llama.cpp/ggml/src/ggml-hexagon/ggml-hexagon.cpp

3758 lines
135 KiB
C++

#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <atomic>
#include <chrono>
#include <mutex>
#include <string>
#ifdef _WIN32
# include <sal.h>
# ifndef _WINDOWS
# define _WINDOWS
# endif
#else
# include <semaphore.h>
# include <unistd.h>
#endif
#pragma clang diagnostic ignored "-Wnested-anon-types"
#pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
#include "htp-utils.h"
#include <AEEStdErr.h>
#include <dspqueue.h>
#include <rpcmem.h>
#define GGML_COMMON_IMPL_CPP
#include "ggml-backend-impl.h"
#include "ggml-common.h"
#include "ggml-hexagon.h"
#include "ggml-impl.h"
#include "ggml-quants.h"
#include "htp-msg.h"
#include "htp_iface.h"
static size_t opt_ndev = 1;
static size_t opt_nhvx = 0; // use all
static int opt_arch = 0; // autodetect
static int opt_etm = 0;
static int opt_verbose = 0;
static int opt_profile = 0;
static int opt_hostbuf = 1;
static int opt_experimental = 0;
// Enable all stages by default
static int opt_opmask = HTP_OPMASK_QUEUE | HTP_OPMASK_QUANTIZE | HTP_OPMASK_COMPUTE;
static int opt_opsync = 0; // synchronous ops
#define HEX_VERBOSE(...) \
if (opt_verbose) GGML_LOG_DEBUG(__VA_ARGS__)
#define HEX_PROFILE(...) \
if (opt_profile) GGML_LOG_INFO(__VA_ARGS__)
static inline uint64_t hex_is_aligned(void * addr, uint32_t align) {
return ((size_t) addr & (align - 1)) == 0;
}
static inline size_t hex_round_up(size_t n, size_t m) {
return m * ((n + m - 1) / m);
}
static const char * status_to_str(uint32_t status) {
switch (status) {
case HTP_STATUS_OK:
return "OK";
case HTP_STATUS_NO_SUPPORT:
return "NO-SUPPORT";
case HTP_STATUS_INVAL_PARAMS:
return "INVAL-PARAMS";
case HTP_STATUS_VTCM_TOO_SMALL:
return "VTCM-TOO-SMALL";
case HTP_STATUS_INTERNAL_ERR:
return "INTERNAL-ERROR";
default:
return "UNKNOWN";
}
}
// ** debug helpers
static inline int hex_format_tensor_dims(char * str, const struct ggml_tensor * t) {
if (t->ne[2] == 1 && t->ne[3] == 1) {
return sprintf(str, "%d:%d", (int) t->ne[0], (int) t->ne[1]);
} else {
return sprintf(str, "%d:%d:%d:%d", (int) t->ne[0], (int) t->ne[1], (int) t->ne[2], (int) t->ne[3]);
}
}
static inline void hex_format_op_dims(char * str, const struct ggml_tensor * t) {
char * p = str;
// append src0 and src1 (if any)
if (t->src[0]) {
p += hex_format_tensor_dims(p, t->src[0]);
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
p += sprintf(p, " x ");
p += hex_format_tensor_dims(p, t->src[i]);
}
p += sprintf(p, " -> ");
}
// format self dims separately for better visual alignment
char self[64];
hex_format_tensor_dims(self, t);
p += sprintf(p, "%s", self);
}
static inline int hex_format_tensor_strides(char * str, const struct ggml_tensor * t) {
const char * c = ggml_is_contiguous(t) ? "" : "!";
if (t->ne[2] == 1 && t->ne[3] == 1) {
return sprintf(str, "%zu:%zu%s", (size_t) t->nb[0], (size_t) t->nb[1], c);
} else {
return sprintf(str, "%zu:%zu:%zu:%zu%s", (size_t) t->nb[0], (size_t) t->nb[1], (size_t) t->nb[2],
(size_t) t->nb[3], c);
}
}
static inline void hex_format_op_strides(char * str, const struct ggml_tensor * t) {
char * p = str;
// append src0 and src1 (if any)
if (t->src[0]) {
p += hex_format_tensor_strides(p, t->src[0]);
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
p += sprintf(p, " x ");
p += hex_format_tensor_strides(p, t->src[i]);
}
p += sprintf(p, " -> ");
}
// format self dims separately for better visual alignment
char self[64];
hex_format_tensor_strides(self, t);
p += sprintf(p, "%s", self);
}
static inline void hex_format_op_types(char * str, const struct ggml_tensor * t) {
char * p = str;
// append src0 and src1 (if any)
if (t->src[0]) {
p += sprintf(p, "%s", ggml_type_name(t->src[0]->type));
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
p += sprintf(p, " x ");
p += sprintf(p, "%s", ggml_type_name(t->src[i]->type));
}
p += sprintf(p, " -> ");
}
p += sprintf(p, "%s", ggml_type_name(t->type));
}
static inline const char * hex_tensor_buff_name(const struct ggml_tensor * t) {
if (t->buffer) {
return ggml_backend_buffer_name(t->buffer);
}
return "NONE";
}
static inline void hex_format_op_buffs(char * str, const struct ggml_tensor * t) {
char * p = str;
// append src0 and src1 (if any)
if (t->src[0]) {
p += sprintf(p, "%s", hex_tensor_buff_name(t->src[0]));
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
p += sprintf(p, " x ");
p += sprintf(p, "%s", hex_tensor_buff_name(t->src[i]));
}
p += sprintf(p, " -> ");
}
p += sprintf(p, "%s", hex_tensor_buff_name(t));
}
static inline void hex_format_op_names(char * str, const struct ggml_tensor * t) {
char * p = str;
// append src0 and src1 (if any)
if (t->src[0]) {
p += sprintf(p, "%s", t->src[0]->name);
for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) {
p += sprintf(p, " x ");
p += sprintf(p, "%s", t->src[i]->name);
}
p += sprintf(p, " -> ");
}
p += sprintf(p, "%s", t->name);
}
// ** backend sessions
struct ggml_hexagon_session {
ggml_hexagon_session(int dev_id) noexcept(false);
~ggml_hexagon_session() noexcept(true);
void allocate(int dev_id) noexcept(false);
void release() noexcept(true);
ggml_backend_buffer_type buffer_type;
ggml_backend_buffer_type repack_buffer_type;
std::string name;
remote_handle64 handle;
dspqueue_t queue;
uint32_t session_id;
uint32_t domain_id;
uint64_t queue_id;
int dev_id;
bool valid_session;
bool valid_handle;
bool valid_queue;
bool valid_iface;
std::atomic<int> op_pending;
uint32_t prof_usecs;
uint32_t prof_cycles;
uint32_t prof_pkts;
};
// Packet callback
static void htp_packet_callback(dspqueue_t queue, AEEResult error, void * context) {
auto sess = static_cast<ggml_hexagon_session *>(context);
// Repeatedly read packets from the queue until it's empty. We don't
// necessarily get a separate callback for each packet, and new packets
// may arrive while we're processing the previous one.
while (1) {
struct htp_general_rsp rsp;
uint32_t rsp_size;
uint32_t flags;
struct dspqueue_buffer bufs[HTP_MAX_PACKET_BUFFERS];
uint32_t n_bufs;
// Read packet from queue
int err = dspqueue_read_noblock(queue, &flags,
HTP_MAX_PACKET_BUFFERS, // Maximum number of buffer references
&n_bufs, // Number of buffer references
bufs, // Buffer references
sizeof(rsp), // Max message length
&rsp_size, // Message length
(uint8_t *) &rsp);
if (err == AEE_EWOULDBLOCK) {
// Consumed all packets available for now
return;
}
if (err != 0) {
GGML_ABORT("ggml-hex: dspqueue_read_noblock failed: 0x%08x\n", (unsigned) err);
}
// Basic sanity checks
if (rsp_size != sizeof(rsp)) {
GGML_ABORT("ggml-hex: dspcall : bad response (size)\n");
}
if (rsp.status != HTP_STATUS_OK) {
GGML_LOG_ERROR("ggml-hex: dspcall : dsp-rsp: %s\n", status_to_str(rsp.status));
// TODO: handle errors
}
// FIXME: update profiling implementation
sess->prof_usecs = rsp.prof_usecs;
sess->prof_cycles = rsp.prof_cycles;
sess->prof_pkts = rsp.prof_pkts;
sess->op_pending--; // atomic dec
}
}
// Error callback - simply terminates with an error. Used where we don't
// expect errors.
[[noreturn]] static void htp_error_callback(dspqueue_t queue, AEEResult error, void * context) {
GGML_ABORT("ggml-hex: dspcall general error 0x%x: for queue %p\n", error, (void *) queue);
}
// ** backend buffers
struct ggml_backend_hexagon_buffer_type_context {
ggml_backend_hexagon_buffer_type_context(const std::string & name, ggml_hexagon_session * sess) {
this->sess = sess;
this->name = name;
}
ggml_hexagon_session * sess;
std::string name;
};
struct ggml_backend_hexagon_buffer_context {
bool mmap_to(ggml_hexagon_session * s) {
HEX_VERBOSE("ggml-hex: %s mmaping buffer: base %p domain-id %d session-id %d size %zu fd %d repack %d\n",
s->name.c_str(), (void *) this->base, s->domain_id, s->session_id, this->size, this->fd,
(int) this->repack);
int err = fastrpc_mmap(s->domain_id, this->fd, (void *) this->base, 0, this->size, FASTRPC_MAP_FD);
if (err != 0) {
GGML_LOG_ERROR("ggml-hex: buffer mapping failed : domain_id %d size %zu fd %d error 0x%08x\n",
s->domain_id, this->size, this->fd, (unsigned) err);
return false;
}
return true;
}
bool mmap() {
if (this->mapped) {
return true;
}
if (!mmap_to(this->sess)) {
return false;
}
this->mapped = true;
return true;
}
void munmap() {
if (!this->mapped) {
return;
}
fastrpc_munmap(this->sess->domain_id, this->fd, this->base, this->size);
this->mapped = false;
}
ggml_backend_hexagon_buffer_context(ggml_hexagon_session * sess, size_t size, bool repack) {
size += 4 * 1024; // extra page for padding
this->base = (uint8_t *) rpcmem_alloc2(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
if (!this->base) {
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer : size %zu\n", sess->name.c_str(), size);
throw std::runtime_error("ggml-hex: rpcmem_alloc failed (see log for details)");
}
this->fd = rpcmem_to_fd(this->base);
if (this->fd < 0) {
GGML_LOG_ERROR("ggml-hex: %s failed to get FD for buffer %p\n", sess->name.c_str(), (void *) this->base);
rpcmem_free(this->base);
this->base = NULL;
throw std::runtime_error("ggml-hex: rpcmem_to_fd failed (see log for details)");
}
HEX_VERBOSE("ggml-hex: %s allocated buffer: base %p size %zu fd %d repack %d\n", sess->name.c_str(),
(void *) this->base, size, this->fd, (int) repack);
this->sess = sess;
this->size = size;
this->mapped = false;
this->repack = repack;
}
~ggml_backend_hexagon_buffer_context() {
munmap();
if (this->base) {
rpcmem_free(this->base);
this->base = NULL;
}
}
ggml_hexagon_session * sess; // primary session
uint8_t * base;
size_t size;
int fd;
bool mapped; // mmap is done
bool repack; // repacked buffer
};
static ggml_hexagon_session * ggml_backend_hexagon_buffer_get_sess(ggml_backend_buffer_t buffer) {
return static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer->buft->context)->sess;
}
static void ggml_backend_hexagon_buffer_free_buffer(ggml_backend_buffer_t buffer) {
auto ctx = static_cast<ggml_backend_hexagon_buffer_context *>(buffer->context);
delete ctx;
}
static void * ggml_backend_hexagon_buffer_get_base(ggml_backend_buffer_t buffer) {
auto ctx = static_cast<ggml_backend_hexagon_buffer_context *>(buffer->context);
return ctx->base;
}
static enum ggml_status ggml_backend_hexagon_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
auto ctx = static_cast<ggml_backend_hexagon_buffer_context *>(buffer->context);
auto sess = ctx->sess;
HEX_VERBOSE("ggml-hex: %s init-tensor %s : base %p data %p nbytes %zu usage %d repack %d\n", sess->name.c_str(),
tensor->name, (void *) ctx->base, tensor->data, ggml_nbytes(tensor), (int) buffer->usage,
(int) ctx->repack);
if (tensor->view_src != NULL && tensor->view_offs == 0) {
; // nothing to do for the view
} else {
if (!ctx->mapped) {
ctx->mmap();
}
}
return GGML_STATUS_SUCCESS;
}
// ======== Q4x4x2 ====================
struct x2_q4 {
int v[2];
};
static x2_q4 unpack_q4(uint8_t v) {
x2_q4 x = { (int) (v & 0x0f) - 8, (int) (v >> 4) - 8 };
return x;
}
static void dump_block_q4_0(const block_q4_0 * b, int i) {
HEX_VERBOSE("ggml-hex: repack q4_0 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, unpack_q4(b->qs[0]).v[0],
unpack_q4(b->qs[1]).v[0], unpack_q4(b->qs[2]).v[0], unpack_q4(b->qs[3]).v[0], unpack_q4(b->qs[12]).v[1],
unpack_q4(b->qs[13]).v[1], unpack_q4(b->qs[14]).v[1], unpack_q4(b->qs[15]).v[1],
GGML_FP16_TO_FP32(b->d));
}
static void dump_packed_block_q4x4x2(const uint8_t * v, unsigned int i, size_t k) {
static const int qk = QK_Q4_0x4x2;
const int dblk_size = 8 * 2; // 8x __fp16
