#include #include #include #include #include #include #include #include #include #include #ifdef _WIN32 # include # ifndef _WINDOWS # define _WINDOWS # endif #else # include # include #endif #pragma clang diagnostic ignored "-Wnested-anon-types" #pragma clang diagnostic ignored "-Wgnu-anonymous-struct" #include "htp-utils.h" #include #include #include #define GGML_COMMON_IMPL_CPP #include "ggml-backend-impl.h" #include "ggml-common.h" #include "ggml-hexagon.h" #include "ggml-impl.h" #include "ggml-quants.h" #include "htp-msg.h" #include "htp_iface.h" static size_t opt_ndev = 1; static size_t opt_nhvx = 0; // use all static int opt_arch = 0; // autodetect static int opt_etm = 0; static int opt_verbose = 0; static int opt_profile = 0; static int opt_hostbuf = 1; static int opt_experimental = 0; // Enable all stages by default static int opt_opmask = HTP_OPMASK_QUEUE | HTP_OPMASK_QUANTIZE | HTP_OPMASK_COMPUTE; static int opt_opsync = 0; // synchronous ops #define HEX_VERBOSE(...) \ if (opt_verbose) GGML_LOG_DEBUG(__VA_ARGS__) #define HEX_PROFILE(...) \ if (opt_profile) GGML_LOG_INFO(__VA_ARGS__) static inline uint64_t hex_is_aligned(void * addr, uint32_t align) { return ((size_t) addr & (align - 1)) == 0; } static inline size_t hex_round_up(size_t n, size_t m) { return m * ((n + m - 1) / m); } static const char * status_to_str(uint32_t status) { switch (status) { case HTP_STATUS_OK: return "OK"; case HTP_STATUS_NO_SUPPORT: return "NO-SUPPORT"; case HTP_STATUS_INVAL_PARAMS: return "INVAL-PARAMS"; case HTP_STATUS_VTCM_TOO_SMALL: return "VTCM-TOO-SMALL"; case HTP_STATUS_INTERNAL_ERR: return "INTERNAL-ERROR"; default: return "UNKNOWN"; } } // ** debug helpers static inline int hex_format_tensor_dims(char * str, const struct ggml_tensor * t) { if (t->ne[2] == 1 && t->ne[3] == 1) { return sprintf(str, "%d:%d", (int) t->ne[0], (int) t->ne[1]); } else { return sprintf(str, "%d:%d:%d:%d", (int) t->ne[0], (int) t->ne[1], (int) t->ne[2], (int) t->ne[3]); } } static inline void hex_format_op_dims(char * str, const struct ggml_tensor * t) { char * p = str; // append src0 and src1 (if any) if (t->src[0]) { p += hex_format_tensor_dims(p, t->src[0]); for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) { p += sprintf(p, " x "); p += hex_format_tensor_dims(p, t->src[i]); } p += sprintf(p, " -> "); } // format self dims separately for better visual alignment char self[64]; hex_format_tensor_dims(self, t); p += sprintf(p, "%s", self); } static inline int hex_format_tensor_strides(char * str, const struct ggml_tensor * t) { const char * c = ggml_is_contiguous(t) ? "" : "!"; if (t->ne[2] == 1 && t->ne[3] == 1) { return sprintf(str, "%zu:%zu%s", (size_t) t->nb[0], (size_t) t->nb[1], c); } else { return sprintf(str, "%zu:%zu:%zu:%zu%s", (size_t) t->nb[0], (size_t) t->nb[1], (size_t) t->nb[2], (size_t) t->nb[3], c); } } static inline void hex_format_op_strides(char * str, const struct ggml_tensor * t) { char * p = str; // append src0 and src1 (if any) if (t->src[0]) { p += hex_format_tensor_strides(p, t->src[0]); for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) { p += sprintf(p, " x "); p += hex_format_tensor_strides(p, t->src[i]); } p += sprintf(p, " -> "); } // format self dims separately for better visual alignment char self[64]; hex_format_tensor_strides(self, t); p += sprintf(p, "%s", self); } static inline void hex_format_op_types(char * str, const struct ggml_tensor * t) { char * p = str; // append src0 and src1 (if any) if (t->src[0]) { p += sprintf(p, "%s", ggml_type_name(t->src[0]->type)); for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) { p += sprintf(p, " x "); p += sprintf(p, "%s", ggml_type_name(t->src[i]->type)); } p += sprintf(p, " -> "); } p += sprintf(p, "%s", ggml_type_name(t->type)); } static inline const char * hex_tensor_buff_name(const struct ggml_tensor * t) { if (t->buffer) { return ggml_backend_buffer_name(t->buffer); } return "NONE"; } static inline void hex_format_op_buffs(char * str, const struct ggml_tensor * t) { char * p = str; // append src0 and src1 (if any) if (t->src[0]) { p += sprintf(p, "%s", hex_tensor_buff_name(t->src[0])); for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) { p += sprintf(p, " x "); p += sprintf(p, "%s", hex_tensor_buff_name(t->src[i])); } p += sprintf(p, " -> "); } p += sprintf(p, "%s", hex_tensor_buff_name(t)); } static inline void hex_format_op_names(char * str, const struct ggml_tensor * t) { char * p = str; // append src0 and src1 (if any) if (t->src[0]) { p += sprintf(p, "%s", t->src[0]->name); for (int i = 1; i < GGML_MAX_SRC && t->src[i]; i++) { p += sprintf(p, " x "); p += sprintf(p, "%s", t->src[i]->name); } p += sprintf(p, " -> "); } p += sprintf(p, "%s", t->name); } // ** backend sessions struct ggml_hexagon_session { ggml_hexagon_session(int dev_id) noexcept(false); ~ggml_hexagon_session() noexcept(true); void allocate(int dev_id) noexcept(false); void release() noexcept(true); ggml_backend_buffer_type buffer_type; ggml_backend_buffer_type repack_buffer_type; std::string name; remote_handle64 handle; dspqueue_t queue; uint32_t session_id; uint32_t domain_id; uint64_t queue_id; int dev_id; bool valid_session; bool valid_handle; bool valid_queue; bool valid_iface; std::atomic op_pending; uint32_t prof_usecs; uint32_t prof_cycles; uint32_t prof_pkts; }; // Packet callback static void htp_packet_callback(dspqueue_t queue, AEEResult error, void * context) { auto sess = static_cast(context); // Repeatedly read packets from the queue until it's empty. We don't // necessarily get a separate callback for each packet, and new packets // may arrive while we're processing the previous one. while (1) { struct htp_general_rsp rsp; uint32_t rsp_size; uint32_t flags; struct dspqueue_buffer bufs[HTP_MAX_PACKET_BUFFERS]; uint32_t n_bufs; // Read packet from queue int err = dspqueue_read_noblock(queue, &flags, HTP_MAX_PACKET_BUFFERS, // Maximum number of buffer references &n_bufs, // Number of buffer references bufs, // Buffer references sizeof(rsp), // Max message length &rsp_size, // Message length (uint8_t *) &rsp); if (err == AEE_EWOULDBLOCK) { // Consumed all packets available for now return; } if (err != 0) { GGML_ABORT("ggml-hex: dspqueue_read_noblock failed: 0x%08x\n", (unsigned) err); } // Basic sanity checks if (rsp_size != sizeof(rsp)) { GGML_ABORT("ggml-hex: dspcall : bad response (size)\n"); } if (rsp.status != HTP_STATUS_OK) { GGML_LOG_ERROR("ggml-hex: dspcall : dsp-rsp: %s\n", status_to_str(rsp.status)); // TODO: handle errors } // FIXME: update profiling implementation sess->prof_usecs = rsp.prof_usecs; sess->prof_cycles = rsp.prof_cycles; sess->prof_pkts = rsp.prof_pkts; sess->op_pending--; // atomic dec } } // Error callback - simply terminates with an error. Used where we don't // expect errors. [[noreturn]] static void htp_error_callback(dspqueue_t queue, AEEResult error, void * context) { GGML_ABORT("ggml-hex: dspcall general error 0x%x: for queue %p\n", error, (void *) queue); } // ** backend buffers struct ggml_backend_hexagon_buffer_type_context { ggml_backend_hexagon_buffer_type_context(const std::string & name, ggml_hexagon_session * sess) { this->sess = sess; this->name = name; } ggml_hexagon_session * sess; std::string name; }; struct ggml_backend_hexagon_buffer_context { bool mmap_to(ggml_hexagon_session * s) { HEX_VERBOSE("ggml-hex: %s mmaping buffer: base %p domain-id %d session-id %d size %zu fd %d repack %d\n", s->name.c_str(), (void *) this->base, s->domain_id, s->session_id, this->size, this->fd, (int) this->repack); int err = fastrpc_mmap(s->domain_id, this->fd, (void *) this->base, 0, this->size, FASTRPC_MAP_FD); if (err != 0) { GGML_LOG_ERROR("ggml-hex: buffer mapping failed : domain_id %d size %zu fd %d error 0x%08x\n", s->domain_id, this->size, this->fd, (unsigned) err); return false; } return