
|
|
pack_mxfp4_quants(&x[i * 8 + 5], qs, 5);
|
|
pack_mxfp4_quants(&x[i * 8 + 6], qs, 6);
|
|
pack_mxfp4_quants(&x[i * 8 + 7], qs, 7);
|
|
}
|
|
|
|
// Repack the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4_0x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Unpack the scales
|
|
const uint8_t * e = (const uint8_t *) (y_e + i * eblk_size);
|
|
x[i * 8 + 0].e = e[0];
|
|
x[i * 8 + 1].e = e[1];
|
|
x[i * 8 + 2].e = e[2];
|
|
x[i * 8 + 3].e = e[3];
|
|
x[i * 8 + 4].e = e[4];
|
|
x[i * 8 + 5].e = e[5];
|
|
x[i * 8 + 6].e = e[6];
|
|
x[i * 8 + 7].e = e[7];
|
|
}
|
|
|
|
if (opt_verbose > 2) {
|
|
for (int i = 0; i < nb; i++) {
|
|
dump_block_mxfp4(&x[i * 8 + 0], 0);
|
|
dump_block_mxfp4(&x[i * 8 + 1], 1);
|
|
dump_block_mxfp4(&x[i * 8 + 2], 2);
|
|
dump_block_mxfp4(&x[i * 8 + 3], 3);
|
|
dump_block_mxfp4(&x[i * 8 + 4], 4);
|
|
dump_block_mxfp4(&x[i * 8 + 5], 5);
|
|
dump_block_mxfp4(&x[i * 8 + 6], 6);
|
|
dump_block_mxfp4(&x[i * 8 + 7], 7);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_row_mxfp4x4x2(block_mxfp4 * x, int64_t k) {
|
|
static const int qk = QK_MXFP4x4x2;
|
|
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
|
|
|
|
// Init the quants such that they unpack into zeros
|
|
uint8_t qs[QK_MXFP4x4x2]; // unpacked quants
|
|
memset(qs, 0, sizeof(qs));
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
pack_mxfp4_quants(&x[i * 8 + 0], qs, 0);
|
|
pack_mxfp4_quants(&x[i * 8 + 1], qs, 1);
|
|
pack_mxfp4_quants(&x[i * 8 + 2], qs, 2);
|
|
pack_mxfp4_quants(&x[i * 8 + 3], qs, 3);
|
|
pack_mxfp4_quants(&x[i * 8 + 4], qs, 4);
|
|
pack_mxfp4_quants(&x[i * 8 + 5], qs, 5);
|
|
pack_mxfp4_quants(&x[i * 8 + 6], qs, 6);
|
|
pack_mxfp4_quants(&x[i * 8 + 7], qs, 7);
|
|
}
|
|
|
|
// Init the scales
|
|
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4x4x2)
|
|
// the last block is truncated and overriden by the scales.
|
|
for (int i = 0; i < nb; i++) {
|
|
// Unpack the scales
|
|
x[i * 8 + 0].e = 0;
|
|
x[i * 8 + 1].e = 0;
|
|
x[i * 8 + 2].e = 0;
|
|
x[i * 8 + 3].e = 0;
|
|
x[i * 8 + 4].e = 0;
|
|
x[i * 8 + 5].e = 0;
|
|
x[i * 8 + 6].e = 0;
|
|
x[i * 8 + 7].e = 0;
|
|
}
|
|
}
|
|
|
|
// repack mxfp4 data into mxfp4x4x2 tensor
|
|
static void repack_mxfp4_mxfp4x4x2(ggml_tensor * t, const void * data, size_t size) {
|
|
int64_t nrows = ggml_nrows(t);
|
|
|
|
size_t row_size = ggml_row_size(t->type, t->ne[0]);
|
|
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_MXFP4x4x2)); // extra elements for the pad
|
|
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
|
|
|
|
void * buf_pd = ggml_aligned_malloc(row_size_pd);
|
|
GGML_ASSERT(buf_pd != NULL);
|
|
|
|
void * buf_rp = ggml_aligned_malloc(row_size_rp);
|
|
GGML_ASSERT(buf_rp != NULL);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack-mxfp4-mxfp4x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data,
|
|
size, t->ne[0], nrows, row_size);
|
|
|
|
init_row_mxfp4x4x2((block_mxfp4 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros
|
|
|
|
for (int64_t i = 0; i < nrows; i++) {
|
|
const uint8_t * src = (const uint8_t *) data + (i * row_size);
|
|
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
|
|
|
|
memcpy(buf_pd, src, row_size);
|
|
repack_row_mxfp4x4x2((uint8_t *) buf_rp, (const block_mxfp4 *) buf_pd, t->ne[0]);
|
|
memcpy(dst, buf_rp, row_size);
|
|
}
|
|
|
|
ggml_aligned_free(buf_pd, row_size_pd);
|
|
ggml_aligned_free(buf_rp, row_size_rp);
|
|
}
|
|
|
|
// repack mxfp4x4x2 tensor into mxfp4 data
|
|
static void repack_mxfp4x4x2_mxfp4(void * data, const ggml_tensor * t, size_t size) {
|
|
int64_t nrows = ggml_nrows(t);
|
|
|
|
size_t row_size = ggml_row_size(t->type, t->ne[0]);
|
|
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_MXFP4x4x2)); // extra elements for the pad
|
|
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
|
|
|
|
void * buf_pd = ggml_aligned_malloc(row_size_pd);
|
|
GGML_ASSERT(buf_pd != NULL);
|
|
|
|
void * buf_rp = ggml_aligned_malloc(row_size_rp);
|
|
GGML_ASSERT(buf_rp != NULL);
|
|
|
|
HEX_VERBOSE("ggml-hex: repack-mxfp4x4x2-mxfp4 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data,
|
|
size, t->ne[0], nrows, row_size);
|
|
|
|
memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros
|
|
|
|
for (int64_t i = 0; i < nrows; i++) {
|
|
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
|
|
uint8_t * dst = (uint8_t *) data + (i * row_size);
|
|
|
|
memcpy(buf_pd, src, row_size);
|
|
unpack_row_mxfp4x4x2((block_mxfp4 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]);
|
|
memcpy(dst, buf_rp, row_size);
|
|
}
|
|
|
|
ggml_aligned_free(buf_pd, row_size_pd);
|
|
ggml_aligned_free(buf_rp, row_size_rp);
|
|
}
|
|
|
|
static void ggml_backend_hexagon_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
|
ggml_tensor * tensor,
|
|
const void * data,
|
|
size_t offset,
|
|
size_t size) {
|
|
auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context;
|
|
auto sess = ctx->sess;
|
|
|
|
HEX_VERBOSE("ggml-hex: %s set-tensor %s : data %p offset %zu size %zu\n", sess->name.c_str(), tensor->name, data,
|
|
offset, size);
|
|
|
|
switch (tensor->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
repack_q4_0_q4x4x2(tensor, data, size);
|
|
break;
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
repack_q8_0_q8x4x2(tensor, data, size);
|
|
break;
|
|
|
|
case GGML_TYPE_MXFP4:
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
repack_mxfp4_mxfp4x4x2(tensor, data, size);
|
|
break;
|
|
|
|
default:
|
|
memcpy((char *) tensor->data + offset, data, size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void ggml_backend_hexagon_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
|
const ggml_tensor * tensor,
|
|
void * data,
|
|
size_t offset,
|
|
size_t size) {
|
|
auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context;
|
|
auto sess = ctx->sess;
|
|
|
|
HEX_VERBOSE("ggml-hex: %s get-tensor %s : data %p offset %zu size %zu\n", sess->name.c_str(), tensor->name, data,
|
|
offset, size);
|
|
|
|
switch (tensor->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
repack_q4x4x2_q4_0(data, tensor, size);
|
|
break;
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
repack_q8x4x2_q8_0(data, tensor, size);
|
|
break;
|
|
|
|
case GGML_TYPE_MXFP4:
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
repack_mxfp4x4x2_mxfp4(data, tensor, size);
|
|
break;
|
|
|
|
default:
|
|
memcpy(data, (const char *) tensor->data + offset, size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool ggml_backend_hexagon_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
|
|
const struct ggml_tensor * src,
|
|
struct ggml_tensor * dst) {
|
|
GGML_UNUSED(buffer);
|
|
GGML_UNUSED(src);
|
|
GGML_UNUSED(dst);
|
|
// we might optimize this later, for now take the slow path (ie get/set_tensor)
|
|
return false;
|
|
}
|
|
|
|
static void ggml_backend_hexagon_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context;
|
|
auto sess = ctx->sess;
|
|
HEX_VERBOSE("ggml-hex: %s clear-buff base %p size %zu\n", sess->name.c_str(), (void *) ctx->base, ctx->size);
|
|
memset(ctx->base, value, ctx->size);
|
|
}
|
|
|
|
static ggml_backend_buffer_i ggml_backend_hexagon_buffer_interface = {
|
|
/* .free_buffer = */ ggml_backend_hexagon_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_hexagon_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_hexagon_buffer_init_tensor,
|
|
/* .memset_tensor = */ NULL,
|
|
/* .set_tensor = */ ggml_backend_hexagon_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_hexagon_buffer_get_tensor,
|
|
/* .cpy_tensor = */ ggml_backend_hexagon_buffer_cpy_tensor,
|
|
/* .clear = */ ggml_backend_hexagon_buffer_clear,
|
|
/* .reset = */ NULL,
|
|
};
|
|
|
|
// ** backend buffer type
|
|
|
|
static const char * ggml_backend_hexagon_buffer_type_name(ggml_backend_buffer_type_t buffer_type) {
|
|
return static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->name.c_str();
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_hexagon_buffer_type_alloc_buffer(
|
|
ggml_backend_buffer_type_t buffer_type, size_t size) {