const int qblk_size = qk / 2; // int4
const int qrow_size = k / 2; // int4 (not padded)
const uint8_t * v_q = v + 0; // quants first
const uint8_t * v_d = v + qrow_size; // then scales
const uint8_t * q = v_q + i * qblk_size;
const ggml_half * d = (const ggml_half *) (v_d + i * dblk_size);
HEX_VERBOSE("ggml-hex: repack q4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i,
unpack_q4(q[0]).v[0], unpack_q4(q[1]).v[0], unpack_q4(q[2]).v[0], unpack_q4(q[3]).v[0],
unpack_q4(q[60]).v[0], unpack_q4(q[61]).v[0], unpack_q4(q[62]).v[0], unpack_q4(q[63]).v[0],
unpack_q4(q[124]).v[0], unpack_q4(q[125]).v[0], unpack_q4(q[126]).v[0], unpack_q4(q[127]).v[0],
GGML_FP16_TO_FP32(d[0]), GGML_FP16_TO_FP32(d[1]), GGML_FP16_TO_FP32(d[2]), GGML_FP16_TO_FP32(d[3]));
HEX_VERBOSE("ggml-hex: repack q4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n",
i + 1, unpack_q4(q[0]).v[1], unpack_q4(q[1]).v[1], unpack_q4(q[2]).v[1], unpack_q4(q[3]).v[1],
unpack_q4(q[60]).v[1], unpack_q4(q[61]).v[1], unpack_q4(q[62]).v[1], unpack_q4(q[63]).v[1],
unpack_q4(q[124]).v[1], unpack_q4(q[125]).v[1], unpack_q4(q[126]).v[1], unpack_q4(q[127]).v[1],
GGML_FP16_TO_FP32(d[4]), GGML_FP16_TO_FP32(d[5]), GGML_FP16_TO_FP32(d[6]), GGML_FP16_TO_FP32(d[7]));
}
static void unpack_q4_0_quants(uint8_t * qs, const block_q4_0 * x, unsigned int bi) {
static const int qk = QK4_0;
for (unsigned int i = 0; i < qk / 2; ++i) {
const int x0 = (x->qs[i] & 0x0F);
const int x1 = (x->qs[i] >> 4);
qs[bi * qk + i + 0] = x0;
qs[bi * qk + i + qk / 2] = x1;
}
}
static void pack_q4_0_quants(block_q4_0 * x, const uint8_t * qs, unsigned int bi) {
static const int qk = QK4_0;
for (unsigned int i = 0; i < qk / 2; ++i) {
const uint8_t x0 = qs[bi * qk + i + 0];
const uint8_t x1 = qs[bi * qk + i + qk / 2];
x->qs[i] = x0 | (x1 << 4);
}
}
static void repack_row_q4x4x2(uint8_t * y, const block_q4_0 * x, int64_t k) {
static const int qk = QK_Q4_0x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
const int dblk_size = 8 * 2; // 8x __fp16
const int qblk_size = qk / 2; // int4
const int qrow_size = k / 2; // int4 (not padded to blocks)
uint8_t * y_q = y + 0; // quants first
uint8_t * y_d = y + qrow_size; // then scales
if (opt_verbose > 2) {
for (int i = 0; i < nb; i++) {
dump_block_q4_0(&x[i * 8 + 0], 0);
dump_block_q4_0(&x[i * 8 + 1], 1);
dump_block_q4_0(&x[i * 8 + 2], 2);
dump_block_q4_0(&x[i * 8 + 3], 3);
dump_block_q4_0(&x[i * 8 + 4], 4);
dump_block_q4_0(&x[i * 8 + 5], 5);
dump_block_q4_0(&x[i * 8 + 6], 6);
dump_block_q4_0(&x[i * 8 + 7], 7);
}
}
// Repack the quants
for (int i = 0; i < nb; i++) {
uint8_t qs[QK_Q4_0x4x2]; // unpacked quants
unpack_q4_0_quants(qs, &x[i * 8 + 0], 0);
unpack_q4_0_quants(qs, &x[i * 8 + 1], 1);
unpack_q4_0_quants(qs, &x[i * 8 + 2], 2);
unpack_q4_0_quants(qs, &x[i * 8 + 3], 3);
unpack_q4_0_quants(qs, &x[i * 8 + 4], 4);
unpack_q4_0_quants(qs, &x[i * 8 + 5], 5);
unpack_q4_0_quants(qs, &x[i * 8 + 6], 6);
unpack_q4_0_quants(qs, &x[i * 8 + 7], 7);
uint8_t * q = y_q + (i * qblk_size);
for (int j = 0; j < qk / 2; j++) {
q[j] = (qs[j + 128] << 4) | qs[j];
}
}
// Repack the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Repack the scales
ggml_half * d = (ggml_half *) (y_d + i * dblk_size);
d[0] = x[i * 8 + 0].d;
d[1] = x[i * 8 + 1].d;
d[2] = x[i * 8 + 2].d;
d[3] = x[i * 8 + 3].d;
d[4] = x[i * 8 + 4].d;
d[5] = x[i * 8 + 5].d;
d[6] = x[i * 8 + 6].d;
d[7] = x[i * 8 + 7].d;
}
if (opt_verbose > 1) {
for (int i = 0; i < nb; i++) {
dump_packed_block_q4x4x2(y, i, k);
}
}
}
static void unpack_row_q4x4x2(block_q4_0 * x, const uint8_t * y, int64_t k) {
static const int qk = QK_Q4_0x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
const int dblk_size = 8 * 2; // 8x __fp16
const int qblk_size = qk / 2; // int4
const int qrow_size = k / 2; // int4 (not padded to blocks)
const uint8_t * y_q = y + 0; // quants first
const uint8_t * y_d = y + qrow_size; // then scales
if (opt_verbose > 1) {
for (int i = 0; i < nb; i++) {
dump_packed_block_q4x4x2(y, i, k);
}
}
// Unpack the quants
for (int i = 0; i < nb; i++) {
uint8_t qs[QK_Q4_0x4x2]; // unpacked quants
const uint8_t * q = y_q + (i * qblk_size);
for (int j = 0; j < qk / 2; j++) {
qs[j] = q[j] & 0xf;
qs[j + 128] = q[j] >> 4;
}
pack_q4_0_quants(&x[i * 8 + 0], qs, 0);
pack_q4_0_quants(&x[i * 8 + 1], qs, 1);
pack_q4_0_quants(&x[i * 8 + 2], qs, 2);
pack_q4_0_quants(&x[i * 8 + 3], qs, 3);
pack_q4_0_quants(&x[i * 8 + 4], qs, 4);
pack_q4_0_quants(&x[i * 8 + 5], qs, 5);
pack_q4_0_quants(&x[i * 8 + 6], qs, 6);
pack_q4_0_quants(&x[i * 8 + 7], qs, 7);
}
// Repack the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Unpack the scales
const ggml_half * d = (const ggml_half *) (y_d + i * dblk_size);
x[i * 8 + 0].d = d[0];
x[i * 8 + 1].d = d[1];
x[i * 8 + 2].d = d[2];
x[i * 8 + 3].d = d[3];
x[i * 8 + 4].d = d[4];
x[i * 8 + 5].d = d[5];
x[i * 8 + 6].d = d[6];
x[i * 8 + 7].d = d[7];
}
if (opt_verbose > 2) {
for (int i = 0; i < nb; i++) {
dump_block_q4_0(&x[i * 8 + 0], 0);
dump_block_q4_0(&x[i * 8 + 1], 1);
dump_block_q4_0(&x[i * 8 + 2], 2);
dump_block_q4_0(&x[i * 8 + 3], 3);
dump_block_q4_0(&x[i * 8 + 4], 4);
dump_block_q4_0(&x[i * 8 + 5], 5);
dump_block_q4_0(&x[i * 8 + 6], 6);
dump_block_q4_0(&x[i * 8 + 7], 7);
}
}
}
static void init_row_q4x4x2(block_q4_0 * x, int64_t k) {
static const int qk = QK_Q4_0x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
// Init the quants such that they unpack into zeros
uint8_t qs[QK_Q4_0x4x2]; // unpacked quants
memset(qs, 8, sizeof(qs));
for (int i = 0; i < nb; i++) {
pack_q4_0_quants(&x[i * 8 + 0], qs, 0);
pack_q4_0_quants(&x[i * 8 + 1], qs, 1);
pack_q4_0_quants(&x[i * 8 + 2], qs, 2);
pack_q4_0_quants(&x[i * 8 + 3], qs, 3);
pack_q4_0_quants(&x[i * 8 + 4], qs, 4);
pack_q4_0_quants(&x[i * 8 + 5], qs, 5);
pack_q4_0_quants(&x[i * 8 + 6], qs, 6);
pack_q4_0_quants(&x[i * 8 + 7], qs, 7);
}
// Init the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Unpack the scales
x[i * 8 + 0].d = 0;
x[i * 8 + 1].d = 0;
x[i * 8 + 2].d = 0;
x[i * 8 + 3].d = 0;
x[i * 8 + 4].d = 0;
x[i * 8 + 5].d = 0;
x[i * 8 + 6].d = 0;
x[i * 8 + 7].d = 0;
}
}
// repack q4_0 data into q4x4x2 tensor
static void repack_q4_0_q4x4x2(ggml_tensor * t, const void * data, size_t size) {
int64_t nrows = ggml_nrows(t);
size_t row_size = ggml_row_size(t->type, t->ne[0]);
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q4_0x4x2)); // extra elements for the pad
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
void * buf_pd = ggml_aligned_malloc(row_size_pd);
GGML_ASSERT(buf_pd != NULL);
void * buf_rp = ggml_aligned_malloc(row_size_rp);
GGML_ASSERT(buf_rp != NULL);
HEX_VERBOSE("ggml-hex: repack-q4_0-q4x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size,
t->ne[0], nrows, row_size);
init_row_q4x4x2((block_q4_0 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros
for (int64_t i = 0; i < nrows; i++) {
const uint8_t * src = (const uint8_t *) data + (i * row_size);
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
memcpy(buf_pd, src, row_size);
repack_row_q4x4x2((uint8_t *) buf_rp, (const block_q4_0 *) buf_pd, t->ne[0]);
memcpy(dst, buf_rp, row_size);
}
ggml_aligned_free(buf_pd, row_size_pd);
ggml_aligned_free(buf_rp, row_size_rp);
}
// repack q4x4x2 tensor into q4_0 data
static void repack_q4x4x2_q4_0(void * data, const ggml_tensor * t, size_t size) {
int64_t nrows = ggml_nrows(t);
size_t row_size = ggml_row_size(t->type, t->ne[0]);
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q4_0x4x2)); // extra elements for the pad
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
void * buf_pd = ggml_aligned_malloc(row_size_pd);
GGML_ASSERT(buf_pd != NULL);
void * buf_rp = ggml_aligned_malloc(row_size_rp);
GGML_ASSERT(buf_rp != NULL);
HEX_VERBOSE("ggml-hex: repack-q4x4x2-q4_0 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size,
t->ne[0], nrows, row_size);
memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros
for (int64_t i = 0; i < nrows; i++) {
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
uint8_t * dst = (uint8_t *) data + (i * row_size);
memcpy(buf_pd, src, row_size);
unpack_row_q4x4x2((block_q4_0 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]);
memcpy(dst, buf_rp, row_size);
}
ggml_aligned_free(buf_pd, row_size_pd);
ggml_aligned_free(buf_rp, row_size_rp);
}
// ======== Q8x4x2 ====================
static void dump_block_q8_0(const block_q8_0 * b, int i) {
HEX_VERBOSE("ggml-hex: repack q8_0 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, b->qs[0], b->qs[1], b->qs[2],
b->qs[3], b->qs[28], b->qs[29], b->qs[30], b->qs[31], GGML_FP16_TO_FP32(b->d));
}
static void dump_packed_block_q8x4x2(const uint8_t * v, unsigned int i, size_t k) {
static const int qk = QK_Q8_0x4x2;
const int dblk_size = 8 * 2; // 8x __fp16
const int qblk_size = qk; // int8
const int qrow_size = k; // int8 (not padded)
const uint8_t * v_q = v + 0; // quants first
const uint8_t * v_d = v + qrow_size; // then scales
const uint8_t * q = v_q + i * qblk_size;
const ggml_half * d = (const ggml_half *) (v_d + i * dblk_size);
HEX_VERBOSE("ggml-hex: repack q8x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i,
q[0], q[1], q[2], q[3], q[60], q[61], q[62], q[63], q[124], q[125], q[126], q[127],
GGML_FP16_TO_FP32(d[0]), GGML_FP16_TO_FP32(d[1]), GGML_FP16_TO_FP32(d[2]), GGML_FP16_TO_FP32(d[3]));
HEX_VERBOSE("ggml-hex: repack q8x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n",
i + 1, q[128], q[129], q[130], q[131], q[192], q[193], q[194], q[195], q[252], q[253], q[254], q[255],
GGML_FP16_TO_FP32(d[4]), GGML_FP16_TO_FP32(d[5]), GGML_FP16_TO_FP32(d[6]), GGML_FP16_TO_FP32(d[7]));
}
static void unpack_q8_0_quants(uint8_t * qs, const block_q8_0 * x, unsigned int bi) {
static const int qk = QK8_0;
for (unsigned int i = 0; i < qk; ++i) {
qs[bi * qk + i] = x->qs[i];
}
}
static void pack_q8_0_quants(block_q8_0 * x, const uint8_t * qs, unsigned int bi) {
static const int qk = QK8_0;
for (unsigned int i = 0; i < qk; ++i) {
x->qs[i] = qs[bi * qk + i];
}
}
static void repack_row_q8x4x2(uint8_t * y, const block_q8_0 * x, int64_t k) {
static const int qk = QK_Q8_0x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
const int dblk_size = 8 * 2; // 8x __fp16
const int qblk_size = qk; // int8
const int qrow_size = k; // int8 (not padded to blocks)
uint8_t * y_q = y + 0; // quants first
uint8_t * y_d = y + qrow_size; // then scales
if (opt_verbose > 2) {
for (int i = 0; i < nb; i++) {
dump_block_q8_0(&x[i * 8 + 0], 0);
dump_block_q8_0(&x[i * 8 + 1], 1);
dump_block_q8_0(&x[i * 8 + 2], 2);
dump_block_q8_0(&x[i * 8 + 3], 3);
dump_block_q8_0(&x[i * 8 + 4], 4);
dump_block_q8_0(&x[i * 8 + 5], 5);
dump_block_q8_0(&x[i * 8 + 6], 6);
dump_block_q8_0(&x[i * 8 + 7], 7);
}
}
// Repack the quants
for (int i = 0; i < nb; i++) {
uint8_t qs[QK_Q8_0x4x2]; // unpacked quants
unpack_q8_0_quants(qs, &x[i * 8 + 0], 0);
unpack_q8_0_quants(qs, &x[i * 8 + 1], 1);
unpack_q8_0_quants(qs, &x[i * 8 + 2], 2);
unpack_q8_0_quants(qs, &x[i * 8 + 3], 3);
unpack_q8_0_quants(qs, &x[i * 8 + 4], 4);
unpack_q8_0_quants(qs, &x[i * 8 + 5], 5);
unpack_q8_0_quants(qs, &x[i * 8 + 6], 6);
unpack_q8_0_quants(qs, &x[i * 8 + 7], 7);
uint8_t * q = y_q + (i * qblk_size);
for (int j = 0; j < qk; j++) {
q[j] = qs[j];
}
}
// Repack the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Repack the scales
ggml_half * d = (ggml_half *) (y_d + i * dblk_size);
d[0] = x[i * 8 + 0].d;
d[1] = x[i * 8 + 1].d;
d[2] = x[i * 8 + 2].d;
d[3] = x[i * 8 + 3].d;