true; } bool mmap() { if (this->mapped) { return true; } if (!mmap_to(this->sess)) { return false; } this->mapped = true; return true; } void munmap() { if (!this->mapped) { return; } fastrpc_munmap(this->sess->domain_id, this->fd, this->base, this->size); this->mapped = false; } ggml_backend_hexagon_buffer_context(ggml_hexagon_session * sess, size_t size, bool repack) { size += 4 * 1024; // extra page for padding this->base = (uint8_t *) rpcmem_alloc2(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size); if (!this->base) { GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer : size %zu\n", sess->name.c_str(), size); throw std::runtime_error("ggml-hex: rpcmem_alloc failed (see log for details)"); } this->fd = rpcmem_to_fd(this->base); if (this->fd < 0) { GGML_LOG_ERROR("ggml-hex: %s failed to get FD for buffer %p\n", sess->name.c_str(), (void *) this->base); rpcmem_free(this->base); this->base = NULL; throw std::runtime_error("ggml-hex: rpcmem_to_fd failed (see log for details)"); } HEX_VERBOSE("ggml-hex: %s allocated buffer: base %p size %zu fd %d repack %d\n", sess->name.c_str(), (void *) this->base, size, this->fd, (int) repack); this->sess = sess; this->size = size; this->mapped = false; this->repack = repack; } ~ggml_backend_hexagon_buffer_context() { munmap(); if (this->base) { rpcmem_free(this->base); this->base = NULL; } } ggml_hexagon_session * sess; // primary session uint8_t * base; size_t size; int fd; bool mapped; // mmap is done bool repack; // repacked buffer }; static ggml_hexagon_session * ggml_backend_hexagon_buffer_get_sess(ggml_backend_buffer_t buffer) { return static_cast(buffer->buft->context)->sess; } static void ggml_backend_hexagon_buffer_free_buffer(ggml_backend_buffer_t buffer) { auto ctx = static_cast(buffer->context); delete ctx; } static void * ggml_backend_hexagon_buffer_get_base(ggml_backend_buffer_t buffer) { auto ctx = static_cast(buffer->context); return ctx->base; } static enum ggml_status ggml_backend_hexagon_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { auto ctx = static_cast(buffer->context); auto sess = ctx->sess; HEX_VERBOSE("ggml-hex: %s init-tensor %s : base %p data %p nbytes %zu usage %d repack %d\n", sess->name.c_str(), tensor->name, (void *) ctx->base, tensor->data, ggml_nbytes(tensor), (int) buffer->usage, (int) ctx->repack); if (tensor->view_src != NULL && tensor->view_offs == 0) { ; // nothing to do for the view } else { if (!ctx->mapped) { ctx->mmap(); } } return GGML_STATUS_SUCCESS; } // ======== Q4x4x2 ==================== struct x2_q4 { int v[2]; }; static x2_q4 unpack_q4(uint8_t v) { x2_q4 x = { (int) (v & 0x0f) - 8, (int) (v >> 4) - 8 }; return x; } static void dump_block_q4_0(const block_q4_0 * b, int i) { HEX_VERBOSE("ggml-hex: repack q4_0 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, unpack_q4(b->qs[0]).v[0], unpack_q4(b->qs[1]).v[0], unpack_q4(b->qs[2]).v[0], unpack_q4(b->qs[3]).v[0], unpack_q4(b->qs[12]).v[1], unpack_q4(b->qs[13]).v[1], unpack_q4(b->qs[14]).v[1], unpack_q4(b->qs[15]).v[1], GGML_FP16_TO_FP32(b->d)); } static void dump_packed_block_q4x4x2(const uint8_t * v, unsigned int i, size_t k) { static const int qk = QK_Q4_0x4x2; const int dblk_size = 8 * 2; // 8x __fp16 const int qblk_size = qk / 2; // int4 const int qrow_size = k / 2; // int4 (not padded) const uint8_t * v_q = v + 0; // quants first const uint8_t * v_d = v + qrow_size; // then scales const uint8_t * q = v_q + i * qblk_size; const ggml_half * d = (const ggml_half *) (v_d + i * dblk_size); HEX_VERBOSE("ggml-hex: repack q4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i, unpack_q4(q[0]).v[0], unpack_q4(q[1]).v[0], unpack_q4(q[2]).v[0], unpack_q4(q[3]).v[0], unpack_q4(q[60]).v[0], unpack_q4(q[61]).v[0], unpack_q4(q[62]).v[0], unpack_q4(q[63]).v[0], unpack_q4(q[124]).v[0], unpack_q4(q[125]).v[0], unpack_q4(q[126]).v[0], unpack_q4(q[127]).v[0], GGML_FP16_TO_FP32(d[0]), GGML_FP16_TO_FP32(d[1]), GGML_FP16_TO_FP32(d[2]), GGML_FP16_TO_FP32(d[3])); HEX_VERBOSE("ggml-hex: repack q4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i + 1, unpack_q4(q[0]).v[1], unpack_q4(q[1]).v[1], unpack_q4(q[2]).v[1], unpack_q4(q[3]).v[1], unpack_q4(q[60]).v[1], unpack_q4(q[61]).v[1], unpack_q4(q[62]).v[1], unpack_q4(q[63]).v[1], unpack_q4(q[124]).v[1], unpack_q4(q[125]).v[1], unpack_q4(q[126]).v[1], unpack_q4(q[127]).v[1], GGML_FP16_TO_FP32(d[4]), GGML_FP16_TO_FP32(d[5]), GGML_FP16_TO_FP32(d[6]), GGML_FP16_TO_FP32(d[7])); } static void unpack_q4_0_quants(uint8_t * qs, const block_q4_0 * x, unsigned int bi) { static const int qk = QK4_0; for (unsigned int i = 0; i < qk / 2; ++i) { const int x0 = (x->qs[i] & 0x0F); const int x1 = (x->qs[i] >> 4); qs[bi * qk + i + 0] = x0; qs[bi * qk + i + qk / 2] = x1; } } static void pack_q4_0_quants(block_q4_0 * x, const uint8_t * qs, unsigned int bi) { static const int qk = QK4_0; for (unsigned int i = 0; i < qk / 2; ++i) { const uint8_t x0 = qs[bi * qk + i + 0]; const uint8_t x1 = qs[bi * qk + i + qk / 2]; x->qs[i] = x0 | (x1 << 4); } } static void repack_row_q4x4x2(uint8_t * y, const block_q4_0 * x, int64_t k) { static const int qk = QK_Q4_0x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) const int dblk_size = 8 * 2; // 8x __fp16 const int qblk_size = qk / 2; // int4 const int qrow_size = k / 2; // int4 (not padded to blocks) uint8_t * y_q = y + 0; // quants first uint8_t * y_d = y + qrow_size; // then scales if (opt_verbose > 2) { for (int i = 0; i < nb; i++) { dump_block_q4_0(&x[i * 8 + 0], 0); dump_block_q4_0(&x[i * 8 + 1], 1); dump_block_q4_0(&x[i * 8 + 2], 2); dump_block_q4_0(&x[i * 8 + 3], 3); dump_block_q4_0(&x[i * 8 + 4], 4); dump_block_q4_0(&x[i * 8 + 5], 5); dump_block_q4_0(&x[i * 8 + 6], 6); dump_block_q4_0(&x[i * 8 + 7], 7); } } // Repack the quants for (int i = 0; i < nb; i++) { uint8_t qs[QK_Q4_0x4x2]; // unpacked quants unpack_q4_0_quants(qs, &x[i * 8 + 0], 0); unpack_q4_0_quants(qs, &x[i * 8 + 1], 1); unpack_q4_0_quants(qs, &x[i * 8 + 2], 2); unpack_q4_0_quants(qs, &x[i * 8 + 3], 3); unpack_q4_0_quants(qs, &x[i * 8 + 4], 4); unpack_q4_0_quants(qs, &x[i * 8 + 5], 5); unpack_q4_0_quants(qs, &x[i * 8 + 6], 6); unpack_q4_0_quants(qs, &x[i * 8 + 7], 7); uint8_t * q = y_q + (i * qblk_size); for (int j = 0; j < qk / 2; j++) { q[j] = (qs[j + 128] << 4) | qs[j]; } } // Repack the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Repack the scales ggml_half * d = (ggml_half *) (y_d + i * dblk_size); d[0] = x[i * 8 + 0].d; d[1] = x[i * 8 + 1].d; d[2] = x[i * 8 + 2].d; d[3] = x[i * 8 + 3].d; d[4] = x[i * 8 + 4].d; d[5] = x[i * 8 + 5].d; d[6] = x[i * 8 + 6].d; d[7] = x[i * 8 + 7].d; } if (opt_verbose > 1) { for (int i = 0; i < nb; i++) { dump_packed_block_q4x4x2(y, i, k); } } } static void unpack_row_q4x4x2(block_q4_0 * x, const uint8_t * y, int64_t k) { static const int qk = QK_Q4_0x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) const int dblk_size = 8 * 2; // 8x __fp16 const int qblk_size = qk / 2; // int4 const int qrow_size = k / 2; // int4 (not padded to blocks) const uint8_t * y_q = y + 0; // quants first const uint8_t * y_d = y + qrow_size; // then scales if (opt_verbose > 1) { for (int i = 0; i < nb; i++) { dump_packed_block_q4x4x2(y, i, k); } } // Unpack the quants for (int i = 0; i < nb; i++) { uint8_t qs[QK_Q4_0x4x2]; // unpacked quants const uint8_t * q = y_q + (i * qblk_size); for (int j = 0; j < qk / 2; j++) { qs[j] = q[j] & 0xf; qs[j + 128] = q[j] >> 4; } pack_q4_0_quants(&x[i * 8 + 0], qs, 0); pack_q4_0_quants(&x[i * 8 + 1], qs, 1); pack_q4_0_quants(&x[i * 8 + 2], qs, 2); pack_q4_0_quants(&x[i * 8 + 3], qs, 3); pack_q4_0_quants(&x[i * 8 + 4], qs, 4); pack_q4_0_quants(&x[i * 8 + 5], qs, 5); pack_q4_0_quants(&x[i * 8 + 6], qs, 6); pack_q4_0_quants(&x[i * 8 + 7], qs, 7); } // Repack the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Unpack the scales const