|
|
auto sess = static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->sess;
|
|
try {
|
|
ggml_backend_hexagon_buffer_context * ctx = new ggml_backend_hexagon_buffer_context(sess, size, false /*repack*/);
|
|
return ggml_backend_buffer_init(buffer_type, ggml_backend_hexagon_buffer_interface, ctx, size);
|
|
} catch (std::exception const &exc) {
|
|
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer context: %s\n", sess->name.c_str(), exc.what());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_hexagon_repack_buffer_type_alloc_buffer(
|
|
ggml_backend_buffer_type_t buffer_type, size_t size) {
|
|
auto sess = static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->sess;
|
|
try {
|
|
ggml_backend_hexagon_buffer_context * ctx = new ggml_backend_hexagon_buffer_context(sess, size, true /*repack*/);
|
|
return ggml_backend_buffer_init(buffer_type, ggml_backend_hexagon_buffer_interface, ctx, size);
|
|
} catch (std::exception const &exc) {
|
|
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer context: %s\n", sess->name.c_str(), exc.what());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static size_t ggml_backend_hexagon_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
|
|
return 128; // HVX alignment
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static size_t ggml_backend_hexagon_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * t) {
|
|
return ggml_nbytes(t);
|
|
}
|
|
|
|
static size_t ggml_backend_hexagon_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
|
|
return 1 * 1024 * 1024 * 1024; // 1GB per buffer
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static bool ggml_backend_hexagon_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
|
return opt_hostbuf;
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static bool ggml_backend_hexagon_repack_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
|
return false;
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_hexagon_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_hexagon_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_hexagon_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_hexagon_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_hexagon_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ ggml_backend_hexagon_buffer_type_get_alloc_size,
|
|
/* .is_host = */ ggml_backend_hexagon_buffer_type_is_host,
|
|
};
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_hexagon_repack_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_hexagon_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_hexagon_repack_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_hexagon_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_hexagon_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ ggml_backend_hexagon_buffer_type_get_alloc_size,
|
|
/* .is_host = */ ggml_backend_hexagon_repack_buffer_type_is_host,
|
|
};
|
|
|
|
void ggml_hexagon_session::allocate(int dev_id) noexcept(false) {
|
|
this->valid_session = false;
|
|
this->valid_handle = false;
|
|
this->valid_queue = false;
|
|
this->valid_iface = false;
|
|
|
|
this->domain_id = 3; // Default for CDSP, updated after the session is created
|
|
this->session_id = 0; // Default for CDSP, updated after the session is created
|
|
this->dev_id = dev_id;
|
|
this->name = std::string("HTP") + std::to_string(dev_id);
|
|
|
|
this->op_pending = 0;
|
|
this->prof_usecs = 0;
|
|
this->prof_cycles = 0;
|
|
this->prof_pkts = 0;
|
|
|
|
GGML_LOG_INFO("ggml-hex: allocating new session: %s\n", this->name.c_str());
|
|
|
|
domain * my_domain = get_domain(this->domain_id);
|
|
if (my_domain == NULL) {
|
|
GGML_LOG_ERROR("ggml-hex: unable to get domain struct for CDSP\n");
|
|
throw std::runtime_error("ggml-hex: failed to get CDSP domain (see log for details)");
|
|
}
|
|
|
|
// Create new session
|
|
if (dev_id != 0) {
|
|
struct remote_rpc_reserve_new_session n;
|
|
n.domain_name_len = strlen(CDSP_DOMAIN_NAME);
|
|
n.domain_name = const_cast<char *>(CDSP_DOMAIN_NAME);
|
|
n.session_name = const_cast<char *>(this->name.c_str());
|
|
n.session_name_len = this->name.size();
|
|
|
|
int err = remote_session_control(FASTRPC_RESERVE_NEW_SESSION, (void *) &n, sizeof(n));
|
|
if (err != AEE_SUCCESS) {
|
|
GGML_LOG_ERROR("ggml-hex: failed to reserve new session %d : error 0x%x\n", dev_id, err);
|
|
throw std::runtime_error("ggml-hex: remote_session_control(new-sess) failed (see log for details)");
|
|
}
|
|
|
|
// Save the IDs
|
|
this->session_id = n.session_id;
|
|
this->domain_id = n.effective_domain_id;
|
|
this->valid_session = true;
|
|
}
|
|
|
|
// Get session URI
|
|
char htp_uri[256];
|
|
sprintf(htp_uri, "file:///libggml-htp-v%u.so?htp_iface_skel_handle_invoke&_modver=1.0", opt_arch);
|
|
|
|
char session_uri[256];
|
|
{
|
|
struct remote_rpc_get_uri u;
|
|
u.session_id = this->session_id;
|
|
u.domain_name = const_cast<char *>(CDSP_DOMAIN_NAME);
|
|
u.domain_name_len = strlen(CDSP_DOMAIN_NAME);
|
|
u.module_uri = const_cast<char *>(htp_uri);
|
|
u.module_uri_len = strlen(htp_uri);
|
|
u.uri = session_uri;
|
|
u.uri_len = sizeof(session_uri);
|
|
|
|
int err = remote_session_control(FASTRPC_GET_URI, (void *) &u, sizeof(u));
|
|
if (err != AEE_SUCCESS) {
|
|
GGML_LOG_ERROR("ggml-hex: failed to get URI for session %d : error 0x%x\n", dev_id, err);
|
|
throw std::runtime_error("ggml-hex: remote_session_control(get-uri) failed (see log for details)");
|
|
}
|
|
}
|
|
|
|
// Enable Unsigned PD
|
|
{
|
|
struct remote_rpc_control_unsigned_module u;
|
|
u.domain = this->domain_id;
|
|
u.enable = 1;
|
|
int err = remote_session_control(DSPRPC_CONTROL_UNSIGNED_MODULE, (void *) &u, sizeof(u));
|
|
if (err != AEE_SUCCESS) {
|
|
GGML_LOG_ERROR("ggml-hex: failed to enable unsigned PD for session %d : error 0x%x\n", dev_id, err);
|
|
throw std::runtime_error("ggml-hex: remote_session_control(unsign) failed (see log for details)");
|
|
}
|
|
}
|
|
|
|
// Open session
|
|
int err = htp_iface_open(session_uri, &this->handle);
|
|
if (err != AEE_SUCCESS) {
|
|
GGML_LOG_ERROR("ggml-hex: failed to open session %d : error 0x%x\n", dev_id, err);
|
|
throw std::runtime_error("ggml-hex: failed to open session (see log for details)");
|
|
}
|
|
|
|
this->valid_handle = true;
|
|
|
|
GGML_LOG_INFO("ggml-hex: new session: %s : session-id %d domain-id %d uri %s handle 0x%lx\n", this->name.c_str(),
|
|
this->session_id, this->domain_id, session_uri, (unsigned long) this->handle);
|
|
|
|
// Enable FastRPC QoS mode
|
|
{
|
|
struct remote_rpc_control_latency l;
|
|
l.enable = 1;
|
|
|
|
int err = remote_handle64_control(this->handle, DSPRPC_CONTROL_LATENCY, (void *) &l, sizeof(l));
|
|
if (err != 0) {
|
|
GGML_LOG_WARN("ggml-hex: failed to enable fastrpc QOS mode: 0x%08x\n", (unsigned) err);
|
|
}
|
|
}
|
|
|
|
// Now let's setup the DSP queue
|
|
err = dspqueue_create(this->domain_id,
|
|
0, // Flags
|
|
128 * 1024, // Request queue size (in bytes)
|
|
64 * 1024, // Response queue size (in bytes)
|
|
htp_packet_callback, htp_error_callback,
|
|
(void *) this, // Callback context
|
|
&queue);
|
|
if (err != 0) {
|
|
GGML_LOG_ERROR("ggml-hex: %s dspqueue_create failed: 0x%08x\n", this->name.c_str(), (unsigned) err);
|
|
throw std::runtime_error("ggml-hex: failed to create dspqueue (see log for details)");
|
|
}
|
|
|
|
this->valid_queue = true;
|
|
|
|
// Export queue for use on the DSP
|
|
err = dspqueue_export(queue, &this->queue_id);
|
|
if (err != 0) {
|
|
GGML_LOG_ERROR("ggml-hex: dspqueue_export failed: 0x%08x\n", (unsigned) err);
|
|
throw std::runtime_error("ggml-hex: dspqueue export failed (see log for details)");
|
|
}
|
|
|
|
if (opt_etm) {
|
|
err = htp_iface_enable_etm(this->handle);
|
|
if (err != 0) {
|
|
GGML_LOG_ERROR("ggml-hex: failed to enable ETM tracing: 0x%08x\n", (unsigned) err);
|
|
}
|
|
}
|
|
|
|
// Start the DSP-side service. We need to pass the queue ID to the
|
|
// DSP in a FastRPC call; the DSP side will import the queue and start
|
|
// listening for packets in a callback.