d[4] = x[i * 8 + 4].d;
d[5] = x[i * 8 + 5].d;
d[6] = x[i * 8 + 6].d;
d[7] = x[i * 8 + 7].d;
}
if (opt_verbose > 1) {
for (int i = 0; i < nb; i++) {
dump_packed_block_q8x4x2(y, i, k);
}
}
}
static void unpack_row_q8x4x2(block_q8_0 * x, const uint8_t * y, int64_t k) {
static const int qk = QK_Q8_0x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
const int dblk_size = 8 * 2; // 8x __fp16
const int qblk_size = qk; // int8
const int qrow_size = k; // int8 (not padded to blocks)
const uint8_t * y_q = y + 0; // quants first
const uint8_t * y_d = y + qrow_size; // then scales
if (opt_verbose > 1) {
for (int i = 0; i < nb; i++) {
dump_packed_block_q8x4x2(y, i, k);
}
}
// Unpack the quants
for (int i = 0; i < nb; i++) {
uint8_t qs[QK_Q4_0x4x2]; // unpacked quants
const uint8_t * q = y_q + (i * qblk_size);
for (int j = 0; j < qk; j++) {
qs[j] = q[j];
}
pack_q8_0_quants(&x[i * 8 + 0], qs, 0);
pack_q8_0_quants(&x[i * 8 + 1], qs, 1);
pack_q8_0_quants(&x[i * 8 + 2], qs, 2);
pack_q8_0_quants(&x[i * 8 + 3], qs, 3);
pack_q8_0_quants(&x[i * 8 + 4], qs, 4);
pack_q8_0_quants(&x[i * 8 + 5], qs, 5);
pack_q8_0_quants(&x[i * 8 + 6], qs, 6);
pack_q8_0_quants(&x[i * 8 + 7], qs, 7);
}
// Repack the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Unpack the scales
const ggml_half * d = (const ggml_half *) (y_d + i * dblk_size);
x[i * 8 + 0].d = d[0];
x[i * 8 + 1].d = d[1];
x[i * 8 + 2].d = d[2];
x[i * 8 + 3].d = d[3];
x[i * 8 + 4].d = d[4];
x[i * 8 + 5].d = d[5];
x[i * 8 + 6].d = d[6];
x[i * 8 + 7].d = d[7];
}
if (opt_verbose > 2) {
for (int i = 0; i < nb; i++) {
dump_block_q8_0(&x[i * 8 + 0], 0);
dump_block_q8_0(&x[i * 8 + 1], 1);
dump_block_q8_0(&x[i * 8 + 2], 2);
dump_block_q8_0(&x[i * 8 + 3], 3);
dump_block_q8_0(&x[i * 8 + 4], 4);
dump_block_q8_0(&x[i * 8 + 5], 5);
dump_block_q8_0(&x[i * 8 + 6], 6);
dump_block_q8_0(&x[i * 8 + 7], 7);
}
}
}
static void init_row_q8x4x2(block_q8_0 * x, int64_t k) {
static const int qk = QK_Q8_0x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
// Init the quants such that they unpack into zeros
uint8_t qs[QK_Q8_0x4x2]; // unpacked quants
memset(qs, 0, sizeof(qs));
for (int i = 0; i < nb; i++) {
pack_q8_0_quants(&x[i * 8 + 0], qs, 0);
pack_q8_0_quants(&x[i * 8 + 1], qs, 1);
pack_q8_0_quants(&x[i * 8 + 2], qs, 2);
pack_q8_0_quants(&x[i * 8 + 3], qs, 3);
pack_q8_0_quants(&x[i * 8 + 4], qs, 4);
pack_q8_0_quants(&x[i * 8 + 5], qs, 5);
pack_q8_0_quants(&x[i * 8 + 6], qs, 6);
pack_q8_0_quants(&x[i * 8 + 7], qs, 7);
}
// Init the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q8_0x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Unpack the scales
x[i * 8 + 0].d = 0;
x[i * 8 + 1].d = 0;
x[i * 8 + 2].d = 0;
x[i * 8 + 3].d = 0;
x[i * 8 + 4].d = 0;
x[i * 8 + 5].d = 0;
x[i * 8 + 6].d = 0;
x[i * 8 + 7].d = 0;
}
}
// repack q8_0 data into q8x4x2 tensor
static void repack_q8_0_q8x4x2(ggml_tensor * t, const void * data, size_t size) {
int64_t nrows = ggml_nrows(t);
size_t row_size = ggml_row_size(t->type, t->ne[0]);
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q8_0x4x2)); // extra elements for the pad
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
void * buf_pd = ggml_aligned_malloc(row_size_pd);
GGML_ASSERT(buf_pd != NULL);
void * buf_rp = ggml_aligned_malloc(row_size_rp);
GGML_ASSERT(buf_rp != NULL);
HEX_VERBOSE("ggml-hex: repack-q8_0-q8x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size,
t->ne[0], nrows, row_size);
init_row_q8x4x2((block_q8_0 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros
for (int64_t i = 0; i < nrows; i++) {
const uint8_t * src = (const uint8_t *) data + (i * row_size);
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
memcpy(buf_pd, src, row_size);
repack_row_q8x4x2((uint8_t *) buf_rp, (const block_q8_0 *) buf_pd, t->ne[0]);
memcpy(dst, buf_rp, row_size);
}
ggml_aligned_free(buf_pd, row_size_pd);
ggml_aligned_free(buf_rp, row_size_rp);
}
// repack q8x4x2 tensor into q8_0 data
static void repack_q8x4x2_q8_0(void * data, const ggml_tensor * t, size_t size) {
int64_t nrows = ggml_nrows(t);
size_t row_size = ggml_row_size(t->type, t->ne[0]);
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q8_0x4x2)); // extra elements for the pad
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
void * buf_pd = ggml_aligned_malloc(row_size_pd);
GGML_ASSERT(buf_pd != NULL);
void * buf_rp = ggml_aligned_malloc(row_size_rp);
GGML_ASSERT(buf_rp != NULL);
HEX_VERBOSE("ggml-hex: repack-q8x4x2-q8_0 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size,
t->ne[0], nrows, row_size);
memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros
for (int64_t i = 0; i < nrows; i++) {
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
uint8_t * dst = (uint8_t *) data + (i * row_size);
memcpy(buf_pd, src, row_size);
unpack_row_q8x4x2((block_q8_0 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]);
memcpy(dst, buf_rp, row_size);
}
ggml_aligned_free(buf_pd, row_size_pd);
ggml_aligned_free(buf_rp, row_size_rp);
}
// ======== MXFP4x4x2 ====================
struct x2_mxfp4 {
int v[2];
};
static x2_mxfp4 unpack_mxfp4(uint8_t v) {
x2_mxfp4 x;
x.v[0] = kvalues_mxfp4[(v & 0x0f)];
x.v[1] = kvalues_mxfp4[(v >> 4)];
return x;
}
static void dump_block_mxfp4(const block_mxfp4 * b, int i) {
HEX_VERBOSE("ggml-hex: repack mxfp4 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, unpack_mxfp4(b->qs[0]).v[0],
unpack_mxfp4(b->qs[1]).v[0], unpack_mxfp4(b->qs[2]).v[0], unpack_mxfp4(b->qs[3]).v[0],
unpack_mxfp4(b->qs[12]).v[1], unpack_mxfp4(b->qs[13]).v[1], unpack_mxfp4(b->qs[14]).v[1],
unpack_mxfp4(b->qs[15]).v[1], GGML_E8M0_TO_FP32_HALF(b->e));
}
static void dump_packed_block_mxfp4x4x2(const uint8_t * v, unsigned int i, size_t k) {
static const int qk = QK_MXFP4x4x2;
const int eblk_size = 8 * 1; // 8x E8M0
const int qblk_size = qk / 2; // int4
const int qrow_size = k / 2; // int4 (not padded)
const uint8_t * v_q = v + 0; // quants first
const uint8_t * v_e = v + qrow_size; // then scales
const uint8_t * q = v_q + i * qblk_size;
const uint8_t * e = (const uint8_t *) (v_e + i * eblk_size);
HEX_VERBOSE("ggml-hex: repack mxfp4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i,
unpack_mxfp4(q[0]).v[0], unpack_mxfp4(q[1]).v[0], unpack_mxfp4(q[2]).v[0], unpack_mxfp4(q[3]).v[0],
unpack_mxfp4(q[60]).v[0], unpack_mxfp4(q[61]).v[0], unpack_mxfp4(q[62]).v[0], unpack_mxfp4(q[63]).v[0],
unpack_mxfp4(q[124]).v[0], unpack_mxfp4(q[125]).v[0], unpack_mxfp4(q[126]).v[0],
unpack_mxfp4(q[127]).v[0], GGML_E8M0_TO_FP32_HALF(e[0]), GGML_E8M0_TO_FP32_HALF(e[1]),
GGML_E8M0_TO_FP32_HALF(e[2]), GGML_E8M0_TO_FP32_HALF(e[3]));
HEX_VERBOSE("ggml-hex: repack mxfp4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n",
i + 1, unpack_mxfp4(q[0]).v[1], unpack_mxfp4(q[1]).v[1], unpack_mxfp4(q[2]).v[1],
unpack_mxfp4(q[3]).v[1], unpack_mxfp4(q[60]).v[1], unpack_mxfp4(q[61]).v[1], unpack_mxfp4(q[62]).v[1],
unpack_mxfp4(q[63]).v[1], unpack_mxfp4(q[124]).v[1], unpack_mxfp4(q[125]).v[1],
unpack_mxfp4(q[126]).v[1], unpack_mxfp4(q[127]).v[1], GGML_E8M0_TO_FP32_HALF(e[4]),
GGML_E8M0_TO_FP32_HALF(e[5]), GGML_E8M0_TO_FP32_HALF(e[6]), GGML_E8M0_TO_FP32_HALF(e[7]));
}
static void unpack_mxfp4_quants(uint8_t * qs, const block_mxfp4 * x, unsigned int bi) {
static const int qk = QK_MXFP4;
for (unsigned int i = 0; i < qk / 2; ++i) {
const uint8_t x0 = (x->qs[i] & 0x0F);
const uint8_t x1 = (x->qs[i] >> 4);
qs[bi * qk + i + 0] = x0;
qs[bi * qk + i + qk / 2] = x1;
}
}
static void pack_mxfp4_quants(block_mxfp4 * x, const uint8_t * qs, unsigned int bi) {
static const int qk = QK4_0;
for (unsigned int i = 0; i < qk / 2; ++i) {
const uint8_t x0 = qs[bi * qk + i + 0];
const uint8_t x1 = qs[bi * qk + i + qk / 2];
x->qs[i] = x0 | (x1 << 4);
}
}
static void repack_row_mxfp4x4x2(uint8_t * y, const block_mxfp4 * x, int64_t k) {
static const int qk = QK_MXFP4x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
const int eblk_size = 8 * 1; // 8x E8M0
const int qblk_size = qk / 2; // int4
const int qrow_size = k / 2; // int4 (not padded to blocks)
uint8_t * y_q = y + 0; // quants first
uint8_t * y_e = y + qrow_size; // then scales
if (opt_verbose > 2) {
for (int i = 0; i < nb; i++) {
dump_block_mxfp4(&x[i * 8 + 0], 0);
dump_block_mxfp4(&x[i * 8 + 1], 1);
dump_block_mxfp4(&x[i * 8 + 2], 2);
dump_block_mxfp4(&x[i * 8 + 3], 3);
dump_block_mxfp4(&x[i * 8 + 4], 4);
dump_block_mxfp4(&x[i * 8 + 5], 5);
dump_block_mxfp4(&x[i * 8 + 6], 6);
dump_block_mxfp4(&x[i * 8 + 7], 7);
}
}
// Repack the quants
for (int i = 0; i < nb; i++) {
uint8_t qs[QK_MXFP4x4x2]; // unpacked quants
unpack_mxfp4_quants(qs, &x[i * 8 + 0], 0);
unpack_mxfp4_quants(qs, &x[i * 8 + 1], 1);
unpack_mxfp4_quants(qs, &x[i * 8 + 2], 2);
unpack_mxfp4_quants(qs, &x[i * 8 + 3], 3);
unpack_mxfp4_quants(qs, &x[i * 8 + 4], 4);
unpack_mxfp4_quants(qs, &x[i * 8 + 5], 5);
unpack_mxfp4_quants(qs, &x[i * 8 + 6], 6);
unpack_mxfp4_quants(qs, &x[i * 8 + 7], 7);
uint8_t * q = y_q + (i * qblk_size);
for (int j = 0; j < qk / 2; j++) {
q[j] = (qs[j + 128] << 4) | qs[j];
}
}
// Repack the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Repack the scales
uint8_t * e = (uint8_t *) (y_e + i * eblk_size);
e[0] = x[i * 8 + 0].e;
e[1] = x[i * 8 + 1].e;
e[2] = x[i * 8 + 2].e;
e[3] = x[i * 8 + 3].e;
e[4] = x[i * 8 + 4].e;
e[5] = x[i * 8 + 5].e;
e[6] = x[i * 8 + 6].e;
e[7] = x[i * 8 + 7].e;
}
if (opt_verbose > 1) {
for (int i = 0; i < nb; i++) {
dump_packed_block_mxfp4x4x2(y, i, k);
}
}
}
static void unpack_row_mxfp4x4x2(block_mxfp4 * x, const uint8_t * y, int64_t k) {
static const int qk = QK_MXFP4x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
const int eblk_size = 8 * 1; // 8x E8M0
const int qblk_size = qk / 2; // int4
const int qrow_size = k / 2; // int4 (not padded to blocks)
const uint8_t * y_q = y + 0; // quants first
const uint8_t * y_e = y + qrow_size; // then scales
if (opt_verbose > 1) {
for (int i = 0; i < nb; i++) {
dump_packed_block_mxfp4x4x2(y, i, k);
}
}
// Unpack the quants
for (int i = 0; i < nb; i++) {
uint8_t qs[QK_MXFP4x4x2]; // unpacked quants
const uint8_t * q = y_q + (i * qblk_size);
for (int j = 0; j < qk / 2; j++) {
qs[j] = q[j] & 0xf;
qs[j + 128] = q[j] >> 4;
}
pack_mxfp4_quants(&x[i * 8 + 0], qs, 0);
pack_mxfp4_quants(&x[i * 8 + 1], qs, 1);
pack_mxfp4_quants(&x[i * 8 + 2], qs, 2);
pack_mxfp4_quants(&x[i * 8 + 3], qs, 3);
pack_mxfp4_quants(&x[i * 8 + 4], qs, 4);
pack_mxfp4_quants(&x[i * 8 + 5], qs, 5);
pack_mxfp4_quants(&x[i * 8 + 6], qs, 6);
pack_mxfp4_quants(&x[i * 8 + 7], qs, 7);
}
// Repack the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4_0x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Unpack the scales
const uint8_t * e = (const uint8_t *) (y_e + i * eblk_size);
x[i * 8 + 0].e = e[0];
x[i * 8 + 1].e = e[1];
x[i * 8 + 2].e = e[2];
x[i * 8 + 3].e = e[3];
x[i * 8 + 4].e = e[4];
x[i * 8 + 5].e = e[5];
x[i * 8 + 6].e = e[6];
x[i * 8 + 7].e = e[7];
}
if (opt_verbose > 2) {
for (int i = 0; i < nb; i++) {
dump_block_mxfp4(&x[i * 8 + 0], 0);
dump_block_mxfp4(&x[i * 8 + 1], 1);
dump_block_mxfp4(&x[i * 8 + 2], 2);
dump_block_mxfp4(&x[i * 8 + 3], 3);
dump_block_mxfp4(&x[i * 8 + 4], 4);
dump_block_mxfp4(&x[i * 8 + 5], 5);
dump_block_mxfp4(&x[i * 8 + 6], 6);
dump_block_mxfp4(&x[i * 8 + 7], 7);
}
}
}
static void init_row_mxfp4x4x2(block_mxfp4 * x, int64_t k) {
static const int qk = QK_MXFP4x4x2;
const int nb = (k + qk - 1) / qk; // number of blocks (padded)
// Init the quants such that they unpack into zeros
uint8_t qs[QK_MXFP4x4x2]; // unpacked quants