ggml_half * d = (const ggml_half *) (y_d + i * dblk_size); x[i * 8 + 0].d = d[0]; x[i * 8 + 1].d = d[1]; x[i * 8 + 2].d = d[2]; x[i * 8 + 3].d = d[3]; x[i * 8 + 4].d = d[4]; x[i * 8 + 5].d = d[5]; x[i * 8 + 6].d = d[6]; x[i * 8 + 7].d = d[7]; } if (opt_verbose > 2) { for (int i = 0; i < nb; i++) { dump_block_q4_0(&x[i * 8 + 0], 0); dump_block_q4_0(&x[i * 8 + 1], 1); dump_block_q4_0(&x[i * 8 + 2], 2); dump_block_q4_0(&x[i * 8 + 3], 3); dump_block_q4_0(&x[i * 8 + 4], 4); dump_block_q4_0(&x[i * 8 + 5], 5); dump_block_q4_0(&x[i * 8 + 6], 6); dump_block_q4_0(&x[i * 8 + 7], 7); } } } static void init_row_q4x4x2(block_q4_0 * x, int64_t k) { static const int qk = QK_Q4_0x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) // Init the quants such that they unpack into zeros uint8_t qs[QK_Q4_0x4x2]; // unpacked quants memset(qs, 8, sizeof(qs)); for (int i = 0; i < nb; i++) { pack_q4_0_quants(&x[i * 8 + 0], qs, 0); pack_q4_0_quants(&x[i * 8 + 1], qs, 1); pack_q4_0_quants(&x[i * 8 + 2], qs, 2); pack_q4_0_quants(&x[i * 8 + 3], qs, 3); pack_q4_0_quants(&x[i * 8 + 4], qs, 4); pack_q4_0_quants(&x[i * 8 + 5], qs, 5); pack_q4_0_quants(&x[i * 8 + 6], qs, 6); pack_q4_0_quants(&x[i * 8 + 7], qs, 7); } // Init the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Unpack the scales x[i * 8 + 0].d = 0; x[i * 8 + 1].d = 0; x[i * 8 + 2].d = 0; x[i * 8 + 3].d = 0; x[i * 8 + 4].d = 0; x[i * 8 + 5].d = 0; x[i * 8 + 6].d = 0; x[i * 8 + 7].d = 0; } } // repack q4_0 data into q4x4x2 tensor static void repack_q4_0_q4x4x2(ggml_tensor * t, const void * data, size_t size) { int64_t nrows = ggml_nrows(t); size_t row_size = ggml_row_size(t->type, t->ne[0]); size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q4_0x4x2)); // extra elements for the pad size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any) void * buf_pd = ggml_aligned_malloc(row_size_pd); GGML_ASSERT(buf_pd != NULL); void * buf_rp = ggml_aligned_malloc(row_size_rp); GGML_ASSERT(buf_rp != NULL); HEX_VERBOSE("ggml-hex: repack-q4_0-q4x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size, t->ne[0], nrows, row_size); init_row_q4x4x2((block_q4_0 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros for (int64_t i = 0; i < nrows; i++) { const uint8_t * src = (const uint8_t *) data + (i * row_size); uint8_t * dst = (uint8_t *) t->data + (i * row_size); memcpy(buf_pd, src, row_size); repack_row_q4x4x2((uint8_t *) buf_rp, (const block_q4_0 *) buf_pd, t->ne[0]); memcpy(dst, buf_rp, row_size); } ggml_aligned_free(buf_pd, row_size_pd); ggml_aligned_free(buf_rp, row_size_rp); } // repack q4x4x2 tensor into q4_0 data static void repack_q4x4x2_q4_0(void * data, const ggml_tensor * t, size_t size) { int64_t nrows = ggml_nrows(t); size_t row_size = ggml_row_size(t->type, t->ne[0]); size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q4_0x4x2)); // extra elements for the pad size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any) void * buf_pd = ggml_aligned_malloc(row_size_pd); GGML_ASSERT(buf_pd != NULL); void * buf_rp = ggml_aligned_malloc(row_size_rp); GGML_ASSERT(buf_rp != NULL); HEX_VERBOSE("ggml-hex: repack-q4x4x2-q4_0 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size, t->ne[0], nrows, row_size); memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros for (int64_t i = 0; i < nrows; i++) { const uint8_t * src = (const uint8_t *) t->data + (i * row_size); uint8_t * dst = (uint8_t *) data + (i * row_size); memcpy(buf_pd, src, row_size); unpack_row_q4x4x2((block_q4_0 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]); memcpy(dst, buf_rp, row_size); } ggml_aligned_free(buf_pd, row_size_pd); ggml_aligned_free(buf_rp, row_size_rp); } // ======== Q8x4x2 ==================== static void dump_block_q8_0(const block_q8_0 * b, int i) { HEX_VERBOSE("ggml-hex: repack q8_0 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, b->qs[0], b->qs[1], b->qs[2], b->qs[3], b->qs[28], b->qs[29], b->qs[30], b->qs[31], GGML_FP16_TO_FP32(b->d)); } static