|
|
err = htp_iface_start(this->handle, dev_id, this->queue_id, opt_nhvx);
|
|
if (err != 0) {
|
|
GGML_LOG_ERROR("ggml-hex: failed to start session: 0x%08x\n", (unsigned) err);
|
|
throw std::runtime_error("ggml-hex: iface start failed (see log for details)");
|
|
}
|
|
this->valid_iface = true;
|
|
}
|
|
|
|
void ggml_hexagon_session::release() noexcept(true) {
|
|
GGML_LOG_INFO("ggml-hex: releasing session: %s\n", this->name.c_str());
|
|
|
|
int err;
|
|
|
|
// Stop the DSP-side service and close the queue
|
|
if (this->valid_iface) {
|
|
err = htp_iface_stop(this->handle);
|
|
if (err != 0) {
|
|
GGML_ABORT("ggml-hex: htp_iface_stop failed: 0x%08x\n", (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (opt_etm) {
|
|
err = htp_iface_disable_etm(this->handle);
|
|
if (err != 0) {
|
|
GGML_LOG_ERROR("ggml-hex: warn : failed to disable ETM tracing: 0x%08x\n", (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (this->valid_queue) {
|
|
err = dspqueue_close(queue);
|
|
if (err != 0) {
|
|
GGML_ABORT("ggml-hex: dspqueue_close failed: 0x%08x\n", (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (this->valid_handle) {
|
|
htp_iface_close(this->handle);
|
|
}
|
|
}
|
|
|
|
ggml_hexagon_session::ggml_hexagon_session(int dev_id) noexcept(false) {
|
|
buffer_type.context = nullptr;
|
|
repack_buffer_type.context = nullptr;
|
|
|
|
try {
|
|
allocate(dev_id);
|
|
|
|
buffer_type.iface = ggml_backend_hexagon_buffer_type_interface;
|
|
buffer_type.context = new ggml_backend_hexagon_buffer_type_context(this->name, this);
|
|
|
|
repack_buffer_type.iface = ggml_backend_hexagon_repack_buffer_type_interface;
|
|
repack_buffer_type.context = new ggml_backend_hexagon_buffer_type_context(this->name + "-REPACK", this);
|
|
} catch (std::exception const &exc) {
|
|
release();
|
|
throw;
|
|
}
|
|
}
|
|
|
|
ggml_hexagon_session::~ggml_hexagon_session() noexcept(true) {
|
|
release();
|
|
|
|
delete static_cast<ggml_backend_hexagon_buffer_type_context*>(buffer_type.context);
|
|
delete static_cast<ggml_backend_hexagon_buffer_type_context*>(repack_buffer_type.context);
|
|
}
|
|
|
|
// ** backend interface
|
|
|
|
static bool ggml_backend_buffer_is_hexagon(const struct ggml_backend_buffer * b) {
|
|
return b->buft->iface.get_alignment == ggml_backend_hexagon_buffer_type_get_alignment;
|
|
}
|
|
|
|
static inline bool ggml_backend_buffer_is_hexagon_repack(const struct ggml_backend_buffer * b) {
|
|
return b->buft->iface.alloc_buffer == ggml_backend_hexagon_repack_buffer_type_alloc_buffer;
|
|
}
|
|
|
|
static bool hex_supported_dims2(const struct ggml_tensor * x, const struct ggml_tensor * y) {
|
|
if (x->ne[0] != y->ne[0]) {
|
|
return false;
|
|
}
|
|
if (x->ne[1] != y->ne[1]) {
|
|
return false;
|
|
}
|
|
if (x->ne[2] != y->ne[2]) {
|
|
return false;
|
|
}
|
|
if (x->ne[3] != y->ne[3]) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hex_supported_src0_type(ggml_type t) {
|
|
return t == GGML_TYPE_F32;
|
|
}
|
|
|
|
static bool hex_supported_src1_type(ggml_type t) {
|
|
return t == GGML_TYPE_F32;
|
|
}
|
|
|
|
static bool hex_supported_src2_type(ggml_type t) {
|
|
return t == GGML_TYPE_F32;
|
|
}
|
|
|
|
static bool hex_supported_src1_type2(ggml_type t) {
|
|
return t == GGML_TYPE_F16;
|
|
}
|
|
|
|
static bool hex_supported_src1_type3(ggml_type t) {
|
|
return t == GGML_TYPE_I32;
|
|
}
|
|
|
|
static bool hex_supported_dst_type(ggml_type t) {
|
|
return t == GGML_TYPE_F32;
|
|
}
|
|
|
|
static bool hex_supported_dims(const struct ggml_tensor * x, const struct ggml_tensor * y) {
|
|
// TODO: support broadcast for ne[2 and 3]
|
|
if (x->ne[0] != y->ne[0]) {
|
|
return false;
|
|
}
|
|
if (x->ne[2] != y->ne[2]) {
|
|
return false;
|
|
}
|
|
if (x->ne[3] != y->ne[3]) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * sess, const struct ggml_tensor * dst) {
|
|
const struct ggml_tensor * src0 = dst->src[0];
|
|
const struct ggml_tensor * src1 = dst->src[1];
|
|
|
|
if (src1->type != GGML_TYPE_F32 || dst->type != GGML_TYPE_F32) {
|
|
return false;
|
|
}
|
|
|
|
// TODO: add support for non-cont tensors
|
|
if (!ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_MXFP4:
|
|
if (src0->ne[0] % 32) {
|
|
return false;
|
|
}
|
|
|
|
if (src0->ne[1] > 16 * 1024) {
|
|
return false; // typically the lm-head which would be too large for VTCM
|
|
}
|
|
|
|
// if ((src0->ne[2] != src1->ne[2] || src0->ne[3] != src1->ne[3])) return false;
|
|
if ((src1->ne[2] != 1 || src1->ne[3] != 1)) {
|
|
return false;
|
|
}
|
|
|
|
// src0 (weights) must be repacked
|
|
if (src0->buffer && !ggml_backend_buffer_is_hexagon_repack(src0->buffer)) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case GGML_TYPE_F16:
|
|
if (!opt_experimental) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// src0 & src1 & dst must be mapped to the same session
|
|
if (src0->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src1->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (dst->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_hexagon_supported_mul_mat_id(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * src2 = op->src[2];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
if (src1->type != GGML_TYPE_F32 || dst->type != GGML_TYPE_F32 || src2->type != GGML_TYPE_I32) {
|
|
return false;
|
|
}
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_MXFP4:
|
|
if ((src0->ne[0] % 32)) {
|
|
return false;
|
|
}
|
|
|
|
// src0 (weights) must be repacked
|
|
if (src0->buffer && !ggml_backend_buffer_is_hexagon_repack(src0->buffer)) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case GGML_TYPE_F16:
|
|
if (!opt_experimental) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// TODO: add support for non-cont tensors
|
|
if (!ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
|
|
// src0 (weights) must be repacked and mapped to the same session
|
|
// src1 & sr2 & dst must be mapped to the same session
|
|
if (src0->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src1->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src2->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (dst->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_hexagon_supported_binary(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
if (!hex_supported_src0_type(src0->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_src1_type(src1->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dst_type(dst->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dims2(src0, dst)) {
|
|
return false;
|
|
}
|
|
if (!ggml_can_repeat(src1, src0)) {
|
|
return false;
|
|
}
|
|
|
|
// TODO: add support for non-contigiuos tensors
|
|
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
|
|
// src0, src1 & dst must be mapped to the same session
|
|
if (src0->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src1->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (dst->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_hexagon_supported_add_id(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * src2 = op->src[2];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
if (!hex_supported_src0_type(src0->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_src1_type(src1->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dst_type(dst->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dims2(src0, dst)) {
|
|
return false;
|
|
}
|
|
|
|
// REVISIT: add support for non-contigiuos tensors
|
|
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
|
|
// src0, src1 & dst must be mapped to the same session
|
|
if (src0->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src1->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src2->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (dst->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_hexagon_supported_unary(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
if (!hex_supported_src0_type(src0->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dst_type(dst->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dims2(src0, dst)) {
|
|
return false;
|
|
}
|
|
|
|
// TODO: add support for non-contigiuos tensors
|
|
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
|
|
// src0 & dst must be mapped to the same session
|
|
if (src0->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (dst->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_hexagon_supported_activations(const struct ggml_hexagon_session * sess,
|
|
const struct ggml_tensor * op) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
if (!hex_supported_src0_type(src0->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dst_type(dst->type)) {
|
|
return false;
|
|
}
|
|
|
|
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
|
|
if (src1) {
|
|
if (!hex_supported_src1_type(src1->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dims2(src0, src1)) {
|
|
return false;
|
|
}
|
|
if (!ggml_is_contiguous(src1)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// src0, src1 & dst must be mapped to the same session
|
|
if (src0->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src1 && src1->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (dst->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_hexagon_supported_softmax(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * src2 = op->src[2];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
if (src2) {
|
|
return false; // FIXME: add support for sinks
|
|
}
|
|
|
|
if (!hex_supported_src0_type(src0->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_dst_type(dst->type)) {
|
|
return false;
|
|
}
|
|
|
|
if (src1) {
|
|
if (!hex_supported_src1_type(src1->type) && !hex_supported_src1_type2(src1->type)) {
|
|
return false;
|
|
}
|
|
if (src0->ne[0] != src1->ne[0]) {
|
|
return false;
|
|
}
|
|
if (src1->ne[1] < src0->ne[1]) {
|
|
return false;
|
|
}
|
|
if (src0->ne[2] % src1->ne[2] != 0) {
|
|
return false;
|
|
}
|
|
if (src0->ne[3] % src1->ne[3] != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (src1) {
|
|
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// src0, src1 & dst must be mapped to the same session
|
|
if (src0->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src1 && src1->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (dst->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
|
|
const int32_t * op_params = &op->op_params[0];
|
|
|
|
int mode = op_params[2];
|
|
|
|
if ((mode & GGML_ROPE_TYPE_NEOX) || (mode & GGML_ROPE_TYPE_MROPE) || (mode & GGML_ROPE_TYPE_VISION)) {
|
|
return false;
|
|
}
|
|
if (mode & 1) {
|
|
return false;
|
|
}
|
|
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * src2 = op->src[2];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
if (!hex_supported_src0_type(src0->type)) {
|
|
return false; // FIXME: add support for GGML_TYPE_F16 for src0
|
|
}
|
|
if (!hex_supported_dst_type(dst->type)) {
|
|
return false;
|
|
}
|
|
if (!hex_supported_src1_type3(src1->type)) {
|
|
return false;
|
|
}
|
|
if (src2) {
|
|
if (!hex_supported_src2_type(src2->type)) {
|
|
return false;
|
|
}
|
|
int n_dims = op_params[1];
|
|
if (src2->ne[0] < (n_dims / 2)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (src2) {
|
|
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(src2) ||
|
|
!ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// src0, src1, src2 & dst must be mapped to the same session
|
|
if (src0->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src1->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (src2 && src2->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
if (dst->buffer &&
|
|
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Init hexagon tensor from GGML tensor and Hexagon buffer
|
|
static void init_htp_tensor(htp_tensor * h, const ggml_tensor * t) {
|
|
h->data = 0; // updated by the receiver
|
|
h->type = t->type;
|
|
h->ne[0] = t->ne[0];
|
|
h->ne[1] = t->ne[1];
|
|
h->ne[2] = t->ne[2];
|
|
h->ne[3] = t->ne[3];
|
|
h->nb[0] = t->nb[0];
|
|
h->nb[1] = t->nb[1];
|
|
h->nb[2] = t->nb[2];
|
|
h->nb[3] = t->nb[3];
|
|
}
|
|
|
|
static void hex_dump_dspbuf(const struct ggml_tensor * t, const dspqueue_buffer * d) {
|
|
auto buf = static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context);
|
|
auto sess = buf->sess;
|
|
|
|
HEX_VERBOSE("ggml-hex: %s dspqbuf : %s base-addr %p base-size %zu data %p offset %u size %u\n", sess->name.c_str(),
|
|
t->name, (void *) buf->base, buf->size, (void *) d->ptr, (unsigned int) d->offset,
|
|
(unsigned int) d->size);
|
|
}
|
|
|
|
static void ggml_hexagon_mul_mat(const struct ggml_tensor * op, uint32_t flags) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
|
|
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
|
|
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
|
|
|
|
uint64_t t1, t2;
|
|
t1 = ggml_time_us();
|
|
|
|
// Construct HTP message
|
|
htp_general_req req;
|
|
req.op = HTP_OP_MUL_MAT;
|
|
req.flags = flags;
|
|
|
|
init_htp_tensor(&req.src0, src0);
|
|
init_htp_tensor(&req.src1, src1);
|
|
init_htp_tensor(&req.dst, dst);
|
|
|
|
// Use opmask to override flags
|
|
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
|
|
}
|
|
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
|
|
}
|
|
|
|
dspqueue_buffer bufs[3];
|
|
memset(bufs, 0, sizeof(bufs));
|
|
|
|
// First buffer Weights.
|
|
// The content is static, there is no need to do any cache management
|
|
bufs[0].fd = src0_buf->fd;
|
|
bufs[0].ptr = src0->data;
|
|
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
|
|
bufs[0].size = ggml_nbytes(src0);
|
|
bufs[0].flags = DSPQUEUE_BUFFER_FLAG_REF;
|
|
|
|
// Second buffer Input Activations. This is a buffer that the CPU
|
|
// writes and the DSP reads, so we'll need to flush CPU caches and
|
|
// invalidate DSP ones. On platforms with I/O coherency support the
|
|
// framework will automatically skip cache operations where possible.