memset(qs, 0, sizeof(qs));
for (int i = 0; i < nb; i++) {
pack_mxfp4_quants(&x[i * 8 + 0], qs, 0);
pack_mxfp4_quants(&x[i * 8 + 1], qs, 1);
pack_mxfp4_quants(&x[i * 8 + 2], qs, 2);
pack_mxfp4_quants(&x[i * 8 + 3], qs, 3);
pack_mxfp4_quants(&x[i * 8 + 4], qs, 4);
pack_mxfp4_quants(&x[i * 8 + 5], qs, 5);
pack_mxfp4_quants(&x[i * 8 + 6], qs, 6);
pack_mxfp4_quants(&x[i * 8 + 7], qs, 7);
}
// Init the scales
// Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4x4x2)
// the last block is truncated and overriden by the scales.
for (int i = 0; i < nb; i++) {
// Unpack the scales
x[i * 8 + 0].e = 0;
x[i * 8 + 1].e = 0;
x[i * 8 + 2].e = 0;
x[i * 8 + 3].e = 0;
x[i * 8 + 4].e = 0;
x[i * 8 + 5].e = 0;
x[i * 8 + 6].e = 0;
x[i * 8 + 7].e = 0;
}
}
// repack mxfp4 data into mxfp4x4x2 tensor
static void repack_mxfp4_mxfp4x4x2(ggml_tensor * t, const void * data, size_t size) {
int64_t nrows = ggml_nrows(t);
size_t row_size = ggml_row_size(t->type, t->ne[0]);
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_MXFP4x4x2)); // extra elements for the pad
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
void * buf_pd = ggml_aligned_malloc(row_size_pd);
GGML_ASSERT(buf_pd != NULL);
void * buf_rp = ggml_aligned_malloc(row_size_rp);
GGML_ASSERT(buf_rp != NULL);
HEX_VERBOSE("ggml-hex: repack-mxfp4-mxfp4x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data,
size, t->ne[0], nrows, row_size);
init_row_mxfp4x4x2((block_mxfp4 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros
for (int64_t i = 0; i < nrows; i++) {
const uint8_t * src = (const uint8_t *) data + (i * row_size);
uint8_t * dst = (uint8_t *) t->data + (i * row_size);
memcpy(buf_pd, src, row_size);
repack_row_mxfp4x4x2((uint8_t *) buf_rp, (const block_mxfp4 *) buf_pd, t->ne[0]);
memcpy(dst, buf_rp, row_size);
}
ggml_aligned_free(buf_pd, row_size_pd);
ggml_aligned_free(buf_rp, row_size_rp);
}
// repack mxfp4x4x2 tensor into mxfp4 data
static void repack_mxfp4x4x2_mxfp4(void * data, const ggml_tensor * t, size_t size) {
int64_t nrows = ggml_nrows(t);
size_t row_size = ggml_row_size(t->type, t->ne[0]);
size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_MXFP4x4x2)); // extra elements for the pad
size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any)
void * buf_pd = ggml_aligned_malloc(row_size_pd);
GGML_ASSERT(buf_pd != NULL);
void * buf_rp = ggml_aligned_malloc(row_size_rp);
GGML_ASSERT(buf_rp != NULL);
HEX_VERBOSE("ggml-hex: repack-mxfp4x4x2-mxfp4 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data,
size, t->ne[0], nrows, row_size);
memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros
for (int64_t i = 0; i < nrows; i++) {
const uint8_t * src = (const uint8_t *) t->data + (i * row_size);
uint8_t * dst = (uint8_t *) data + (i * row_size);
memcpy(buf_pd, src, row_size);
unpack_row_mxfp4x4x2((block_mxfp4 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]);
memcpy(dst, buf_rp, row_size);
}
ggml_aligned_free(buf_pd, row_size_pd);
ggml_aligned_free(buf_rp, row_size_rp);
}
static void ggml_backend_hexagon_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor * tensor,
const void * data,
size_t offset,
size_t size) {
auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context;
auto sess = ctx->sess;
HEX_VERBOSE("ggml-hex: %s set-tensor %s : data %p offset %zu size %zu\n", sess->name.c_str(), tensor->name, data,
offset, size);
switch (tensor->type) {
case GGML_TYPE_Q4_0:
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
repack_q4_0_q4x4x2(tensor, data, size);
break;
case GGML_TYPE_Q8_0:
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
repack_q8_0_q8x4x2(tensor, data, size);
break;
case GGML_TYPE_MXFP4:
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
repack_mxfp4_mxfp4x4x2(tensor, data, size);
break;
default:
memcpy((char *) tensor->data + offset, data, size);
break;
}
}
static void ggml_backend_hexagon_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor * tensor,
void * data,
size_t offset,
size_t size) {
auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context;
auto sess = ctx->sess;
HEX_VERBOSE("ggml-hex: %s get-tensor %s : data %p offset %zu size %zu\n", sess->name.c_str(), tensor->name, data,
offset, size);
switch (tensor->type) {
case GGML_TYPE_Q4_0:
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
repack_q4x4x2_q4_0(data, tensor, size);
break;
case GGML_TYPE_Q8_0:
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
repack_q8x4x2_q8_0(data, tensor, size);
break;
case GGML_TYPE_MXFP4:
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
repack_mxfp4x4x2_mxfp4(data, tensor, size);
break;
default:
memcpy(data, (const char *) tensor->data + offset, size);
break;
}
}
static bool ggml_backend_hexagon_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const struct ggml_tensor * src,
struct ggml_tensor * dst) {
GGML_UNUSED(buffer);
GGML_UNUSED(src);
GGML_UNUSED(dst);
// we might optimize this later, for now take the slow path (ie get/set_tensor)
return false;
}
static void ggml_backend_hexagon_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context;
auto sess = ctx->sess;
HEX_VERBOSE("ggml-hex: %s clear-buff base %p size %zu\n", sess->name.c_str(), (void *) ctx->base, ctx->size);
memset(ctx->base, value, ctx->size);
}
static ggml_backend_buffer_i ggml_backend_hexagon_buffer_interface = {
/* .free_buffer = */ ggml_backend_hexagon_buffer_free_buffer,
/* .get_base = */ ggml_backend_hexagon_buffer_get_base,
/* .init_tensor = */ ggml_backend_hexagon_buffer_init_tensor,
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_hexagon_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_hexagon_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_hexagon_buffer_cpy_tensor,
/* .clear = */ ggml_backend_hexagon_buffer_clear,
/* .reset = */ NULL,
};
// ** backend buffer type
static const char * ggml_backend_hexagon_buffer_type_name(ggml_backend_buffer_type_t buffer_type) {
return static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->name.c_str();
}
static ggml_backend_buffer_t ggml_backend_hexagon_buffer_type_alloc_buffer(
ggml_backend_buffer_type_t buffer_type, size_t size) {
auto sess = static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->sess;
try {
ggml_backend_hexagon_buffer_context * ctx = new ggml_backend_hexagon_buffer_context(sess, size, false /*repack*/);
return ggml_backend_buffer_init(buffer_type, ggml_backend_hexagon_buffer_interface, ctx, size);
} catch (std::exception const &exc) {
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer context: %s\n", sess->name.c_str(), exc.what());
return nullptr;
}
}
static ggml_backend_buffer_t ggml_backend_hexagon_repack_buffer_type_alloc_buffer(
ggml_backend_buffer_type_t buffer_type, size_t size) {
auto sess = static_cast<ggml_backend_hexagon_buffer_type_context *>(buffer_type->context)->sess;
try {
ggml_backend_hexagon_buffer_context * ctx = new ggml_backend_hexagon_buffer_context(sess, size, true /*repack*/);
return ggml_backend_buffer_init(buffer_type, ggml_backend_hexagon_buffer_interface, ctx, size);
} catch (std::exception const &exc) {
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer context: %s\n", sess->name.c_str(), exc.what());
return nullptr;
}
}
static size_t ggml_backend_hexagon_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
return 128; // HVX alignment
GGML_UNUSED(buffer_type);
}
static size_t ggml_backend_hexagon_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * t) {
return ggml_nbytes(t);
}
static size_t ggml_backend_hexagon_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
return 1 * 1024 * 1024 * 1024; // 1GB per buffer
GGML_UNUSED(buffer_type);
}
static bool ggml_backend_hexagon_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return opt_hostbuf;
GGML_UNUSED(buft);
}
static bool ggml_backend_hexagon_repack_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return false;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_i ggml_backend_hexagon_buffer_type_interface = {
/* .get_name = */ ggml_backend_hexagon_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_hexagon_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_hexagon_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_hexagon_buffer_type_get_max_size,
/* .get_alloc_size = */ ggml_backend_hexagon_buffer_type_get_alloc_size,
/* .is_host = */ ggml_backend_hexagon_buffer_type_is_host,
};
static ggml_backend_buffer_type_i ggml_backend_hexagon_repack_buffer_type_interface = {
/* .get_name = */ ggml_backend_hexagon_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_hexagon_repack_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_hexagon_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_hexagon_buffer_type_get_max_size,
/* .get_alloc_size = */ ggml_backend_hexagon_buffer_type_get_alloc_size,
/* .is_host = */ ggml_backend_hexagon_repack_buffer_type_is_host,
};
void ggml_hexagon_session::allocate(int dev_id) noexcept(false) {
this->valid_session = false;
this->valid_handle = false;
this->valid_queue = false;
this->valid_iface = false;
this->domain_id = 3; // Default for CDSP, updated after the session is created
this->session_id = 0; // Default for CDSP, updated after the session is created
this->dev_id = dev_id;
this->name = std::string("HTP") + std::to_string(dev_id);
this->op_pending = 0;
this->prof_usecs = 0;
this->prof_cycles = 0;
this->prof_pkts = 0;
GGML_LOG_INFO("ggml-hex: allocating new session: %s\n", this->name.c_str());
domain * my_domain = get_domain(this->domain_id);
if (my_domain == NULL) {
GGML_LOG_ERROR("ggml-hex: unable to get domain struct for CDSP\n");
throw std::runtime_error("ggml-hex: failed to get CDSP domain (see log for details)");
}
// Create new session
if (dev_id != 0) {
struct remote_rpc_reserve_new_session n;
n.domain_name_len = strlen(CDSP_DOMAIN_NAME);
n.domain_name = const_cast<char *>(CDSP_DOMAIN_NAME);
n.session_name = const_cast<char *>(this->name.c_str());
n.session_name_len = this->name.size();
int err = remote_session_control(FASTRPC_RESERVE_NEW_SESSION, (void *) &n, sizeof(n));
if (err != AEE_SUCCESS) {
GGML_LOG_ERROR("ggml-hex: failed to reserve new session %d : error 0x%x\n", dev_id, err);
throw std::runtime_error("ggml-hex: remote_session_control(new-sess) failed (see log for details)");
}
// Save the IDs
this->session_id = n.session_id;
this->domain_id = n.effective_domain_id;
this->valid_session = true;
}
// Get session URI
char htp_uri[256];
sprintf(htp_uri, "file:///libggml-htp-v%u.so?htp_iface_skel_handle_invoke&_modver=1.0", opt_arch);
char session_uri[256];
{
struct remote_rpc_get_uri u;
u.session_id = this->session_id;
u.domain_name = const_cast<char *>(CDSP_DOMAIN_NAME);
u.domain_name_len = strlen(CDSP_DOMAIN_NAME);
u.module_uri = const_cast<char *>(htp_uri);
u.module_uri_len = strlen(htp_uri);
u.uri = session_uri;
u.uri_len = sizeof(session_uri);
int err = remote_session_control(FASTRPC_GET_URI, (void *) &u, sizeof(u));
if (err != AEE_SUCCESS) {
GGML_LOG_ERROR("ggml-hex: failed to get URI for session %d : error 0x%x\n", dev_id, err);
throw std::runtime_error("ggml-hex: remote_session_control(get-uri) failed (see log for details)");
}
}
// Enable Unsigned PD
{
struct remote_rpc_control_unsigned_module u;
u.domain = this->domain_id;
u.enable = 1;
int err = remote_session_control(DSPRPC_CONTROL_UNSIGNED_MODULE, (void *) &u, sizeof(u));
if (err != AEE_SUCCESS) {
GGML_LOG_ERROR("ggml-hex: failed to enable unsigned PD for session %d : error 0x%x\n", dev_id, err);