void dump_packed_block_q8x4x2(const uint8_t * v, unsigned int i, size_t k) { static const int qk = QK_Q8_0x4x2; const int dblk_size = 8 * 2; // 8x __fp16 const int qblk_size = qk; // int8 const int qrow_size = k; // int8 (not padded) const uint8_t * v_q = v + 0; // quants first const uint8_t * v_d = v + qrow_size; // then scales const uint8_t * q = v_q + i * qblk_size; const ggml_half * d = (const ggml_half *) (v_d + i * dblk_size); HEX_VERBOSE("ggml-hex: repack q8x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i, q[0], q[1], q[2], q[3], q[60], q[61], q[62], q[63], q[124], q[125], q[126], q[127], GGML_FP16_TO_FP32(d[0]), GGML_FP16_TO_FP32(d[1]), GGML_FP16_TO_FP32(d[2]), GGML_FP16_TO_FP32(d[3])); HEX_VERBOSE("ggml-hex: repack q8x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i + 1, q[128], q[129], q[130], q[131], q[192], q[193], q[194], q[195], q[252], q[253], q[254], q[255], GGML_FP16_TO_FP32(d[4]), GGML_FP16_TO_FP32(d[5]), GGML_FP16_TO_FP32(d[6]), GGML_FP16_TO_FP32(d[7])); } static void unpack_q8_0_quants(uint8_t * qs, const block_q8_0 * x, unsigned int bi) { static const int qk = QK8_0; for (unsigned int i = 0; i < qk; ++i) { qs[bi * qk + i] = x->qs[i]; } } static void pack_q8_0_quants(block_q8_0 * x, const uint8_t * qs, unsigned int bi) { static const int qk = QK8_0; for (unsigned int i = 0; i < qk; ++i) { x->qs[i] = qs[bi * qk + i]; } } static void repack_row_q8x4x2(uint8_t * y, const block_q8_0 * x, int64_t k) { static const int qk = QK_Q8_0x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) const int dblk_size = 8 * 2; // 8x __fp16 const int qblk_size = qk; // int8 const int qrow_size = k; // int8 (not padded to blocks) uint8_t * y_q = y + 0; // quants first uint8_t * y_d = y + qrow_size; // then scales if (opt_verbose > 2) { for (int i = 0; i < nb; i++) { dump_block_q8_0(&x[i * 8 + 0], 0); dump_block_q8_0(&x[i * 8 + 1], 1); dump_block_q8_0(&x[i * 8 + 2], 2); dump_block_q8_0(&x[i * 8 + 3], 3); dump_block_q8_0(&x[i * 8 + 4], 4); dump_block_q8_0(&x[i * 8 + 5], 5); dump_block_q8_0(&x[i * 8 + 6], 6); dump_block_q8_0(&x[i * 8 + 7], 7); } } // Repack the quants for (int i = 0; i < nb; i++) { uint8_t qs[QK_Q8_0x4x2]; // unpacked quants unpack_q8_0_quants(qs, &x[i * 8 + 0], 0); unpack_q8_0_quants(qs, &x[i * 8 + 1], 1); unpack_q8_0_quants(qs, &x[i * 8 + 2], 2); unpack_q8_0_quants(qs, &x[i * 8 + 3], 3); unpack_q8_0_quants(qs, &x[i * 8 + 4], 4); unpack_q8_0_quants(qs, &x[i * 8 + 5], 5); unpack_q8_0_quants(qs, &x[i * 8 + 6], 6); unpack_q8_0_quants(qs, &x[i * 8 + 7], 7); uint8_t * q = y_q + (i * qblk_size); for (int j = 0; j < qk; j++) { q[j] = qs[j]; } } // Repack the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Repack the scales ggml_half * d = (ggml_half *) (y_d + i * dblk_size); d[0] = x[i * 8 + 0].d; d[1] = x[i * 8 + 1].d; d[2] = x[i * 8 + 2].d; d[3] = x[i * 8 + 3].d; d[4] = x[i * 8 + 4].d; d[5] = x[i * 8 + 5].d; d[6] = x[i * 8 + 6].d; d[7] = x[i * 8 + 7].d; } if (opt_verbose > 1) { for (int i = 0; i < nb; i++) { dump_packed_block_q8x4x2(y, i, k); } } } static void unpack_row_q8x4x2(block_q8_0 * x, const uint8_t * y, int64_t k) { static const int qk = QK_Q8_0x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) const int dblk_size = 8 * 2; // 8x __fp16 const int qblk_size = qk; // int8 const int qrow_size = k; // int8 (not padded to blocks) const uint8_t * y_q = y + 0; // quants first const uint8_t * y_d = y + qrow_size; // then scales if (opt_verbose > 1) { for (int i = 0; i < nb; i++) { dump_packed_block_q8x4x2(y, i, k); } } // Unpack the quants for (int i = 0; i < nb; i++) { uint8_t qs[QK_Q4_0x4x2]; // unpacked quants const uint8_t * q = y_q + (i * qblk_size); for (int j = 0; j < qk; j++) { qs[j] = q[j]; } pack_q8_0_quants(&x[i * 8 + 0], qs, 0); pack_q8_0_quants(&x[i * 8 + 1], qs, 1); pack_q8_0_quants(&x[i * 8 + 2], qs, 2); pack_q8_0_quants(&x[i * 8 + 3], qs, 