|
|
bufs[1].fd = src1_buf->fd;
|
|
bufs[1].ptr = src1->data;
|
|
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
|
|
bufs[1].size = ggml_nbytes(src1);
|
|
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
|
|
// Third buffer Output Activations. We'll handle DSP
|
|
// cache maintenance in the response message but need to flush
|
|
// CPU caches to ensure any previously written dirty lines are
|
|
// written out before writes from the DSP start.
|
|
bufs[2].fd = dst_buf->fd;
|
|
bufs[2].ptr = dst->data;
|
|
bufs[2].offset = (uint8_t *) dst->data - dst_buf->base;
|
|
bufs[2].size = ggml_nbytes(dst);
|
|
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
|
|
|
|
// Primary DSP session from the src0 (normally weight) tensor
|
|
auto sess = src0_buf->sess;
|
|
|
|
if (opt_verbose) {
|
|
char dims[64 * GGML_MAX_SRC];
|
|
char strides[64 * GGML_MAX_SRC];
|
|
char types[16 * GGML_MAX_SRC];
|
|
char buffs[64 * GGML_MAX_SRC];
|
|
char names[64 * GGML_MAX_SRC];
|
|
|
|
hex_format_op_dims(dims, op);
|
|
hex_format_op_strides(strides, op);
|
|
hex_format_op_types(types, op);
|
|
hex_format_op_buffs(buffs, op);
|
|
hex_format_op_names(names, op);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
|
|
names, dims, types, strides, buffs, req.flags);
|
|
if (opt_verbose > 1) {
|
|
hex_dump_dspbuf(src0, &bufs[0]);
|
|
hex_dump_dspbuf(src1, &bufs[1]);
|
|
hex_dump_dspbuf(dst, &bufs[2]);
|
|
}
|
|
}
|
|
|
|
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
|
|
// Bump pending flag (cleared in the callback once we get the responce)
|
|
sess->op_pending++; // atomic inc
|
|
|
|
int err = dspqueue_write(sess->queue,
|
|
0, // flags - the framework will autoset this
|
|
3, // number of buffers
|
|
bufs, // buffer references
|
|
sizeof(req),
|
|
(const uint8_t *) &req, // Message
|
|
1000000 // Timeout
|
|
);
|
|
|
|
if (err != 0) {
|
|
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (opt_opsync) {
|
|
while (sess->op_pending) {
|
|
;
|
|
}
|
|
}
|
|
|
|
t2 = ggml_time_us();
|
|
|
|
HEX_PROFILE(
|
|
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) "
|
|
"call-usec %llu\n",
|
|
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
|
|
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
|
|
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
|
|
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
|
|
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
|
|
}
|
|
|
|
static void ggml_hexagon_mul_mat_id(const struct ggml_tensor * op, uint32_t flags) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * src2 = op->src[2];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
|
|
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
|
|
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
|
|
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
|
|
|
|
uint64_t t1, t2;
|
|
t1 = ggml_time_us();
|
|
|
|
// Construct HTP message
|
|
htp_general_req req;
|
|
req.op = HTP_OP_MUL_MAT_ID;
|
|
req.flags = flags;
|
|
|
|
init_htp_tensor(&req.src0, src0);
|
|
init_htp_tensor(&req.src1, src1);
|
|
init_htp_tensor(&req.src2, src2);
|
|
init_htp_tensor(&req.dst, dst);
|
|
|
|
// Use opmask to override flags
|
|
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
|
|
}
|
|
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
|
|
}
|
|
|
|
dspqueue_buffer bufs[4];
|
|
memset(bufs, 0, sizeof(bufs));
|
|
|
|
// First buffer Weights.
|
|
// The content is static, there is no need to do any cache management
|
|
bufs[0].fd = src0_buf->fd;
|
|
bufs[0].ptr = src0->data;
|
|
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
|
|
bufs[0].size = ggml_nbytes(src0);
|
|
bufs[0].flags = DSPQUEUE_BUFFER_FLAG_REF;
|
|
|
|
// Second buffer Input Activations. This is a buffer that the CPU
|
|
// writes and the DSP reads, so we'll need to flush CPU caches and
|
|
// invalidate DSP ones. On platforms with I/O coherency support the
|
|
// framework will automatically skip cache operations where possible.
|
|
bufs[1].fd = src1_buf->fd;
|
|
bufs[1].ptr = src1->data;
|
|
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
|
|
bufs[1].size = ggml_nbytes(src1);
|
|
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
|
|
// Third buffer expert IDs. This is a buffer that the CPU
|
|
// writes and the DSP reads, so we'll need to flush CPU caches and
|
|
// invalidate DSP ones. On platforms with I/O coherency support the
|
|
// framework will automatically skip cache operations where possible.
|
|
bufs[2].fd = src2_buf->fd;
|
|
bufs[2].ptr = src2->data;
|
|
bufs[2].offset = (uint8_t *) src2->data - src2_buf->base;
|
|
bufs[2].size = ggml_nbytes(src2);
|
|
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
|
|
// Forth buffer Output Activations. We'll handle DSP
|
|
// cache maintenance in the response message but need to flush
|
|
// CPU caches to ensure any previously written dirty lines are
|
|
// written out before writes from the DSP start.
|
|
bufs[3].fd = dst_buf->fd;
|
|
bufs[3].ptr = dst->data;
|
|
bufs[3].offset = (uint8_t *) dst->data - dst_buf->base;
|
|
bufs[3].size = ggml_nbytes(dst);
|
|
bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
|
|
|
|
// Primary DSP session from the src0 (normally weight) tensor
|
|
auto sess = src0_buf->sess;
|
|
|
|
if (opt_verbose) {
|
|
char dims[64 * GGML_MAX_SRC];
|
|
char strides[64 * GGML_MAX_SRC];
|
|
char types[16 * GGML_MAX_SRC];
|
|
char buffs[64 * GGML_MAX_SRC];
|
|
char names[64 * GGML_MAX_SRC];
|
|
|
|
hex_format_op_dims(dims, op);
|
|
hex_format_op_types(types, op);
|
|
hex_format_op_buffs(buffs, op);
|
|
hex_format_op_names(names, op);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
|
|
names, dims, types, strides, buffs, req.flags);
|
|
|
|
if (opt_verbose > 1) {
|
|
hex_dump_dspbuf(src0, &bufs[0]);
|
|
hex_dump_dspbuf(src1, &bufs[1]);
|
|
hex_dump_dspbuf(src2, &bufs[2]);
|
|
hex_dump_dspbuf(dst, &bufs[3]);
|
|
}
|
|
}
|
|
|
|
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
|
|
// Bump pending flag (cleared in the callback once we get the responce)
|
|
sess->op_pending++; // atomic inc
|
|
|
|
int err = dspqueue_write(sess->queue,
|
|
0, // flags - the framework will autoset this
|
|
4, // number of buffers
|
|
bufs, // buffer references
|
|
sizeof(req),
|
|
(const uint8_t *) &req, // Message
|
|
1000000 // Timeout
|
|
);
|
|
|
|
if (err != 0) {
|
|
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (opt_opsync) {
|
|
while (sess->op_pending) {
|
|
;
|
|
}
|
|
}
|
|
|
|
t2 = ggml_time_us();
|
|
|
|
HEX_PROFILE(
|
|
"ggml-hex: %s matmul-id %s %u:%u:%u:%u x %s %u:%u:%u:%u (%s %u:%u:%u:%u) -> %s %u:%u:%u:%u : op-usec %u "
|
|
"op-cycles %u op-pkts %u (%f) call-usec %llu\n",
|
|
sess->name.c_str(), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2],
|
|
(uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2],
|
|
(uint32_t) src1->ne[3], src2->name, (uint32_t) src2->ne[0], (uint32_t) src2->ne[1], (uint32_t) src2->ne[2],
|
|
(uint32_t) src2->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],
|
|
(uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
|
|
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
|
|
}
|
|
|
|
static void ggml_hexagon_binary(const struct ggml_tensor * op, uint32_t flags) {
|
|
const struct ggml_tensor * node = op;
|
|
const struct ggml_tensor * src0 = node->src[0];
|
|
const struct ggml_tensor * src1 = node->src[1];
|
|
const struct ggml_tensor * dst = node;
|
|
|
|
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
|
|
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
|
|
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
|
|
|
|
uint64_t t1 = 0;
|
|
uint64_t t2 = 0;
|
|
|
|
t1 = ggml_time_us();
|
|
|
|
// Construct HTP message
|
|
htp_general_req req;
|
|
req.flags = flags;
|
|
|
|
// Use opmask to override flags
|
|
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
|
|
}
|
|
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
|
|
}
|
|
|
|
switch (node->op) {
|
|
case GGML_OP_MUL:
|
|
req.op = HTP_OP_MUL;
|
|
break;
|
|
case GGML_OP_ADD:
|
|
req.op = HTP_OP_ADD;
|
|
break;
|
|
case GGML_OP_SUB:
|
|
req.op = HTP_OP_SUB;
|
|
break;
|
|
default:
|
|
GGML_ABORT("ggml-hex: binary : unsupported op:%d\n", node->op);
|
|
}
|
|
|
|
init_htp_tensor(&req.src0, src0);
|
|
init_htp_tensor(&req.src1, src1);
|
|
init_htp_tensor(&req.dst, dst);
|
|
|
|
dspqueue_buffer bufs[3];
|
|
memset(bufs, 0, sizeof(bufs));
|
|
|
|
// First buffer = First Operand of Binary op
|
|
// This is a buffer that the CPU writes and the DSP reads, so we'll
|
|
// need to flush CPU caches and invalidate DSP ones. On platforms
|
|
// with I/O coherency support the framework will automatically skip
|
|
// cache operations where possible.
|
|
bufs[0].fd = src0_buf->fd;
|
|
bufs[0].ptr = src0->data;
|
|
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
|
|
bufs[0].size = ggml_nbytes(src0);
|
|
bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
|
|
|
|
// Second buffer = Second Operand of Binary op
|
|
// This is a buffer that the CPU writes and the DSP reads, so we'll
|
|
// need to flush CPU caches and invalidate DSP ones. On platforms
|
|
// with I/O coherency support the framework will automatically skip
|
|
// cache operations where possible.
|
|
bufs[1].fd = src1_buf->fd;
|
|
bufs[1].ptr = src1->data;
|
|
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
|
|
bufs[1].size = ggml_nbytes(src1);
|
|
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
|
|
// Third buffer = Output Activations. We'll handle DSP
|
|
// cache maintenance in the response message but need to flush
|
|
// CPU caches to ensure any previously written dirty lines are
|
|
// written out before writes from the DSP start.