throw std::runtime_error("ggml-hex: remote_session_control(unsign) failed (see log for details)");
}
}
// Open session
int err = htp_iface_open(session_uri, &this->handle);
if (err != AEE_SUCCESS) {
GGML_LOG_ERROR("ggml-hex: failed to open session %d : error 0x%x\n", dev_id, err);
throw std::runtime_error("ggml-hex: failed to open session (see log for details)");
}
this->valid_handle = true;
GGML_LOG_INFO("ggml-hex: new session: %s : session-id %d domain-id %d uri %s handle 0x%lx\n", this->name.c_str(),
this->session_id, this->domain_id, session_uri, (unsigned long) this->handle);
// Enable FastRPC QoS mode
{
struct remote_rpc_control_latency l;
l.enable = 1;
int err = remote_handle64_control(this->handle, DSPRPC_CONTROL_LATENCY, (void *) &l, sizeof(l));
if (err != 0) {
GGML_LOG_WARN("ggml-hex: failed to enable fastrpc QOS mode: 0x%08x\n", (unsigned) err);
}
}
// Now let's setup the DSP queue
err = dspqueue_create(this->domain_id,
0, // Flags
128 * 1024, // Request queue size (in bytes)
64 * 1024, // Response queue size (in bytes)
htp_packet_callback, htp_error_callback,
(void *) this, // Callback context
&queue);
if (err != 0) {
GGML_LOG_ERROR("ggml-hex: %s dspqueue_create failed: 0x%08x\n", this->name.c_str(), (unsigned) err);
throw std::runtime_error("ggml-hex: failed to create dspqueue (see log for details)");
}
this->valid_queue = true;
// Export queue for use on the DSP
err = dspqueue_export(queue, &this->queue_id);
if (err != 0) {
GGML_LOG_ERROR("ggml-hex: dspqueue_export failed: 0x%08x\n", (unsigned) err);
throw std::runtime_error("ggml-hex: dspqueue export failed (see log for details)");
}
if (opt_etm) {
err = htp_iface_enable_etm(this->handle);
if (err != 0) {
GGML_LOG_ERROR("ggml-hex: failed to enable ETM tracing: 0x%08x\n", (unsigned) err);
}
}
// Start the DSP-side service. We need to pass the queue ID to the
// DSP in a FastRPC call; the DSP side will import the queue and start
// listening for packets in a callback.
err = htp_iface_start(this->handle, dev_id, this->queue_id, opt_nhvx);
if (err != 0) {
GGML_LOG_ERROR("ggml-hex: failed to start session: 0x%08x\n", (unsigned) err);
throw std::runtime_error("ggml-hex: iface start failed (see log for details)");
}
this->valid_iface = true;
}
void ggml_hexagon_session::release() noexcept(true) {
GGML_LOG_INFO("ggml-hex: releasing session: %s\n", this->name.c_str());
int err;
// Stop the DSP-side service and close the queue
if (this->valid_iface) {
err = htp_iface_stop(this->handle);
if (err != 0) {
GGML_ABORT("ggml-hex: htp_iface_stop failed: 0x%08x\n", (unsigned) err);
}
}
if (opt_etm) {
err = htp_iface_disable_etm(this->handle);
if (err != 0) {
GGML_LOG_ERROR("ggml-hex: warn : failed to disable ETM tracing: 0x%08x\n", (unsigned) err);
}
}
if (this->valid_queue) {
err = dspqueue_close(queue);
if (err != 0) {
GGML_ABORT("ggml-hex: dspqueue_close failed: 0x%08x\n", (unsigned) err);
}
}
if (this->valid_handle) {
htp_iface_close(this->handle);
}
}
ggml_hexagon_session::ggml_hexagon_session(int dev_id) noexcept(false) {
buffer_type.context = nullptr;
repack_buffer_type.context = nullptr;
try {
allocate(dev_id);
buffer_type.iface = ggml_backend_hexagon_buffer_type_interface;
buffer_type.context = new ggml_backend_hexagon_buffer_type_context(this->name, this);
repack_buffer_type.iface = ggml_backend_hexagon_repack_buffer_type_interface;
repack_buffer_type.context = new ggml_backend_hexagon_buffer_type_context(this->name + "-REPACK", this);
} catch (std::exception const &exc) {
release();
throw;
}
}
ggml_hexagon_session::~ggml_hexagon_session() noexcept(true) {
release();
delete static_cast<ggml_backend_hexagon_buffer_type_context*>(buffer_type.context);
delete static_cast<ggml_backend_hexagon_buffer_type_context*>(repack_buffer_type.context);
}
// ** backend interface
static bool ggml_backend_buffer_is_hexagon(const struct ggml_backend_buffer * b) {
return b->buft->iface.get_alignment == ggml_backend_hexagon_buffer_type_get_alignment;
}
static inline bool ggml_backend_buffer_is_hexagon_repack(const struct ggml_backend_buffer * b) {
return b->buft->iface.alloc_buffer == ggml_backend_hexagon_repack_buffer_type_alloc_buffer;
}
static bool hex_supported_dims2(const struct ggml_tensor * x, const struct ggml_tensor * y) {
if (x->ne[0] != y->ne[0]) {
return false;
}
if (x->ne[1] != y->ne[1]) {
return false;
}
if (x->ne[2] != y->ne[2]) {
return false;
}
if (x->ne[3] != y->ne[3]) {
return false;
}
return true;
}
static bool hex_supported_src0_type(ggml_type t) {
return t == GGML_TYPE_F32;
}
static bool hex_supported_src1_type(ggml_type t) {
return t == GGML_TYPE_F32;
}
static bool hex_supported_src2_type(ggml_type t) {
return t == GGML_TYPE_F32;
}
static bool hex_supported_src1_type2(ggml_type t) {
return t == GGML_TYPE_F16;
}
static bool hex_supported_src1_type3(ggml_type t) {
return t == GGML_TYPE_I32;
}
static bool hex_supported_dst_type(ggml_type t) {
return t == GGML_TYPE_F32;
}
static bool hex_supported_dims(const struct ggml_tensor * x, const struct ggml_tensor * y) {
// TODO: support broadcast for ne[2 and 3]
if (x->ne[0] != y->ne[0]) {
return false;
}
if (x->ne[2] != y->ne[2]) {
return false;
}
if (x->ne[3] != y->ne[3]) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * sess, const struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
if (src1->type != GGML_TYPE_F32 || dst->type != GGML_TYPE_F32) {
return false;
}
// TODO: add support for non-cont tensors
if (!ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
return false;
}
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
if (src0->ne[0] % 32) {
return false;
}
if (src0->ne[1] > 16 * 1024) {
return false; // typically the lm-head which would be too large for VTCM
}
// if ((src0->ne[2] != src1->ne[2] || src0->ne[3] != src1->ne[3])) return false;
if ((src1->ne[2] != 1 || src1->ne[3] != 1)) {
return false;
}
// src0 (weights) must be repacked
if (src0->buffer && !ggml_backend_buffer_is_hexagon_repack(src0->buffer)) {
return false;
}
break;
case GGML_TYPE_F16:
if (!opt_experimental) {
return false;
}
break;
default:
return false;
}
// src0 & src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_mul_mat_id(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * dst = op;
if (src1->type != GGML_TYPE_F32 || dst->type != GGML_TYPE_F32 || src2->type != GGML_TYPE_I32) {
return false;
}
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
if ((src0->ne[0] % 32)) {
return false;
}
// src0 (weights) must be repacked
if (src0->buffer && !ggml_backend_buffer_is_hexagon_repack(src0->buffer)) {
return false;
}
break;
case GGML_TYPE_F16:
if (!opt_experimental) {
return false;
}
break;
default:
return false;
}
// TODO: add support for non-cont tensors
if (!ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
return false;
}
// src0 (weights) must be repacked and mapped to the same session
// src1 & sr2 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_binary(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * dst = op;
if (!hex_supported_src0_type(src0->type)) {
return false;
}
if (!hex_supported_src1_type(src1->type)) {
return false;
}
if (!hex_supported_dst_type(dst->type)) {
return false;
}
if (!hex_supported_dims2(src0, dst)) {
return false;
}
if (!ggml_can_repeat(src1, src0)) {
return false;
}
// TODO: add support for non-contigiuos tensors
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
return false;
}
// src0, src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_add_id(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * dst = op;
if (!hex_supported_src0_type(src0->type)) {
return false;
}
if (!hex_supported_src1_type(src1->type)) {
return false;
}
if (!hex_supported_dst_type(dst->type)) {
return false;
}
if (!hex_supported_dims2(src0, dst)) {
return false;
}
// REVISIT: add support for non-contigiuos tensors
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
return false;
}
// src0, src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_unary(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * dst = op;
if (!hex_supported_src0_type(src0->type)) {
return false;
}
if (!hex_supported_dst_type(dst->type)) {
return false;
}
if (!hex_supported_dims2(src0, dst)) {
return false;
}
// TODO: add support for non-contigiuos tensors
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) {
return false;
}
// src0 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_activations(const struct ggml_hexagon_session * sess,
const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * dst = op;
if (!hex_supported_src0_type(src0->type)) {
return false;
}
if (!hex_supported_dst_type(dst->type)) {
return false;
}
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) {
return false;
}
if (src1) {
if (!hex_supported_src1_type(src1->type)) {
return false;
}
if (!hex_supported_dims2(src0, src1)) {
return false;
}
if (!ggml_is_contiguous(src1)) {
return false;
}
}
// src0, src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1 && src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_softmax(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * dst = op;
if (src2) {
return false; // FIXME: add support for sinks
}
if (!hex_supported_src0_type(src0->type)) {
return false;
}
if (!hex_supported_dst_type(dst->type)) {
return false;
}
if (src1) {
if (!hex_supported_src1_type(src1->type) && !hex_supported_src1_type2(src1->type)) {
return false;
}
if (src0->ne[0] != src1->ne[0]) {
return false;
}
if (src1->ne[1] < src0->ne[1]) {
return false;
}
if (src0->ne[2] % src1->ne[2] != 0) {
return false;
}
if (src0->ne[3] % src1->ne[3] != 0) {
return false;
}
}
if (src1) {
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
return false;
}
} else {
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) {
return false;
}
}
// src0, src1 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1 && src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const int32_t * op_params = &op->op_params[0];
int mode = op_params[2];
if ((mode & GGML_ROPE_TYPE_NEOX) || (mode & GGML_ROPE_TYPE_MROPE) || (mode & GGML_ROPE_TYPE_VISION)) {
return false;
}
if (mode & 1) {
return false;
}
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * dst = op;
if (!hex_supported_src0_type(src0->type)) {
return false; // FIXME: add support for GGML_TYPE_F16 for src0
}
if (!hex_supported_dst_type(dst->type)) {
return false;
}
if (!hex_supported_src1_type3(src1->type)) {
return false;
}
if (src2) {
if (!hex_supported_src2_type(src2->type)) {
return false;
}
int n_dims = op_params[1];
if (src2->ne[0] < (n_dims / 2)) {
return false;
}
}
if (src2) {
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(src2) ||
!ggml_is_contiguous(dst)) {
return false;
}
} else {
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
return false;
}
}
// src0, src1, src2 & dst must be mapped to the same session
if (src0->buffer &&
(!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) {
return false;
}
if (src1->buffer &&
(!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) {
return false;
}
if (src2 && src2->buffer &&
(!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) {
return false;
}
if (dst->buffer &&
(!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) {
return false;
}
return true;
}
// Init hexagon tensor from GGML tensor and Hexagon buffer
static void init_htp_tensor(htp_tensor * h, const ggml_tensor * t) {
h->data = 0; // updated by the receiver
h->type = t->type;