3); pack_q8_0_quants(&x[i * 8 + 4], qs, 4); pack_q8_0_quants(&x[i * 8 + 5], qs, 5); pack_q8_0_quants(&x[i * 8 + 6], qs, 6); pack_q8_0_quants(&x[i * 8 + 7], qs, 7); } // Repack the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q4_0x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Unpack the scales const ggml_half * d = (const ggml_half *) (y_d + i * dblk_size); x[i * 8 + 0].d = d[0]; x[i * 8 + 1].d = d[1]; x[i * 8 + 2].d = d[2]; x[i * 8 + 3].d = d[3]; x[i * 8 + 4].d = d[4]; x[i * 8 + 5].d = d[5]; x[i * 8 + 6].d = d[6]; x[i * 8 + 7].d = d[7]; } if (opt_verbose > 2) { for (int i = 0; i < nb; i++) { dump_block_q8_0(&x[i * 8 + 0], 0); dump_block_q8_0(&x[i * 8 + 1], 1); dump_block_q8_0(&x[i * 8 + 2], 2); dump_block_q8_0(&x[i * 8 + 3], 3); dump_block_q8_0(&x[i * 8 + 4], 4); dump_block_q8_0(&x[i * 8 + 5], 5); dump_block_q8_0(&x[i * 8 + 6], 6); dump_block_q8_0(&x[i * 8 + 7], 7); } } } static void init_row_q8x4x2(block_q8_0 * x, int64_t k) { static const int qk = QK_Q8_0x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) // Init the quants such that they unpack into zeros uint8_t qs[QK_Q8_0x4x2]; // unpacked quants memset(qs, 0, sizeof(qs)); for (int i = 0; i < nb; i++) { pack_q8_0_quants(&x[i * 8 + 0], qs, 0); pack_q8_0_quants(&x[i * 8 + 1], qs, 1); pack_q8_0_quants(&x[i * 8 + 2], qs, 2); pack_q8_0_quants(&x[i * 8 + 3], qs, 3); pack_q8_0_quants(&x[i * 8 + 4], qs, 4); pack_q8_0_quants(&x[i * 8 + 5], qs, 5); pack_q8_0_quants(&x[i * 8 + 6], qs, 6); pack_q8_0_quants(&x[i * 8 + 7], qs, 7); } // Init the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_Q8_0x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Unpack the scales x[i * 8 + 0].d = 0; x[i * 8 + 1].d = 0; x[i * 8 + 2].d = 0; x[i * 8 + 3].d = 0; x[i * 8 + 4].d = 0; x[i * 8 + 5].d = 0; x[i * 8 + 6].d = 0; x[i * 8 + 7].d = 0; } } // repack q8_0 data into q8x4x2 tensor static void repack_q8_0_q8x4x2(ggml_tensor * t, const void * data, size_t size) { int64_t nrows = ggml_nrows(t); size_t row_size = ggml_row_size(t->type, t->ne[0]); size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q8_0x4x2)); // extra elements for the pad size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any) void * buf_pd = ggml_aligned_malloc(row_size_pd); GGML_ASSERT(buf_pd != NULL); void * buf_rp = ggml_aligned_malloc(row_size_rp); GGML_ASSERT(buf_rp != NULL); HEX_VERBOSE("ggml-hex: repack-q8_0-q8x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size, t->ne[0], nrows, row_size); init_row_q8x4x2((block_q8_0 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros for (int64_t i = 0; i < nrows; i++) { const uint8_t * src = (const uint8_t *) data + (i * row_size); uint8_t * dst = (uint8_t *) t->data + (i * row_size); memcpy(buf_pd, src, row_size); repack_row_q8x4x2((uint8_t *) buf_rp, (const block_q8_0 *) buf_pd, t->ne[0]); memcpy(dst, buf_rp, row_size); } ggml_aligned_free(buf_pd, row_size_pd); ggml_aligned_free(buf_rp, row_size_rp); } // repack q8x4x2 tensor into q8_0 data static void repack_q8x4x2_q8_0(void * data, const ggml_tensor * t, size_t size) { int64_t nrows = ggml_nrows(t); size_t row_size = ggml_row_size(t->type, t->ne[0]); size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_Q8_0x4x2)); // extra elements for the pad size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any) void * buf_pd = ggml_aligned_malloc(row_size_pd); GGML_ASSERT(buf_pd != NULL); void * buf_rp = ggml_aligned_malloc(row_size_rp); GGML_ASSERT(buf_rp != NULL); HEX_VERBOSE("ggml-hex: repack-q8x4x2-q8_0 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size, t->ne[0], nrows, row_size); memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros for (int64_t i = 0; i < nrows; i++) { const uint8_t * src = (const uint8_t *) t->data + (i * row_size); uint8_t * dst = (uint8_t *) data + (i * row_size); memcpy(buf_pd, src, row_size); unpack_row_q8x4x2((block_q8_0 