|
|
bufs[2].fd = dst_buf->fd;
|
|
bufs[2].ptr = dst->data;
|
|
bufs[2].offset = (uint8_t *) dst->data - dst_buf->base;
|
|
bufs[2].size = ggml_nbytes(dst);
|
|
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
|
|
|
|
// Primary DSP session from the src0 tensor
|
|
ggml_hexagon_session * sess = src0_buf->sess;
|
|
|
|
if (opt_verbose) {
|
|
char dims[64 * GGML_MAX_SRC];
|
|
char strides[16 * GGML_MAX_SRC];
|
|
char types[16 * GGML_MAX_SRC];
|
|
char buffs[64 * GGML_MAX_SRC];
|
|
char names[64 * GGML_MAX_SRC];
|
|
|
|
hex_format_op_dims(dims, op);
|
|
hex_format_op_strides(strides, op);
|
|
hex_format_op_types(types, op);
|
|
hex_format_op_buffs(buffs, op);
|
|
hex_format_op_names(names, op);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(),
|
|
ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags);
|
|
if (opt_verbose > 1) {
|
|
hex_dump_dspbuf(src0, &bufs[0]);
|
|
hex_dump_dspbuf(src1, &bufs[1]);
|
|
hex_dump_dspbuf(dst, &bufs[2]);
|
|
}
|
|
}
|
|
|
|
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
|
|
// Bump pending flag (cleared in the callback once we get the responce)
|
|
sess->op_pending++; // atomic inc
|
|
|
|
int err = dspqueue_write(sess->queue,
|
|
0, // flags - the framework will autoset this
|
|
3, // number of buffers
|
|
bufs, // buffer references
|
|
sizeof(req),
|
|
(const uint8_t *) &req, // Message
|
|
1000000); // Timeout
|
|
|
|
if (0 != err) {
|
|
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (opt_opsync) {
|
|
while (sess->op_pending) {
|
|
;
|
|
}
|
|
}
|
|
|
|
t2 = ggml_time_us();
|
|
|
|
HEX_PROFILE(
|
|
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) "
|
|
"call-usec %llu\n",
|
|
sess->name.c_str(), ggml_op_name(node->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
|
|
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
|
|
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
|
|
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
|
|
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
|
|
}
|
|
|
|
static void ggml_hexagon_add_id(const struct ggml_tensor * op, uint32_t flags) {
|
|
const struct ggml_tensor * node = op;
|
|
const struct ggml_tensor * src0 = node->src[0];
|
|
const struct ggml_tensor * src1 = node->src[1];
|
|
const struct ggml_tensor * src2 = node->src[2];
|
|
const struct ggml_tensor * dst = node;
|
|
|
|
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
|
|
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
|
|
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
|
|
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
|
|
|
|
uint64_t t1 = 0;
|
|
uint64_t t2 = 0;
|
|
|
|
t1 = ggml_time_us();
|
|
|
|
// Construct HTP message
|
|
htp_general_req req;
|
|
req.flags = flags;
|
|
|
|
// Use opmask to override flags
|
|
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
|
|
}
|
|
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
|
|
}
|
|
|
|
switch (node->op) {
|
|
case GGML_OP_ADD_ID:
|
|
req.op = HTP_OP_ADD_ID;
|
|
break;
|
|
default:
|
|
GGML_ABORT("ggml-hex: unsupported op:%d\n", node->op);
|
|
}
|
|
|
|
init_htp_tensor(&req.src0, src0);
|
|
init_htp_tensor(&req.src1, src1);
|
|
init_htp_tensor(&req.src2, src2);
|
|
init_htp_tensor(&req.dst, dst);
|
|
|
|
dspqueue_buffer bufs[4];
|
|
memset(bufs, 0, sizeof(bufs));
|
|
|
|
// First buffer = input activations
|
|
bufs[0].fd = src0_buf->fd;
|
|
bufs[0].ptr = src0->data;
|
|
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
|
|
bufs[0].size = ggml_nbytes(src0);
|
|
bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
|
|
|
|
// Second buffer = experts bias
|
|
bufs[1].fd = src1_buf->fd;
|
|
bufs[1].ptr = src1->data;
|
|
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
|
|
bufs[1].size = ggml_nbytes(src1);
|
|
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
|
|
// Third buffer = activated experts
|
|
bufs[2].fd = src2_buf->fd;
|
|
bufs[2].ptr = src2->data;
|
|
bufs[2].offset = (uint8_t *) src2->data - src2_buf->base;
|
|
bufs[2].size = ggml_nbytes(src2);
|
|
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
|
|
// Forth buffer = output activations
|
|
bufs[3].fd = dst_buf->fd;
|
|
bufs[3].ptr = dst->data;
|
|
bufs[3].offset = (uint8_t *) dst->data - dst_buf->base;
|
|
bufs[3].size = ggml_nbytes(dst);
|
|
bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
|
|
|
|
// Primary DSP session from the src0 tensor
|
|
ggml_hexagon_session * sess = src0_buf->sess;
|
|
|
|
if (opt_verbose) {
|
|
char dims[64 * GGML_MAX_SRC];
|
|
char strides[16 * GGML_MAX_SRC];
|
|
char types[16 * GGML_MAX_SRC];
|
|
char buffs[64 * GGML_MAX_SRC];
|
|
char names[64 * GGML_MAX_SRC];
|
|
|
|
hex_format_op_dims(dims, op);
|
|
hex_format_op_strides(strides, op);
|
|
hex_format_op_types(types, op);
|
|
hex_format_op_buffs(buffs, op);
|
|
hex_format_op_names(names, op);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(),
|
|
ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags);
|
|
|
|
if (opt_verbose > 1) {
|
|
hex_dump_dspbuf(src0, &bufs[0]);
|
|
hex_dump_dspbuf(src1, &bufs[1]);
|
|
hex_dump_dspbuf(src2, &bufs[2]);
|
|
hex_dump_dspbuf(dst, &bufs[3]);
|
|
}
|
|
}
|
|
|
|
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
|
|
// Bump pending flag (cleared in the callback once we get the responce)
|
|
sess->op_pending++; // atomic inc
|
|
|
|
int err = dspqueue_write(sess->queue,
|
|
0, // flags - the framework will autoset this
|
|
4, // number of buffers
|
|
bufs, // buffer references
|
|
sizeof(req),
|
|
(const uint8_t *) &req, // Message
|
|
1000000); // Timeout
|
|
|
|
if (0 != err) {
|
|
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (opt_opsync) {
|
|
while (sess->op_pending) {
|
|
;
|
|
}
|
|
}
|
|
|
|
t2 = ggml_time_us();
|
|
|
|
HEX_PROFILE(
|
|
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) "
|
|
"call-usec %llu\n",
|
|
sess->name.c_str(), ggml_op_name(node->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
|
|
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
|
|
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
|
|
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
|
|
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
|
|
}
|
|
|
|
static void ggml_hexagon_unary(const struct ggml_tensor * op, uint32_t flags) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
uint64_t t1 = 0;
|
|
uint64_t t2 = 0;
|
|
|
|
t1 = ggml_time_us();
|
|
|
|
// Construct HTP message
|
|
htp_general_req req;
|
|
|
|
memset(&req, 0, sizeof(htp_general_req));
|
|
memcpy(&req.op_params, &op->op_params, sizeof(op->op_params));
|
|
req.flags = flags;
|
|
|
|
bool supported = false;
|
|
|
|
switch (op->op) {
|
|
case GGML_OP_RMS_NORM:
|
|
req.op = HTP_OP_RMS_NORM;
|
|
supported = true;
|
|
break;
|
|
|
|
case GGML_OP_UNARY:
|
|
if (ggml_get_unary_op(dst) == GGML_UNARY_OP_SILU) {
|
|
req.op = HTP_OP_UNARY_SILU;
|
|
supported = true;
|
|
}
|
|
break;
|
|
|
|
case GGML_OP_GLU:
|
|
if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU) {
|
|
req.op = HTP_OP_GLU_SWIGLU;
|
|
supported = true;
|
|
} else if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
|
|
req.op = HTP_OP_GLU_SWIGLU_OAI;
|
|
supported = true;
|
|
}
|
|
break;
|
|
|
|
case GGML_OP_SOFT_MAX:
|
|
req.op = HTP_OP_SOFTMAX;
|
|
supported = true;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!supported) {
|
|
GGML_ABORT("ggml-hex: unary : unsupported op:%d\n", op->op);
|
|
}
|
|
|
|
init_htp_tensor(&req.dst, dst);
|
|
init_htp_tensor(&req.src0, src0);
|
|
if (src1) {
|
|
init_htp_tensor(&req.src1, src1);
|
|
}
|
|
|
|
// Use opmask to override flags
|
|
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
|
|
}
|
|
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
|
|
}
|
|
|
|
dspqueue_buffer bufs[3];
|
|
int n_bufs = 0;
|
|
|
|
memset(bufs, 0, sizeof(bufs));
|
|
|
|
// First buffer = Only Operand of Unary op
|
|
// This is a buffer that the CPU writes and the DSP reads, so we'll
|
|
// need to flush CPU caches and invalidate DSP ones. On platforms
|
|
// with I/O coherency support the framework will automatically skip
|
|
// cache operations where possible.
|
|
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
|
|
bufs[n_bufs].fd = src0_buf->fd;
|
|
bufs[n_bufs].ptr = src0->data;
|
|
bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base;
|
|
bufs[n_bufs].size = ggml_nbytes(src0);
|
|
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
|
|
++n_bufs;
|
|
|
|
if (src1) {
|
|
// Second buffer = Second Operand of Binary op
|
|
// This is a buffer that the CPU writes and the DSP reads, so we'll
|
|
// need to flush CPU caches and invalidate DSP ones. On platforms
|
|
// with I/O coherency support the framework will automatically skip
|
|
// cache operations where possible.
|
|
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
|
|
bufs[n_bufs].fd = src1_buf->fd;
|
|
bufs[n_bufs].ptr = src1->data;
|
|
bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base;
|
|
bufs[n_bufs].size = ggml_nbytes(src1);
|
|
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
++n_bufs;
|
|
}
|
|
|
|
// Second or third buffer = Output Activations. We'll handle DSP
|
|
// Second buffer = Output Activations. We'll handle DSP
|
|
// cache maintenance in the response message but need to flush
|
|
// CPU caches to ensure any previously written dirty lines are
|
|
// written out before writes from the DSP start.