h->ne[0] = t->ne[0];
h->ne[1] = t->ne[1];
h->ne[2] = t->ne[2];
h->ne[3] = t->ne[3];
h->nb[0] = t->nb[0];
h->nb[1] = t->nb[1];
h->nb[2] = t->nb[2];
h->nb[3] = t->nb[3];
}
static void hex_dump_dspbuf(const struct ggml_tensor * t, const dspqueue_buffer * d) {
auto buf = static_cast<ggml_backend_hexagon_buffer_context *>(t->buffer->context);
auto sess = buf->sess;
HEX_VERBOSE("ggml-hex: %s dspqbuf : %s base-addr %p base-size %zu data %p offset %u size %u\n", sess->name.c_str(),
t->name, (void *) buf->base, buf->size, (void *) d->ptr, (unsigned int) d->offset,
(unsigned int) d->size);
}
static void ggml_hexagon_mul_mat(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * dst = op;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1, t2;
t1 = ggml_time_us();
// Construct HTP message
htp_general_req req;
req.op = HTP_OP_MUL_MAT;
req.flags = flags;
init_htp_tensor(&req.src0, src0);
init_htp_tensor(&req.src1, src1);
init_htp_tensor(&req.dst, dst);
// Use opmask to override flags
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
}
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
}
dspqueue_buffer bufs[3];
memset(bufs, 0, sizeof(bufs));
// First buffer Weights.
// The content is static, there is no need to do any cache management
bufs[0].fd = src0_buf->fd;
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = DSPQUEUE_BUFFER_FLAG_REF;
// Second buffer Input Activations. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible.
bufs[1].fd = src1_buf->fd;
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Third buffer Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
bufs[2].fd = dst_buf->fd;
bufs[2].ptr = dst->data;
bufs[2].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[2].size = ggml_nbytes(dst);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
// Primary DSP session from the src0 (normally weight) tensor
auto sess = src0_buf->sess;
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]);
hex_dump_dspbuf(dst, &bufs[2]);
}
}
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
// Bump pending flag (cleared in the callback once we get the responce)
sess->op_pending++; // atomic inc
int err = dspqueue_write(sess->queue,
0, // flags - the framework will autoset this
3, // number of buffers
bufs, // buffer references
sizeof(req),
(const uint8_t *) &req, // Message
1000000 // Timeout
);
if (err != 0) {
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
}
}
if (opt_opsync) {
while (sess->op_pending) {
;
}
}
t2 = ggml_time_us();
HEX_PROFILE(
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) "
"call-usec %llu\n",
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
}
static void ggml_hexagon_mul_mat_id(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * dst = op;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1, t2;
t1 = ggml_time_us();
// Construct HTP message
htp_general_req req;
req.op = HTP_OP_MUL_MAT_ID;
req.flags = flags;
init_htp_tensor(&req.src0, src0);
init_htp_tensor(&req.src1, src1);
init_htp_tensor(&req.src2, src2);
init_htp_tensor(&req.dst, dst);
// Use opmask to override flags
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
}
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
}
dspqueue_buffer bufs[4];
memset(bufs, 0, sizeof(bufs));
// First buffer Weights.
// The content is static, there is no need to do any cache management
bufs[0].fd = src0_buf->fd;
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = DSPQUEUE_BUFFER_FLAG_REF;
// Second buffer Input Activations. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible.
bufs[1].fd = src1_buf->fd;
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Third buffer expert IDs. This is a buffer that the CPU
// writes and the DSP reads, so we'll need to flush CPU caches and
// invalidate DSP ones. On platforms with I/O coherency support the
// framework will automatically skip cache operations where possible.
bufs[2].fd = src2_buf->fd;
bufs[2].ptr = src2->data;
bufs[2].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[2].size = ggml_nbytes(src2);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Forth buffer Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
bufs[3].fd = dst_buf->fd;
bufs[3].ptr = dst->data;
bufs[3].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[3].size = ggml_nbytes(dst);
bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
// Primary DSP session from the src0 (normally weight) tensor
auto sess = src0_buf->sess;
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]);
hex_dump_dspbuf(src2, &bufs[2]);
hex_dump_dspbuf(dst, &bufs[3]);
}
}
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
// Bump pending flag (cleared in the callback once we get the responce)
sess->op_pending++; // atomic inc
int err = dspqueue_write(sess->queue,
0, // flags - the framework will autoset this
4, // number of buffers
bufs, // buffer references
sizeof(req),
(const uint8_t *) &req, // Message
1000000 // Timeout
);
if (err != 0) {
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
}
}
if (opt_opsync) {
while (sess->op_pending) {
;
}
}
t2 = ggml_time_us();
HEX_PROFILE(
"ggml-hex: %s matmul-id %s %u:%u:%u:%u x %s %u:%u:%u:%u (%s %u:%u:%u:%u) -> %s %u:%u:%u:%u : op-usec %u "
"op-cycles %u op-pkts %u (%f) call-usec %llu\n",
sess->name.c_str(), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2],
(uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2],
(uint32_t) src1->ne[3], src2->name, (uint32_t) src2->ne[0], (uint32_t) src2->ne[1], (uint32_t) src2->ne[2],
(uint32_t) src2->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],
(uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
}
static void ggml_hexagon_binary(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * node = op;
const struct ggml_tensor * src0 = node->src[0];
const struct ggml_tensor * src1 = node->src[1];
const struct ggml_tensor * dst = node;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1 = 0;
uint64_t t2 = 0;
t1 = ggml_time_us();
// Construct HTP message
htp_general_req req;
req.flags = flags;
// Use opmask to override flags
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
}
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
}
switch (node->op) {
case GGML_OP_MUL:
req.op = HTP_OP_MUL;
break;
case GGML_OP_ADD:
req.op = HTP_OP_ADD;
break;
case GGML_OP_SUB:
req.op = HTP_OP_SUB;
break;
default:
GGML_ABORT("ggml-hex: binary : unsupported op:%d\n", node->op);
}
init_htp_tensor(&req.src0, src0);
init_htp_tensor(&req.src1, src1);
init_htp_tensor(&req.dst, dst);
dspqueue_buffer bufs[3];
memset(bufs, 0, sizeof(bufs));
// First buffer = First Operand of Binary op
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
bufs[0].fd = src0_buf->fd;
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
// Second buffer = Second Operand of Binary op
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
bufs[1].fd = src1_buf->fd;
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Third buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
bufs[2].fd = dst_buf->fd;
bufs[2].ptr = dst->data;
bufs[2].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[2].size = ggml_nbytes(dst);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
// Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess;
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[16 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(),
ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]);
hex_dump_dspbuf(dst, &bufs[2]);
}
}
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
// Bump pending flag (cleared in the callback once we get the responce)
sess->op_pending++; // atomic inc
int err = dspqueue_write(sess->queue,
0, // flags - the framework will autoset this
3, // number of buffers
bufs, // buffer references
sizeof(req),
(const uint8_t *) &req, // Message
1000000); // Timeout
if (0 != err) {
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
}
}
if (opt_opsync) {
while (sess->op_pending) {
;
}
}
t2 = ggml_time_us();
HEX_PROFILE(
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) "
"call-usec %llu\n",
sess->name.c_str(), ggml_op_name(node->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
}
static void ggml_hexagon_add_id(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * node = op;
const struct ggml_tensor * src0 = node->src[0];
const struct ggml_tensor * src1 = node->src[1];
const struct ggml_tensor * src2 = node->src[2];
const struct ggml_tensor * dst = node;
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
uint64_t t1 = 0;
uint64_t t2 = 0;
t1 = ggml_time_us();
// Construct HTP message
htp_general_req req;
req.flags = flags;
// Use opmask to override flags
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
}
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
}
switch (node->op) {
case GGML_OP_ADD_ID:
req.op = HTP_OP_ADD_ID;
break;
default:
GGML_ABORT("ggml-hex: unsupported op:%d\n", node->op);
}
init_htp_tensor(&req.src0, src0);
init_htp_tensor(&req.src1, src1);
init_htp_tensor(&req.src2, src2);
init_htp_tensor(&req.dst, dst);
dspqueue_buffer bufs[4];
memset(bufs, 0, sizeof(bufs));
// First buffer = input activations
bufs[0].fd = src0_buf->fd;
bufs[0].ptr = src0->data;
bufs[0].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[0].size = ggml_nbytes(src0);
bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
// Second buffer = experts bias
bufs[1].fd = src1_buf->fd;
bufs[1].ptr = src1->data;
bufs[1].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[1].size = ggml_nbytes(src1);
bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Third buffer = activated experts
bufs[2].fd = src2_buf->fd;
bufs[2].ptr = src2->data;
bufs[2].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[2].size = ggml_nbytes(src2);
bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
// Forth buffer = output activations
bufs[3].fd = dst_buf->fd;
bufs[3].ptr = dst->data;
bufs[3].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[3].size = ggml_nbytes(dst);
bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
// Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess;
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[16 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(),
ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
hex_dump_dspbuf(src1, &bufs[1]);
hex_dump_dspbuf(src2, &bufs[2]);
hex_dump_dspbuf(dst, &bufs[3]);
}
}
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
// Bump pending flag (cleared in the callback once we get the responce)
sess->op_pending++; // atomic inc
int err = dspqueue_write(sess->queue,
0, // flags - the framework will autoset this
4, // number of buffers
bufs, // buffer references
sizeof(req),
(const uint8_t *) &req, // Message
1000000); // Timeout
if (0 != err) {
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
}
}
if (opt_opsync) {
while (sess->op_pending) {
;
}
}
t2 = ggml_time_us();
HEX_PROFILE(
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) "
"call-usec %llu\n",
sess->name.c_str(), ggml_op_name(node->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
}
static void ggml_hexagon_unary(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * dst = op;
uint64_t t1 = 0;
uint64_t t2 = 0;
t1 = ggml_time_us();
// Construct HTP message
htp_general_req req;
memset(&req, 0, sizeof(htp_general_req));
memcpy(&req.op_params, &op->op_params, sizeof(op->op_params));
req.flags = flags;
bool supported = false;
switch (op->op) {
case GGML_OP_RMS_NORM:
req.op = HTP_OP_RMS_NORM;
supported = true;
break;
case GGML_OP_UNARY:
if (ggml_get_unary_op(dst) == GGML_UNARY_OP_SILU) {
req.op = HTP_OP_UNARY_SILU;
supported = true;
}
break;
case GGML_OP_GLU:
if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU) {
req.op = HTP_OP_GLU_SWIGLU;
supported = true;
} else if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
req.op = HTP_OP_GLU_SWIGLU_OAI;
supported = true;
}
break;
case GGML_OP_SOFT_MAX:
req.op = HTP_OP_SOFTMAX;
supported = true;
default:
break;
}
if (!supported) {
GGML_ABORT("ggml-hex: unary : unsupported op:%d\n", op->op);
}
init_htp_tensor(&req.dst, dst);
init_htp_tensor(&req.src0, src0);
if (src1) {
init_htp_tensor(&req.src1, src1);
}
// Use opmask to override flags
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
}
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
}
dspqueue_buffer bufs[3];
int n_bufs = 0;
memset(bufs, 0, sizeof(bufs));
// First buffer = Only Operand of Unary op
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
bufs[n_bufs].fd = src0_buf->fd;
bufs[n_bufs].ptr = src0->data;
bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[n_bufs].size = ggml_nbytes(src0);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
++n_bufs;
if (src1) {
// Second buffer = Second Operand of Binary op
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
bufs[n_bufs].fd = src1_buf->fd;
bufs[n_bufs].ptr = src1->data;
bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[n_bufs].size = ggml_nbytes(src1);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
}
// Second or third buffer = Output Activations. We'll handle DSP
// Second buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
bufs[n_bufs].fd = dst_buf->fd;
bufs[n_bufs].ptr = dst->data;
bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[n_bufs].size = ggml_nbytes(dst);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
++n_bufs;
// Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess;
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
if (src1) {
hex_dump_dspbuf(src1, &bufs[1]);
hex_dump_dspbuf(dst, &bufs[2]);
} else {
hex_dump_dspbuf(dst, &bufs[1]);
}
}
}
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
// Bump pending flag (cleared in the callback once we get the responce)
sess->op_pending++; // atomic inc
int err = dspqueue_write(sess->queue,
0, // flags - the framework will autoset this
n_bufs, // number of buffers
bufs, // buffer references
sizeof(req),
(const uint8_t *) &req, // Message
1000000); // Timeout
if (0 != err) {
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
}
}
if (opt_opsync) {
while (sess->op_pending) {
;
}
}
t2 = ggml_time_us();
if (src1) {
HEX_PROFILE(
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u "
"(%f) call-usec %llu\n",
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
} else {
HEX_PROFILE(
"ggml-hex: %s %s %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) call-usec "
"%llu\n",
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
}
}
static void ggml_hexagon_rope(const struct ggml_tensor * op, uint32_t flags) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * src2 = op->src[2];
const struct ggml_tensor * dst = op;
uint64_t t1 = 0;
uint64_t t2 = 0;
t1 = ggml_time_us();
// Construct HTP message
htp_general_req req;
memset(&req, 0, sizeof(htp_general_req));
memcpy(&req.op_params, &op->op_params, sizeof(op->op_params));
req.flags = flags;
req.op = HTP_OP_ROPE;
init_htp_tensor(&req.dst, dst);
init_htp_tensor(&req.src0, src0);
init_htp_tensor(&req.src1, src1);
if (src2) {
init_htp_tensor(&req.src2, src2);
}
// Use opmask to override flags
if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) {
req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
}
if (!(opt_opmask & HTP_OPMASK_COMPUTE)) {
req.flags |= HTP_OPFLAGS_SKIP_COMPUTE;
}
dspqueue_buffer bufs[4];
int n_bufs = 0;
memset(bufs, 0, sizeof(bufs));
// First buffer
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src0_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src0->buffer->context);
bufs[n_bufs].fd = src0_buf->fd;
bufs[n_bufs].ptr = src0->data;
bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base;
bufs[n_bufs].size = ggml_nbytes(src0);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP;
++n_bufs;
// Second buffer
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src1_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src1->buffer->context);
bufs[n_bufs].fd = src1_buf->fd;
bufs[n_bufs].ptr = src1->data;
bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base;
bufs[n_bufs].size = ggml_nbytes(src1);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
if (src2) {
// Third buffer
// This is a buffer that the CPU writes and the DSP reads, so we'll
// need to flush CPU caches and invalidate DSP ones. On platforms
// with I/O coherency support the framework will automatically skip
// cache operations where possible.
auto src2_buf = static_cast<ggml_backend_hexagon_buffer_context *>(src2->buffer->context);
bufs[n_bufs].fd = src2_buf->fd;
bufs[n_bufs].ptr = src2->data;
bufs[n_bufs].offset = (uint8_t *) src2->data - src2_buf->base;
bufs[n_bufs].size = ggml_nbytes(src2);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference
DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP
++n_bufs;
}
// Final buffer = Output Activations. We'll handle DSP
// Second buffer = Output Activations. We'll handle DSP
// cache maintenance in the response message but need to flush
// CPU caches to ensure any previously written dirty lines are
// written out before writes from the DSP start.
auto dst_buf = static_cast<ggml_backend_hexagon_buffer_context *>(dst->buffer->context);
bufs[n_bufs].fd = dst_buf->fd;
bufs[n_bufs].ptr = dst->data;
bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base;
bufs[n_bufs].size = ggml_nbytes(dst);
bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER);
++n_bufs;
// Primary DSP session from the src0 tensor
ggml_hexagon_session * sess = src0_buf->sess;
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op),
names, dims, types, strides, buffs, req.flags);
if (opt_verbose > 1) {
hex_dump_dspbuf(src0, &bufs[0]);
if (src1) {
hex_dump_dspbuf(src1, &bufs[1]);
hex_dump_dspbuf(dst, &bufs[2]);
} else {
hex_dump_dspbuf(dst, &bufs[1]);
}
}
}
if ((opt_opmask & HTP_OPMASK_QUEUE)) {
// Bump pending flag (cleared in the callback once we get the responce)
sess->op_pending++; // atomic inc
int err = dspqueue_write(sess->queue,
0, // flags - the framework will autoset this
n_bufs, // number of buffers
bufs, // buffer references
sizeof(req),
(const uint8_t *) &req, // Message
1000000); // Timeout
if (0 != err) {
GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err);
}
}
if (opt_opsync) {
while (sess->op_pending) {
;
}
}
t2 = ggml_time_us();
if (src2) {
HEX_PROFILE(
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles "
"%u op-pkts %u (%f) call-usec %llu\n",
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], src2->name, (uint32_t) src2->ne[0], (uint32_t) src2->ne[1],
(uint32_t) src2->ne[2], (uint32_t) src2->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
} else {
HEX_PROFILE(
"ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u "
"(%f) call-usec %llu\n",
sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1],
(uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts,
(float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1);
}
}
static const char * ggml_backend_hexagon_name(ggml_backend_t backend) {
auto sess = static_cast<ggml_hexagon_session *>(backend->context);
return sess->name.c_str();
}
static void ggml_backend_hexagon_free(ggml_backend_t backend) {
// we just need to delete the backend here
// the sessions are allocated & freed as part of the registry
delete backend;
}
static inline bool op_reuse_src1(const ggml_tensor * op1, const ggml_tensor * op0) {
return (op0 && op0->src[1] == op1->src[1]);
}
// scan the graph and figure out last compute op index
static inline int last_compute_op(ggml_cgraph * graph) {
int last;
for (int i = 0; i < graph->n_nodes; ++i) {
ggml_tensor * node = graph->nodes[i];
switch (node->op) {
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_MUL:
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_RMS_NORM:
case GGML_OP_GLU:
case GGML_OP_ADD_ID:
last = i;
break;
default:
break;
}
}
return last;
}
static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
auto sess = static_cast<ggml_hexagon_session *>(backend->context);
HEX_VERBOSE("ggml-hex: %s graph-compute n_nodes %d\n", sess->name.c_str(), graph->n_nodes);
const int last = last_compute_op(graph);
const struct ggml_tensor * prev_quant_op = nullptr; // prev executed op with quantizer
for (int i = 0; i < graph->n_nodes; ++i) {
ggml_tensor * node = graph->nodes[i];
uint32_t flags = 0;
// skip quantizer if src1 is reused
if (op_reuse_src1(node, prev_quant_op)) {
flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
}
// ask for early notification for the last Op
if (i == last) {
flags |= HTP_OPFLAGS_EARLY_WAKEUP;
}
switch (node->op) {
case GGML_OP_MUL_MAT:
ggml_hexagon_mul_mat(node, flags);
prev_quant_op = node;
break;
case GGML_OP_MUL_MAT_ID:
ggml_hexagon_mul_mat_id(node, flags);
prev_quant_op = node;
break;
case GGML_OP_MUL:
case GGML_OP_ADD:
case GGML_OP_SUB:
ggml_hexagon_binary(node, flags);
break;
case GGML_OP_ADD_ID:
ggml_hexagon_add_id(node, flags);
break;
case GGML_OP_RMS_NORM:
ggml_hexagon_unary(node, flags);
break;
case GGML_OP_UNARY:
if (ggml_get_unary_op(node) == GGML_UNARY_OP_SILU) {
ggml_hexagon_unary(node, flags);
}
break;
case GGML_OP_GLU:
if ((ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU) ||
(ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU_OAI)) {
ggml_hexagon_unary(node, flags);
}
break;
case GGML_OP_SOFT_MAX:
ggml_hexagon_unary(node, flags);
break;
case GGML_OP_ROPE:
ggml_hexagon_rope(node, flags);
break;
// non-compute ops
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
default:
GGML_ABORT("\nggml-hex: graph-compute %s is not supported\n", ggml_op_desc(node));
}
}
// Wait until all pending ops complete
while (sess->op_pending) {
;
}
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_hexagon_synchronize(ggml_backend_t backend) {
auto sess = static_cast<ggml_hexagon_session *>(backend->context);
HEX_VERBOSE("ggml-hex: %s synchronize\n", sess->name.c_str());
// Wait until all pending ops complete
while (sess->op_pending) {
;
}
}
struct node_info {
ggml_tensor * node;
std::vector<ggml_tensor *> fused;
ggml_op op() const {
return node->op;
}
const ggml_tensor * dst() const {
return fused.empty() ? node : fused.back();
}
const ggml_tensor * src0() const {
return node->src[0];
}
const ggml_tensor * src1() const {
return node->src[1];
}
bool is_empty() const {
return ggml_op_is_empty(node->op);
}
void add_fused(ggml_tensor * t) {
fused.push_back(t);
}
bool stackable() const {
switch (this->op()) {
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
return ggml_is_quantized(this->src0()->type);
default:
return false;
}
}
bool same_input(const node_info& n) const {
return n.src1() == this->src1();
}
};
static std::vector<int> ggml_hexagon_graph_optimize_reorder(const std::vector<node_info> & nodes) {
const int n = nodes.size();
std::vector<int> res;
res.reserve(n);
std::vector<bool> used(n, false);
// The main goal here is to stack the MUL_MAT ops with the same src1 input.
// This allows use to reuse dynamically quantized src1 in VTCM.