|
|
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
|
|
bufs[n_bufs].fd = dst_buf->fd;
|
|
bufs[n_bufs].ptr = dst->data;
|
|
bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base;
|
|
bufs[n_bufs].size = ggml_nbytes(dst);
|
|
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
|
|
++n_bufs;
|
|
|
|
// Primary DSP session from the src0 tensor
|
|
ggml_hexagon_session * sess = src0_buf->sess;
|
|
|
|
if (opt_verbose) {
|
|
char dims[64 * GGML_MAX_SRC];
|
|
char strides[64 * GGML_MAX_SRC];
|
|
char types[16 * GGML_MAX_SRC];
|
|
char buffs[64 * GGML_MAX_SRC];
|
|
char names[64 * GGML_MAX_SRC];
|
|
|
|
hex_format_op_dims(dims, op);
|
|
hex_format_op_strides(strides, op);
|
|
hex_format_op_types(types, op);
|
|
hex_format_op_buffs(buffs, op);
|
|
hex_format_op_names(names, op);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
|
|
names, dims, types, strides, buffs, req.flags);
|
|
if (opt_verbose > 1) {
|
|
hex_dump_dspbuf(src0, &bufs[0]);
|
|
if (src1) {
|
|
hex_dump_dspbuf(src1, &bufs[1]);
|
|
hex_dump_dspbuf(dst, &bufs[2]);
|
|
} else {
|
|
hex_dump_dspbuf(dst, &bufs[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
|
|
// Bump pending flag (cleared in the callback once we get the responce)
|
|
sess->op_pending++; // atomic inc
|
|
|
|
int err = dspqueue_write(sess->queue,
|
|
0, // flags - the framework will autoset this
|
|
n_bufs, // number of buffers
|
|
bufs, // buffer references
|
|
sizeof(req),
|
|
(const uint8_t *) &req, // Message
|
|
1000000); // Timeout
|
|
|
|
if (0 != err) {
|
|
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (opt_opsync) {
|
|
while (sess->op_pending) {
|
|
;
|
|
}
|
|
}
|
|
|
|
t2 = ggml_time_us();
|
|
|
|
if (src1) {
|
|
HEX_PROFILE(
|
|
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u "
|
|
"(%f) call-usec %llu\n",
|
|
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
|
|
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
|
|
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
|
|
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
|
|
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
|
|
} else {
|
|
HEX_PROFILE(
|
|
"ggml-hex: %s %s %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) call-usec "
|
|
"%llu\n",
|
|
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
|
|
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
|
|
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
|
|
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
|
|
}
|
|
}
|
|
|
|
static void ggml_hexagon_rope(const struct ggml_tensor * op, uint32_t flags) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * src2 = op->src[2];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
uint64_t t1 = 0;
|
|
uint64_t t2 = 0;
|
|
|
|
t1 = ggml_time_us();
|
|
|
|
// Construct HTP message
|
|
htp_general_req req;
|
|
|
|
memset(&req, 0, sizeof(htp_general_req));
|
|
memcpy(&req.op_params, &op->op_params, sizeof(op->op_params));
|
|
req.flags = flags;
|
|
req.op = HTP_OP_ROPE;
|
|
|
|
init_htp_tensor(&req.dst, dst);
|
|
init_htp_tensor(&req.src0, src0);
|
|
init_htp_tensor(&req.src1, src1);
|
|
if (src2) {
|
|
init_htp_tensor(&req.src2, src2);
|
|
}
|
|
|
|
// Use opmask to override flags
|
|
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
|
|
}
|
|
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
|
|
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
|
|
}
|
|
|
|
dspqueue_buffer bufs[4];
|
|
int n_bufs = 0;
|
|
|
|
memset(bufs, 0, sizeof(bufs));
|
|
|
|
// First buffer
|
|
// This is a buffer that the CPU writes and the DSP reads, so we'll
|
|
// need to flush CPU caches and invalidate DSP ones. On platforms
|
|
// with I/O coherency support the framework will automatically skip
|
|
// cache operations where possible.
|
|
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
|
|
bufs[n_bufs].fd = src0_buf->fd;
|
|
bufs[n_bufs].ptr = src0->data;
|
|
bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base;
|
|
bufs[n_bufs].size = ggml_nbytes(src0);
|
|
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
|
|
++n_bufs;
|
|
|
|
// Second buffer
|
|
// This is a buffer that the CPU writes and the DSP reads, so we'll
|
|
// need to flush CPU caches and invalidate DSP ones. On platforms
|
|
// with I/O coherency support the framework will automatically skip
|
|
// cache operations where possible.
|
|
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
|
|
bufs[n_bufs].fd = src1_buf->fd;
|
|
bufs[n_bufs].ptr = src1->data;
|
|
bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base;
|
|
bufs[n_bufs].size = ggml_nbytes(src1);
|
|
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
++n_bufs;
|
|
|
|
if (src2) {
|
|
// Third buffer
|
|
// This is a buffer that the CPU writes and the DSP reads, so we'll
|
|
// need to flush CPU caches and invalidate DSP ones. On platforms
|
|
// with I/O coherency support the framework will automatically skip
|
|
// cache operations where possible.
|
|
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
|
|
bufs[n_bufs].fd = src2_buf->fd;
|
|
bufs[n_bufs].ptr = src2->data;
|
|
bufs[n_bufs].offset = (uint8_t *) src2->data - src2_buf->base;
|
|
bufs[n_bufs].size = ggml_nbytes(src2);
|
|
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
|
|
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
|
|
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
|
|
++n_bufs;
|
|
}
|
|
|
|
// Final buffer = Output Activations. We'll handle DSP
|
|
// Second buffer = Output Activations. We'll handle DSP
|
|
// cache maintenance in the response message but need to flush
|
|
// CPU caches to ensure any previously written dirty lines are
|
|
// written out before writes from the DSP start.
|
|
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
|
|
bufs[n_bufs].fd = dst_buf->fd;
|
|
bufs[n_bufs].ptr = dst->data;
|
|
bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base;
|
|
bufs[n_bufs].size = ggml_nbytes(dst);
|
|
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
|
|
++n_bufs;
|
|
|
|
// Primary DSP session from the src0 tensor
|
|
ggml_hexagon_session * sess = src0_buf->sess;
|
|
|
|
if (opt_verbose) {
|
|
char dims[64 * GGML_MAX_SRC];
|
|
char strides[64 * GGML_MAX_SRC];
|
|
char types[16 * GGML_MAX_SRC];
|
|
char buffs[64 * GGML_MAX_SRC];
|
|
char names[64 * GGML_MAX_SRC];
|
|
|
|
hex_format_op_dims(dims, op);
|
|
hex_format_op_strides(strides, op);
|
|
hex_format_op_types(types, op);
|
|
hex_format_op_buffs(buffs, op);
|
|
hex_format_op_names(names, op);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
|
|
names, dims, types, strides, buffs, req.flags);
|
|
if (opt_verbose > 1) {
|
|
hex_dump_dspbuf(src0, &bufs[0]);
|
|
if (src1) {
|
|
hex_dump_dspbuf(src1, &bufs[1]);
|
|
hex_dump_dspbuf(dst, &bufs[2]);
|
|
} else {
|
|
hex_dump_dspbuf(dst, &bufs[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
|
|
// Bump pending flag (cleared in the callback once we get the responce)
|
|
sess->op_pending++; // atomic inc
|
|
|
|
int err = dspqueue_write(sess->queue,
|
|
0, // flags - the framework will autoset this
|
|
n_bufs, // number of buffers
|
|
bufs, // buffer references
|
|
sizeof(req),
|
|
(const uint8_t *) &req, // Message
|
|
1000000); // Timeout
|
|
|
|
if (0 != err) {
|
|
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
|
|
}
|
|
}
|
|
|
|
if (opt_opsync) {
|
|
while (sess->op_pending) {
|
|
;
|
|
}
|
|
}
|
|
|
|
t2 = ggml_time_us();
|
|
|
|
if (src2) {
|
|
HEX_PROFILE(
|
|
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles "
|
|
"%u op-pkts %u (%f) call-usec %llu\n",
|
|
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
|
|
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
|
|
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], src2->name, (uint32_t) src2->ne[0], (uint32_t) src2->ne[1],
|
|
(uint32_t) src2->ne[2], (uint32_t) src2->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
|
|
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
|
|
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
|
|
} else {
|
|
HEX_PROFILE(
|
|
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u "
|
|
"(%f) call-usec %llu\n",
|
|
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
|
|
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
|
|
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
|
|
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
|
|
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
|
|
}
|
|
}
|
|
|
|
static const char * ggml_backend_hexagon_name(ggml_backend_t backend) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(backend->context);
|
|
return sess->name.c_str();
|
|
}
|
|
|
|
static void ggml_backend_hexagon_free(ggml_backend_t backend) {
|
|
// we just need to delete the backend here
|
|
// the sessions are allocated & freed as part of the registry
|
|
delete backend;
|
|
}
|
|
|
|
static inline bool op_reuse_src1(const ggml_tensor * op1, const ggml_tensor * op0) {
|
|
return (op0 && op0->src[1] == op1->src[1]);
|
|
}
|
|
|
|
// scan the graph and figure out last compute op index
|
|
static inline int last_compute_op(ggml_cgraph * graph) {
|
|
int last;
|
|
for (int i = 0; i < graph->n_nodes; ++i) {
|
|
ggml_tensor * node = graph->nodes[i];
|
|
|
|
switch (node->op) {
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_SUB:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_GLU:
|
|
case GGML_OP_ADD_ID:
|
|
last = i;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return last;
|
|
}
|
|
|
|
static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(backend->context);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s graph-compute n_nodes %d\n", sess->name.c_str(), graph->n_nodes);
|
|
|
|
const int last = last_compute_op(graph);
|
|
|
|
const struct ggml_tensor * prev_quant_op = nullptr; // prev executed op with quantizer
|
|
|
|
for (int i = 0; i < graph->n_nodes; ++i) {
|
|
ggml_tensor * node = graph->nodes[i];
|
|
|
|
uint32_t flags = 0;
|
|
|
|
// skip quantizer if src1 is reused
|
|
if (op_reuse_src1(node, prev_quant_op)) {
|
|
flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
|
|
}
|
|
|
|
// ask for early notification for the last Op
|
|
if (i == last) {
|
|
flags |= HTP_OPFLAGS_EARLY_WAKEUP;
|
|
}
|
|
|
|
switch (node->op) {
|
|
case GGML_OP_MUL_MAT:
|
|
ggml_hexagon_mul_mat(node, flags);
|
|
prev_quant_op = node;
|
|
break;
|
|
case GGML_OP_MUL_MAT_ID:
|
|
ggml_hexagon_mul_mat_id(node, flags);
|
|
prev_quant_op = node;
|
|
break;
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_SUB:
|
|
ggml_hexagon_binary(node, flags);
|
|
break;
|
|
case GGML_OP_ADD_ID:
|
|
ggml_hexagon_add_id(node, flags);
|
|
break;
|
|
case GGML_OP_RMS_NORM:
|
|
ggml_hexagon_unary(node, flags);
|
|
break;
|
|
case GGML_OP_UNARY:
|
|
if (ggml_get_unary_op(node) == GGML_UNARY_OP_SILU) {
|
|
ggml_hexagon_unary(node, flags);
|
|
}
|
|
break;
|
|
case GGML_OP_GLU:
|
|
if ((ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU) ||
|
|
(ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU_OAI)) {
|
|
ggml_hexagon_unary(node, flags);
|
|
}
|
|
break;
|
|
case GGML_OP_SOFT_MAX:
|
|
ggml_hexagon_unary(node, flags);
|
|
break;
|
|
|
|
case GGML_OP_ROPE:
|
|
ggml_hexagon_rope(node, flags);
|
|
break;
|
|
|
|
// non-compute ops
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
break;
|
|
|
|
default:
|
|
GGML_ABORT("\nggml-hex: graph-compute %s is not supported\n", ggml_op_desc(node));
|
|
}
|
|
}
|
|
|
|
// Wait until all pending ops complete
|
|
while (sess->op_pending) {
|
|
;
|
|
}
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
}
|
|
|
|
static void ggml_backend_hexagon_synchronize(ggml_backend_t backend) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(backend->context);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s synchronize\n", sess->name.c_str());
|
|
|
|
// Wait until all pending ops complete
|
|
while (sess->op_pending) {
|
|
;
|
|
}
|
|
}
|
|
|
|
struct node_info {
|
|
ggml_tensor * node;
|
|
|
|
std::vector<ggml_tensor *> fused;
|
|
|
|
ggml_op op() const {
|
|
return node->op;
|
|
}
|
|
|
|
const ggml_tensor * dst() const {
|
|
return fused.empty() ? node : fused.back();
|
|
}
|
|
|
|
const ggml_tensor * src0() const {
|
|
return node->src[0];
|
|
}
|
|
|
|
const ggml_tensor * src1() const {
|
|
return node->src[1];
|
|
}
|
|
|
|
bool is_empty() const {
|
|
return ggml_op_is_empty(node->op);
|
|
}
|
|
|
|
void add_fused(ggml_tensor * t) {
|
|
fused.push_back(t);
|
|
}
|
|
|
|
bool stackable() const {
|
|
switch (this->op()) {
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
return ggml_is_quantized(this->src0()->type);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool same_input(const node_info& n) const {
|
|
return n.src1() == this->src1();
|
|
}
|
|
};
|
|
|
|
static std::vector<int> ggml_hexagon_graph_optimize_reorder(const std::vector<node_info> & nodes) {
|
|
const int n = nodes.size();
|
|
|
|
std::vector<int> res;
|
|
res.reserve(n);
|
|
|
|
std::vector<bool> used(n, false);
|
|
|
|
// The main goal here is to stack the MUL_MAT ops with the same src1 input.