// TODO: the current version might do incorrect reodering in cases where quantized src0
// input is an output of another Op.
for (int i0 = 0; i0 < n; i0++) {
if (used[i0]) {
continue;
}
res.push_back(i0);
const auto & node0 = nodes[i0];
if (!node0.stackable()) {
continue;
}
// that many nodes forward to search for stackable nodes that can reuse VTCM
constexpr int N_FORWARD = 8;
for (int i1 = i0 + 1; i1 < i0 + N_FORWARD && i1 < n; i1++) {
if (used[i1]) {
continue;
}
const auto & node1 = nodes[i1];
if (node1.stackable() && node1.same_input(node0)) {
res.push_back(i1);
used[i1] = true;
}
}
}
return res;
}
static void ggml_backend_hexagon_graph_optimize(ggml_backend_t backend, ggml_cgraph * gf) {
const int n = gf->n_nodes;
constexpr int MAX_FUSE = 16;
enum ggml_op ops[MAX_FUSE];
std::vector<node_info> nodes;
nodes.reserve(gf->n_nodes);
// fuse nodes:
// we don't want to make reorders that break fusing, so we first pack all fusable tensors
// and perform the reorder over the fused nodes. after the reorder is done, we unfuse
for (int i = 0; i < n; i++) {
node_info node = {
/*.node =*/ gf->nodes[i],
/*.fused =*/ {},
};
// fuse only ops that start with these operations
// can be expanded when needed
if (node.op() == GGML_OP_ADD ||
node.op() == GGML_OP_NORM ||
node.op() == GGML_OP_RMS_NORM) {
ops[0] = node.op();
int f = i + 1;
while (f < n && f < i + MAX_FUSE) {
// conservatively allow fusing only these ops
// can be expanded when needed
if (gf->nodes[f]->op != GGML_OP_ADD &&
gf->nodes[f]->op != GGML_OP_MUL &&
gf->nodes[f]->op != GGML_OP_NORM &&
gf->nodes[f]->op != GGML_OP_RMS_NORM) {
break;
}
ops[f - i] = gf->nodes[f]->op;
f++;
}
f -= i;
for (; f > 1; f--) {
if (ggml_can_fuse(gf, i, ops, f)) {
break;
}
}
// add the fused tensors into the node info so we can unfuse them later
for (int k = 1; k < f; k++) {
++i;
// the .dst() becomes the last fused tensor
node.add_fused(gf->nodes[i]);
}
}
nodes.push_back(std::move(node));
}
const auto order = ggml_hexagon_graph_optimize_reorder(nodes);
// unfuse
{
int j = 0;
for (const auto i : order) {
const auto & node = nodes[i];
gf->nodes[j++] = node.node;
for (auto * fused : node.fused) {
gf->nodes[j++] = fused;
}
}
}
}
static struct ggml_backend_i hexagon_backend_i = {
/* .get_name = */ ggml_backend_hexagon_name,
/* .free = */ ggml_backend_hexagon_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ ggml_backend_hexagon_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_hexagon_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .graph_optimize = */ ggml_backend_hexagon_graph_optimize,
};
static ggml_guid_t ggml_backend_hexagon_guid() {
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11 };
return &guid;
}
bool ggml_backend_is_hexagon(ggml_backend_t backend) {
return backend && backend->iface.get_name == ggml_backend_hexagon_name;
}
// device interface
static ggml_backend_t ggml_backend_hexagon_device_init(ggml_backend_dev_t dev, const char * params) {
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
return new ggml_backend{
/* .guid = */ ggml_backend_hexagon_guid(),
/* .interface = */ hexagon_backend_i,
/* .device = */ dev,
/* .context = */ sess,
};
GGML_UNUSED(params);
}
static const char * ggml_backend_hexagon_device_get_name(ggml_backend_dev_t dev) {
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
return sess->name.c_str();
GGML_UNUSED(dev);
}
static const char * ggml_backend_hexagon_device_get_description(ggml_backend_dev_t dev) {
return "Hexagon";
GGML_UNUSED(dev);
}
static void ggml_backend_hexagon_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
// ~2GB per session for now
*free = 2ULL * 1024 * 1024 * 1024;
*total = *free;
GGML_UNUSED(dev);
}
static enum ggml_backend_dev_type ggml_backend_hexagon_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_GPU;
GGML_UNUSED(dev);
}
static void ggml_backend_hexagon_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_hexagon_device_get_name(dev);
props->description = ggml_backend_hexagon_device_get_description(dev);
props->type = ggml_backend_hexagon_device_get_type(dev);
ggml_backend_hexagon_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ true,
/* .host_buffer = */ (bool) opt_hostbuf,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
static ggml_backend_buffer_type_t ggml_backend_hexagon_device_get_buffer_type(ggml_backend_dev_t dev) {
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
return &sess->buffer_type;
}
static ggml_backend_buffer_type_t ggml_backend_hexagon_device_get_repack_buffer_type(ggml_backend_dev_t dev) {
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
return &sess->repack_buffer_type;
}
static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
auto sess = static_cast<ggml_hexagon_session *>(dev->context);
bool supp = false;
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
supp = true;
break;
case GGML_OP_MUL_MAT:
supp = ggml_hexagon_supported_mul_mat(sess, op);
break;
case GGML_OP_MUL_MAT_ID:
supp = ggml_hexagon_supported_mul_mat_id(sess, op);
break;
case GGML_OP_MUL:
case GGML_OP_ADD:
case GGML_OP_SUB:
supp = ggml_hexagon_supported_binary(sess, op);
break;
case GGML_OP_ADD_ID:
supp = ggml_hexagon_supported_add_id(sess, op);
break;
case GGML_OP_RMS_NORM:
supp = ggml_hexagon_supported_unary(sess, op);
break;
case GGML_OP_SOFT_MAX:
supp = ggml_hexagon_supported_softmax(sess, op);
break;
case GGML_OP_UNARY:
if (ggml_get_unary_op(op) == GGML_UNARY_OP_SILU) {
supp = ggml_hexagon_supported_activations(sess, op);
}
break;
case GGML_OP_GLU:
if ((ggml_get_glu_op(op) == GGML_GLU_OP_SWIGLU) /* || (ggml_get_glu_op(op) == GGML_GLU_OP_SWIGLU_OAI) */) {
supp = ggml_hexagon_supported_activations(sess, op);
}
break;
case GGML_OP_ROPE:
supp = ggml_hexagon_supported_rope(sess, op);
break;
default:
break;
}
if (opt_verbose) {
char dims[64 * GGML_MAX_SRC];
char strides[64 * GGML_MAX_SRC];
char types[16 * GGML_MAX_SRC];
char buffs[64 * GGML_MAX_SRC];
char names[64 * GGML_MAX_SRC];
hex_format_op_dims(dims, op);
hex_format_op_strides(strides, op);
hex_format_op_types(types, op);
hex_format_op_buffs(buffs, op);
hex_format_op_names(names, op);
HEX_VERBOSE("ggml-hex: %s device-supports-op %s : %s : %s : %s : %s : %s : (%d)\n", sess->name.c_str(),
ggml_op_name(op->op), names, dims, types, strides, buffs, (int) supp);
}
return supp;
GGML_UNUSED(dev);
}
static bool ggml_backend_hexagon_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_alignment != ggml_backend_hexagon_buffer_type_get_alignment) {
return false;
}
auto s0 = static_cast<ggml_hexagon_session *>(dev->context);
auto s1 = static_cast<ggml_backend_hexagon_buffer_type_context *>(buft->context)->sess;
// Need session/domain-id for buffers to be compatible
bool supp = (s0->session_id == s1->session_id);
HEX_VERBOSE("ggml-hex: %s device-supports-buft %s (%d)\n", s0->name.c_str(), s1->name.c_str(), (int) supp);
return supp;
}
static ggml_backend_buffer_type_t * ggml_backend_hexagon_device_get_extra_buffers_type(ggml_backend_dev_t dev) {
auto s0 = static_cast<ggml_hexagon_session *>(dev->context);
HEX_VERBOSE("ggml-hex: device-get-extra-buft : %s \n", s0->name.c_str());
static ggml_backend_buffer_type_t bufts[2];
bufts[0] = ggml_backend_hexagon_device_get_repack_buffer_type(dev);
bufts[1] = NULL;
return bufts;
}
static const struct ggml_backend_device_i ggml_backend_hexagon_device_i = {
/* .get_name = */ ggml_backend_hexagon_device_get_name,
/* .get_description = */ ggml_backend_hexagon_device_get_description,
/* .get_memory = */ ggml_backend_hexagon_device_get_memory,
/* .get_type = */ ggml_backend_hexagon_device_get_type,
/* .get_props = */ ggml_backend_hexagon_device_get_props,
/* .init_backend = */ ggml_backend_hexagon_device_init,
/* .get_buffer_type = */ ggml_backend_hexagon_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL, // ggml_backend_hexagon_device_get_host_buffer_type,
/* .buffer_from_host_ptr = */ NULL, // ggml_backend_hexagon_device_buffer_from_ptr,
/* .supports_op = */ ggml_backend_hexagon_device_supports_op,
/* .supports_buft = */ ggml_backend_hexagon_device_supports_buft,
/* .offload_op = */ NULL, // ggml_backend_hexagon_device_offload_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
//** backend registry
#define GGML_HEXAGON_MAX_SESSIONS 16
struct ggml_hexagon_registry {
ggml_hexagon_registry(ggml_backend_reg_t reg);
~ggml_hexagon_registry();
ggml_backend_device devices[GGML_HEXAGON_MAX_SESSIONS];
};
ggml_hexagon_registry::ggml_hexagon_registry(ggml_backend_reg_t reg) {
GGML_LOG_INFO("ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev %zu\n", opt_ndev);
if (!opt_arch) {
int err = get_hex_arch_ver(CDSP_DOMAIN_ID, &opt_arch);
if (err != 0) {
GGML_LOG_ERROR("ggml-hex: failed to query HTP version (err %d) defaulting to v73\n", err);
opt_arch = 73;
}
}
GGML_LOG_INFO("ggml-hex: Hexagon Arch version v%d\n", opt_arch);
// Create devices / sessions
for (size_t i = 0; i < opt_ndev; i++) {
devices[i].iface = ggml_backend_hexagon_device_i;
devices[i].reg = reg;
try {
devices[i].context = new ggml_hexagon_session(i);
} catch (std::exception const &exc) {
GGML_LOG_ERROR("ggml-hex: failed to create device/session %zu\n", i);
devices[i].context = nullptr;
}
}
}
ggml_hexagon_registry::~ggml_hexagon_registry() {
GGML_LOG_INFO("ggml-hex: releasing registry\n");
// Release devices / sessions
for (size_t i = 0; i < opt_ndev; i++) {
auto sess = static_cast<ggml_hexagon_session *>(devices[i].context);
delete sess;
}
}
static const char * ggml_backend_hexagon_reg_get_name(ggml_backend_reg_t reg) {
return "HTP";
GGML_UNUSED(reg);
}
static size_t ggml_backend_hexagon_reg_get_device_count(ggml_backend_reg_t reg) {
return opt_ndev;
GGML_UNUSED(reg);
}
static ggml_backend_dev_t ggml_backend_hexagon_reg_get_device(ggml_backend_reg_t reg, size_t index) {
auto hreg = static_cast<ggml_hexagon_registry *>(reg->context);
if (index >= opt_ndev || !hreg->devices[index].context) {
return nullptr;
}
return &hreg->devices[index];
}
static void * ggml_backend_hexagon_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
ggml_backend_dev_get_extra_bufts_t fct = ggml_backend_hexagon_device_get_extra_buffers_type;
return (void *) fct;
}
return NULL;
}
static void ggml_hexagon_init(ggml_backend_reg * reg) {
// Basic sanity checks to make sure definitions match
static_assert((unsigned int) HTP_TYPE_Q4_0 == (unsigned int) GGML_TYPE_Q4_0,
"please update hexagon_type to match ggml_type");
static_assert((unsigned int) HTP_TYPE_Q8_0 == (unsigned int) GGML_TYPE_Q8_0,
"please update hexagon_type to match ggml_type");
static_assert((unsigned int) HTP_TYPE_MXFP4 == (unsigned int) GGML_TYPE_MXFP4,
"please update hexagon_type to match ggml_type");
const char * str_verbose = getenv("GGML_HEXAGON_VERBOSE");
const char * str_hostbuf = getenv("GGML_HEXAGON_HOSTBUF");
opt_verbose = str_verbose ? atoi(str_verbose) : 0;
opt_profile = getenv("GGML_HEXAGON_PROFILE") != nullptr;
opt_etm = getenv("GGML_HEXAGON_ETM") != nullptr;
opt_experimental = getenv("GGML_HEXAGON_EXPERIMENTAL") != nullptr;
const char * str_opmask = getenv("GGML_HEXAGON_OPMASK");
if (str_opmask != nullptr) {
opt_opmask = strtoul(str_opmask, NULL, 0);
}
opt_opsync = getenv("GGML_HEXAGON_OPSYNC") != nullptr;
const char * str_ndev = getenv("GGML_HEXAGON_NDEV");
if (str_ndev) {
opt_ndev = strtoul(str_ndev, NULL, 0);
if (opt_ndev > GGML_HEXAGON_MAX_SESSIONS) {
opt_ndev = GGML_HEXAGON_MAX_SESSIONS;
}
}
const char * str_nhvx = getenv("GGML_HEXAGON_NHVX");
if (str_nhvx) {
opt_nhvx = strtoul(str_nhvx, NULL, 0);
}
const char * str_arch = getenv("GGML_HEXAGON_ARCH");
if (str_arch) {
if (str_arch[0] == 'v') {
str_arch++;
}
opt_arch = strtoul(str_arch, NULL, 0);
}
opt_hostbuf = str_hostbuf ? atoi(str_hostbuf) : 1;
reg->context = new ggml_hexagon_registry(reg);
HEX_VERBOSE("ggml-hex: size-of-general-req %zu size-of-general-rsp %zu\n", sizeof(struct htp_general_req),
sizeof(struct htp_general_rsp));
}
static const struct ggml_backend_reg_i ggml_backend_hexagon_reg_i = {
/* .get_name = */ ggml_backend_hexagon_reg_get_name,
/* .get_device_count = */ ggml_backend_hexagon_reg_get_device_count,
/* .get_device = */ ggml_backend_hexagon_reg_get_device,
/* .get_proc_address = */ ggml_backend_hexagon_get_proc_address,
};
ggml_backend_reg_t ggml_backend_hexagon_reg(void) {
static bool initialized = false;
static ggml_backend_reg reg = { /* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_hexagon_reg_i,
/* .context = */ NULL };
{
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_hexagon_init(&reg);
}
initialized = true;
}
return &reg;
}
GGML_BACKEND_DL_IMPL(ggml_backend_hexagon_reg)