|
|
// This allows use to reuse dynamically quantized src1 in VTCM.
|
|
|
|
// TODO: the current version might do incorrect reodering in cases where quantized src0
|
|
// input is an output of another Op.
|
|
|
|
for (int i0 = 0; i0 < n; i0++) {
|
|
if (used[i0]) {
|
|
continue;
|
|
}
|
|
|
|
res.push_back(i0);
|
|
|
|
const auto & node0 = nodes[i0];
|
|
|
|
if (!node0.stackable()) {
|
|
continue;
|
|
}
|
|
|
|
// that many nodes forward to search for stackable nodes that can reuse VTCM
|
|
constexpr int N_FORWARD = 8;
|
|
|
|
for (int i1 = i0 + 1; i1 < i0 + N_FORWARD && i1 < n; i1++) {
|
|
if (used[i1]) {
|
|
continue;
|
|
}
|
|
|
|
const auto & node1 = nodes[i1];
|
|
|
|
if (node1.stackable() && node1.same_input(node0)) {
|
|
res.push_back(i1);
|
|
used[i1] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static void ggml_backend_hexagon_graph_optimize(ggml_backend_t backend, ggml_cgraph * gf) {
|
|
const int n = gf->n_nodes;
|
|
|
|
constexpr int MAX_FUSE = 16;
|
|
|
|
enum ggml_op ops[MAX_FUSE];
|
|
|
|
std::vector<node_info> nodes;
|
|
nodes.reserve(gf->n_nodes);
|
|
|
|
// fuse nodes:
|
|
// we don't want to make reorders that break fusing, so we first pack all fusable tensors
|
|
// and perform the reorder over the fused nodes. after the reorder is done, we unfuse
|
|
for (int i = 0; i < n; i++) {
|
|
node_info node = {
|
|
/*.node =*/ gf->nodes[i],
|
|
/*.fused =*/ {},
|
|
};
|
|
|
|
// fuse only ops that start with these operations
|
|
// can be expanded when needed
|
|
if (node.op() == GGML_OP_ADD ||
|
|
node.op() == GGML_OP_NORM ||
|
|
node.op() == GGML_OP_RMS_NORM) {
|
|
ops[0] = node.op();
|
|
|
|
int f = i + 1;
|
|
while (f < n && f < i + MAX_FUSE) {
|
|
// conservatively allow fusing only these ops
|
|
// can be expanded when needed
|
|
if (gf->nodes[f]->op != GGML_OP_ADD &&
|
|
gf->nodes[f]->op != GGML_OP_MUL &&
|
|
gf->nodes[f]->op != GGML_OP_NORM &&
|
|
gf->nodes[f]->op != GGML_OP_RMS_NORM) {
|
|
break;
|
|
}
|
|
ops[f - i] = gf->nodes[f]->op;
|
|
f++;
|
|
}
|
|
|
|
f -= i;
|
|
for (; f > 1; f--) {
|
|
if (ggml_can_fuse(gf, i, ops, f)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// add the fused tensors into the node info so we can unfuse them later
|
|
for (int k = 1; k < f; k++) {
|
|
++i;
|
|
|
|
// the .dst() becomes the last fused tensor
|
|
node.add_fused(gf->nodes[i]);
|
|
}
|
|
}
|
|
|
|
nodes.push_back(std::move(node));
|
|
}
|
|
|
|
const auto order = ggml_hexagon_graph_optimize_reorder(nodes);
|
|
|
|
// unfuse
|
|
{
|
|
int j = 0;
|
|
for (const auto i : order) {
|
|
const auto & node = nodes[i];
|
|
|
|
gf->nodes[j++] = node.node;
|
|
|
|
for (auto * fused : node.fused) {
|
|
gf->nodes[j++] = fused;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct ggml_backend_i hexagon_backend_i = {
|
|
/* .get_name = */ ggml_backend_hexagon_name,
|
|
/* .free = */ ggml_backend_hexagon_free,
|
|
/* .set_tensor_async = */ NULL,
|
|
/* .get_tensor_async = */ NULL,
|
|
/* .cpy_tensor_async = */ NULL,
|
|
/* .synchronize = */ ggml_backend_hexagon_synchronize,
|
|
/* .graph_plan_create = */ NULL,
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_update = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_hexagon_graph_compute,
|
|
/* .event_record = */ NULL,
|
|
/* .event_wait = */ NULL,
|
|
/* .graph_optimize = */ ggml_backend_hexagon_graph_optimize,
|
|
};
|
|
|
|
static ggml_guid_t ggml_backend_hexagon_guid() {
|
|
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49,
|
|
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11 };
|
|
return &guid;
|
|
}
|
|
|
|
bool ggml_backend_is_hexagon(ggml_backend_t backend) {
|
|
return backend && backend->iface.get_name == ggml_backend_hexagon_name;
|
|
}
|
|
|
|
// device interface
|
|
|
|
static ggml_backend_t ggml_backend_hexagon_device_init(ggml_backend_dev_t dev, const char * params) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
|
|
|
|
return new ggml_backend{
|
|
/* .guid = */ ggml_backend_hexagon_guid(),
|
|
/* .interface = */ hexagon_backend_i,
|
|
/* .device = */ dev,
|
|
/* .context = */ sess,
|
|
};
|
|
|
|
GGML_UNUSED(params);
|
|
}
|
|
|
|
static const char * ggml_backend_hexagon_device_get_name(ggml_backend_dev_t dev) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
|
|
return sess->name.c_str();
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static const char * ggml_backend_hexagon_device_get_description(ggml_backend_dev_t dev) {
|
|
return "Hexagon";
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static void ggml_backend_hexagon_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
|
// ~2GB per session for now
|
|
*free = 2ULL * 1024 * 1024 * 1024;
|
|
*total = *free;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static enum ggml_backend_dev_type ggml_backend_hexagon_device_get_type(ggml_backend_dev_t dev) {
|
|
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static void ggml_backend_hexagon_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
|
props->name = ggml_backend_hexagon_device_get_name(dev);
|
|
props->description = ggml_backend_hexagon_device_get_description(dev);
|
|
props->type = ggml_backend_hexagon_device_get_type(dev);
|
|
ggml_backend_hexagon_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
|
props->caps = {
|
|
/* .async = */ true,
|
|
/* .host_buffer = */ (bool) opt_hostbuf,
|
|
/* .buffer_from_host_ptr = */ false,
|
|
/* .events = */ false,
|
|
};
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_hexagon_device_get_buffer_type(ggml_backend_dev_t dev) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
|
|
return &sess->buffer_type;
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_hexagon_device_get_repack_buffer_type(ggml_backend_dev_t dev) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
|
|
return &sess->repack_buffer_type;
|
|
}
|
|
|
|
static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
|
|
|
|
bool supp = false;
|
|
|
|
switch (op->op) {
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
supp = true;
|
|
break;
|
|
|
|
case GGML_OP_MUL_MAT:
|
|
supp = ggml_hexagon_supported_mul_mat(sess, op);
|
|
break;
|
|
|
|
case GGML_OP_MUL_MAT_ID:
|
|
supp = ggml_hexagon_supported_mul_mat_id(sess, op);
|
|
break;
|
|
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_SUB:
|
|
supp = ggml_hexagon_supported_binary(sess, op);
|
|
break;
|
|
|
|
case GGML_OP_ADD_ID:
|
|
supp = ggml_hexagon_supported_add_id(sess, op);
|
|
break;
|
|
|
|
case GGML_OP_RMS_NORM:
|
|
supp = ggml_hexagon_supported_unary(sess, op);
|
|
break;
|
|
|
|
case GGML_OP_SOFT_MAX:
|
|
supp = ggml_hexagon_supported_softmax(sess, op);
|
|
break;
|
|
|
|
case GGML_OP_UNARY:
|
|
if (ggml_get_unary_op(op) == GGML_UNARY_OP_SILU) {
|
|
supp = ggml_hexagon_supported_activations(sess, op);
|
|
}
|
|
break;
|
|
|
|
case GGML_OP_GLU:
|
|
if ((ggml_get_glu_op(op) == GGML_GLU_OP_SWIGLU) /* || (ggml_get_glu_op(op) == GGML_GLU_OP_SWIGLU_OAI) */) {
|
|
supp = ggml_hexagon_supported_activations(sess, op);
|
|
}
|
|
break;
|
|
|
|
case GGML_OP_ROPE:
|
|
supp = ggml_hexagon_supported_rope(sess, op);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (opt_verbose) {
|
|
char dims[64 * GGML_MAX_SRC];
|
|
char strides[64 * GGML_MAX_SRC];
|
|
char types[16 * GGML_MAX_SRC];
|
|
char buffs[64 * GGML_MAX_SRC];
|
|
char names[64 * GGML_MAX_SRC];
|
|
|
|
hex_format_op_dims(dims, op);
|
|
hex_format_op_strides(strides, op);
|
|
hex_format_op_types(types, op);
|
|
hex_format_op_buffs(buffs, op);
|
|
hex_format_op_names(names, op);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s device-supports-op %s : %s : %s : %s : %s : %s : (%d)\n", sess->name.c_str(),
|
|
ggml_op_name(op->op), names, dims, types, strides, buffs, (int) supp);
|
|
}
|
|
|
|
return supp;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static bool ggml_backend_hexagon_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
|
if (buft->iface.get_alignment != ggml_backend_hexagon_buffer_type_get_alignment) {
|
|
return false;
|
|
}
|
|
|
|
auto s0 = static_cast<ggml_hexagon_session *>(dev->context);
|
|
auto s1 = static_cast<ggml_backend_hexagon_buffer_type_context *>(buft->context)->sess;
|
|
|
|
// Need session/domain-id for buffers to be compatible
|
|
bool supp = (s0->session_id == s1->session_id);
|
|
|
|
HEX_VERBOSE("ggml-hex: %s device-supports-buft %s (%d)\n", s0->name.c_str(), s1->name.c_str(), (int) supp);
|
|
|
|
return supp;
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t * ggml_backend_hexagon_device_get_extra_buffers_type(ggml_backend_dev_t dev) {
|
|
auto s0 = static_cast<ggml_hexagon_session *>(dev->context);
|
|
HEX_VERBOSE("ggml-hex: device-get-extra-buft : %s \n", s0->name.c_str());
|
|
|
|
static ggml_backend_buffer_type_t bufts[2];
|
|
bufts[0] = ggml_backend_hexagon_device_get_repack_buffer_type(dev);
|
|
bufts[1] = NULL;
|
|
return bufts;
|
|
}
|
|
|
|
static const struct ggml_backend_device_i ggml_backend_hexagon_device_i = {
|
|
/* .get_name = */ ggml_backend_hexagon_device_get_name,
|
|
/* .get_description = */ ggml_backend_hexagon_device_get_description,
|
|
/* .get_memory = */ ggml_backend_hexagon_device_get_memory,
|
|
/* .get_type = */ ggml_backend_hexagon_device_get_type,
|
|
/* .get_props = */ ggml_backend_hexagon_device_get_props,
|
|
/* .init_backend = */ ggml_backend_hexagon_device_init,
|
|
/* .get_buffer_type = */ ggml_backend_hexagon_device_get_buffer_type,
|
|
/* .get_host_buffer_type = */ NULL, // ggml_backend_hexagon_device_get_host_buffer_type,
|
|
/* .buffer_from_host_ptr = */ NULL, // ggml_backend_hexagon_device_buffer_from_ptr,
|
|
/* .supports_op = */ ggml_backend_hexagon_device_supports_op,
|
|
/* .supports_buft = */ ggml_backend_hexagon_device_supports_buft,
|
|
/* .offload_op = */ NULL, // ggml_backend_hexagon_device_offload_op,
|
|
/* .event_new = */ NULL,
|
|
/* .event_free = */ NULL,
|
|
/* .event_synchronize = */ NULL,
|
|
};
|
|
|
|
//** backend registry
|
|
|
|
#define GGML_HEXAGON_MAX_SESSIONS 16
|
|
|
|
struct ggml_hexagon_registry {
|
|
ggml_hexagon_registry(ggml_backend_reg_t reg);
|
|
~ggml_hexagon_registry();
|
|
|
|
ggml_backend_device devices[GGML_HEXAGON_MAX_SESSIONS];
|
|
};
|
|
|
|
ggml_hexagon_registry::ggml_hexagon_registry(ggml_backend_reg_t reg) {
|
|
GGML_LOG_INFO("ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev %zu\n", opt_ndev);
|
|
|
|
if (!opt_arch) {
|
|
int err = get_hex_arch_ver(CDSP_DOMAIN_ID, &opt_arch);
|
|
if (err != 0) {
|
|
GGML_LOG_ERROR("ggml-hex: failed to query HTP version (err %d) defaulting to v73\n", err);
|
|
opt_arch = 73;
|
|
}
|
|
}
|
|
|
|
GGML_LOG_INFO("ggml-hex: Hexagon Arch version v%d\n", opt_arch);
|
|
|
|
// Create devices / sessions
|
|
for (size_t i = 0; i < opt_ndev; i++) {
|
|
devices[i].iface = ggml_backend_hexagon_device_i;
|
|
devices[i].reg = reg;
|
|
try {
|
|
devices[i].context = new ggml_hexagon_session(i);
|
|
} catch (std::exception const &exc) {
|
|
GGML_LOG_ERROR("ggml-hex: failed to create device/session %zu\n", i);
|
|
devices[i].context = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_hexagon_registry::~ggml_hexagon_registry() {
|
|
GGML_LOG_INFO("ggml-hex: releasing registry\n");
|
|
|
|
// Release devices / sessions
|
|
for (size_t i = 0; i < opt_ndev; i++) {
|
|
auto sess = static_cast<ggml_hexagon_session *>(devices[i].context);
|
|
delete sess;
|
|
}
|
|
}
|
|
|
|
static const char * ggml_backend_hexagon_reg_get_name(ggml_backend_reg_t reg) {
|
|
return "HTP";
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static size_t ggml_backend_hexagon_reg_get_device_count(ggml_backend_reg_t reg) {
|
|
return opt_ndev;
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static ggml_backend_dev_t ggml_backend_hexagon_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
|
auto hreg = static_cast<ggml_hexagon_registry *>(reg->context);
|
|
|
|
if (index >= opt_ndev || !hreg->devices[index].context) {
|
|
return nullptr;
|
|
}
|
|
|
|
return &hreg->devices[index];
|
|
}
|
|
|
|
static void * ggml_backend_hexagon_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
|
if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
|
|
ggml_backend_dev_get_extra_bufts_t fct = ggml_backend_hexagon_device_get_extra_buffers_type;
|
|
return (void *) fct;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void ggml_hexagon_init(ggml_backend_reg * reg) {
|
|
// Basic sanity checks to make sure definitions match
|
|
static_assert((unsigned int) HTP_TYPE_Q4_0 == (unsigned int) GGML_TYPE_Q4_0,
|
|
"please update hexagon_type to match ggml_type");
|
|
static_assert((unsigned int) HTP_TYPE_Q8_0 == (unsigned int) GGML_TYPE_Q8_0,
|
|
"please update hexagon_type to match ggml_type");
|
|
static_assert((unsigned int) HTP_TYPE_MXFP4 == (unsigned int) GGML_TYPE_MXFP4,
|
|
"please update hexagon_type to match ggml_type");
|
|
|
|
const char * str_verbose = getenv("GGML_HEXAGON_VERBOSE");
|
|
const char * str_hostbuf = getenv("GGML_HEXAGON_HOSTBUF");
|
|
|
|
opt_verbose = str_verbose ? atoi(str_verbose) : 0;
|
|
opt_profile = getenv("GGML_HEXAGON_PROFILE") != nullptr;
|
|
opt_etm = getenv("GGML_HEXAGON_ETM") != nullptr;
|
|
opt_experimental = getenv("GGML_HEXAGON_EXPERIMENTAL") != nullptr;
|
|
|
|
const char * str_opmask = getenv("GGML_HEXAGON_OPMASK");
|
|
if (str_opmask != nullptr) {
|
|
opt_opmask = strtoul(str_opmask, NULL, 0);
|
|
}
|
|
opt_opsync = getenv("GGML_HEXAGON_OPSYNC") != nullptr;
|
|
|
|
const char * str_ndev = getenv("GGML_HEXAGON_NDEV");
|
|
if (str_ndev) {
|
|
opt_ndev = strtoul(str_ndev, NULL, 0);
|
|
if (opt_ndev > GGML_HEXAGON_MAX_SESSIONS) {
|
|
opt_ndev = GGML_HEXAGON_MAX_SESSIONS;
|
|
}
|
|
}
|
|
|
|
const char * str_nhvx = getenv("GGML_HEXAGON_NHVX");
|
|
if (str_nhvx) {
|
|
opt_nhvx = strtoul(str_nhvx, NULL, 0);
|
|
}
|
|
|
|
const char * str_arch = getenv("GGML_HEXAGON_ARCH");
|
|
if (str_arch) {
|
|
if (str_arch[0] == 'v') {
|
|
str_arch++;
|
|
}
|
|
opt_arch = strtoul(str_arch, NULL, 0);
|
|
}
|
|
|
|
opt_hostbuf = str_hostbuf ? atoi(str_hostbuf) : 1;
|
|
|
|
reg->context = new ggml_hexagon_registry(reg);
|
|
|
|
HEX_VERBOSE("ggml-hex: size-of-general-req %zu size-of-general-rsp %zu\n", sizeof(struct htp_general_req),
|
|
sizeof(struct htp_general_rsp));
|
|
}
|
|
|
|
static const struct ggml_backend_reg_i ggml_backend_hexagon_reg_i = {
|
|
/* .get_name = */ ggml_backend_hexagon_reg_get_name,
|
|
/* .get_device_count = */ ggml_backend_hexagon_reg_get_device_count,
|
|
/* .get_device = */ ggml_backend_hexagon_reg_get_device,
|
|
/* .get_proc_address = */ ggml_backend_hexagon_get_proc_address,
|
|
};
|
|
|
|
ggml_backend_reg_t ggml_backend_hexagon_reg(void) {
|
|
static bool initialized = false;
|
|
|
|
static ggml_backend_reg reg = { /* .api_version = */ GGML_BACKEND_API_VERSION,
|
|
/* .iface = */ ggml_backend_hexagon_reg_i,
|
|
/* .context = */ NULL };
|
|
|
|
{
|
|
static std::mutex mutex;
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
if (!initialized) {
|
|
ggml_hexagon_init(®);
|
|
}
|
|
|
|
initialized = true;
|
|
}
|
|
|
|
return ®
|
|
}
|
|
|
|
GGML_BACKEND_DL_IMPL(ggml_backend_hexagon_reg)
|