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]); memcpy(dst, buf_rp, row_size); } ggml_aligned_free(buf_pd, row_size_pd); ggml_aligned_free(buf_rp, row_size_rp); } // ======== MXFP4x4x2 ==================== struct x2_mxfp4 { int v[2]; }; static x2_mxfp4 unpack_mxfp4(uint8_t v) { x2_mxfp4 x; x.v[0] = kvalues_mxfp4[(v & 0x0f)]; x.v[1] = kvalues_mxfp4[(v >> 4)]; return x; } static void dump_block_mxfp4(const block_mxfp4 * b, int i) { HEX_VERBOSE("ggml-hex: repack mxfp4 %d: %d %d %d %d ... %d %d %d %d : %.6f\n", i, unpack_mxfp4(b->qs[0]).v[0], unpack_mxfp4(b->qs[1]).v[0], unpack_mxfp4(b->qs[2]).v[0], unpack_mxfp4(b->qs[3]).v[0], unpack_mxfp4(b->qs[12]).v[1], unpack_mxfp4(b->qs[13]).v[1], unpack_mxfp4(b->qs[14]).v[1], unpack_mxfp4(b->qs[15]).v[1], GGML_E8M0_TO_FP32_HALF(b->e)); } static void dump_packed_block_mxfp4x4x2(const uint8_t * v, unsigned int i, size_t k) { static const int qk = QK_MXFP4x4x2; const int eblk_size = 8 * 1; // 8x E8M0 const int qblk_size = qk / 2; // int4 const int qrow_size = k / 2; // int4 (not padded) const uint8_t * v_q = v + 0; // quants first const uint8_t * v_e = v + qrow_size; // then scales const uint8_t * q = v_q + i * qblk_size; const uint8_t * e = (const uint8_t *) (v_e + i * eblk_size); HEX_VERBOSE("ggml-hex: repack mxfp4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i, unpack_mxfp4(q[0]).v[0], unpack_mxfp4(q[1]).v[0], unpack_mxfp4(q[2]).v[0], unpack_mxfp4(q[3]).v[0], unpack_mxfp4(q[60]).v[0], unpack_mxfp4(q[61]).v[0], unpack_mxfp4(q[62]).v[0], unpack_mxfp4(q[63]).v[0], unpack_mxfp4(q[124]).v[0], unpack_mxfp4(q[125]).v[0], unpack_mxfp4(q[126]).v[0], unpack_mxfp4(q[127]).v[0], GGML_E8M0_TO_FP32_HALF(e[0]), GGML_E8M0_TO_FP32_HALF(e[1]), GGML_E8M0_TO_FP32_HALF(e[2]), GGML_E8M0_TO_FP32_HALF(e[3])); HEX_VERBOSE("ggml-hex: repack mxfp4x4x2-%d: %d %d %d %d ... %d %d %d %d ... %d %d %d %d : %.6f %.6f %.6f %.6f\n", i + 1, unpack_mxfp4(q[0]).v[1], unpack_mxfp4(q[1]).v[1], unpack_mxfp4(q[2]).v[1], unpack_mxfp4(q[3]).v[1], unpack_mxfp4(q[60]).v[1], unpack_mxfp4(q[61]).v[1], unpack_mxfp4(q[62]).v[1], unpack_mxfp4(q[63]).v[1], unpack_mxfp4(q[124]).v[1], unpack_mxfp4(q[125]).v[1], unpack_mxfp4(q[126]).v[1], unpack_mxfp4(q[127]).v[1], GGML_E8M0_TO_FP32_HALF(e[4]), GGML_E8M0_TO_FP32_HALF(e[5]), GGML_E8M0_TO_FP32_HALF(e[6]), GGML_E8M0_TO_FP32_HALF(e[7])); } static void unpack_mxfp4_quants(uint8_t * qs, const block_mxfp4 * x, unsigned int bi) { static const int qk = QK_MXFP4; for (unsigned int i = 0; i < qk / 2; ++i) { const uint8_t x0 = (x->qs[i] & 0x0F); const uint8_t x1 = (x->qs[i] >> 4); qs[bi * qk + i + 0] = x0; qs[bi * qk + i + qk / 2] = x1; } } static void pack_mxfp4_quants(block_mxfp4 * x, const uint8_t * qs, unsigned int bi) { static const int qk = QK4_0; for (unsigned int i = 0; i < qk / 2; ++i) { const uint8_t x0 = qs[bi * qk + i + 0]; const uint8_t x1 = qs[bi * qk + i + qk / 2]; x->qs[i] = x0 | (x1 << 4); } } static void repack_row_mxfp4x4x2(uint8_t * y, const block_mxfp4 * x, int64_t k) { static const int qk = QK_MXFP4x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) const int eblk_size = 8 * 1; // 8x E8M0 const int qblk_size = qk / 2; // int4 const int qrow_size = k / 2; // int4 (not padded to blocks) uint8_t * y_q = y + 0; // quants first uint8_t * y_e = y + qrow_size; // then scales if (opt_verbose > 2) { for (int i = 0; i < nb; i++) { dump_block_mxfp4(&x[i * 8 + 0], 0); dump_block_mxfp4(&x[i * 8 + 1], 1); dump_block_mxfp4(&x[i * 8 + 2], 2); dump_block_mxfp4(&x[i * 8 + 3], 3); dump_block_mxfp4(&x[i * 8 + 4], 4); dump_block_mxfp4(&x[i * 8 + 5], 5); dump_block_mxfp4(&x[i * 8 + 6], 6); dump_block_mxfp4(&x[i * 8 + 7], 7); } } // Repack the quants for (int i = 0; i < nb; i++) { uint8_t qs[QK_MXFP4x4x2]; // unpacked quants unpack_mxfp4_quants(qs, &x[i * 8 + 0], 0); unpack_mxfp4_quants(qs, &x[i * 8 + 1], 1); unpack_mxfp4_quants(qs, &x[i * 8 + 2], 2); unpack_mxfp4_quants(qs, &x[i * 8 + 3], 3); unpack_mxfp4_quants(qs, &x[i * 8 + 4], 4); unpack_mxfp4_quants(qs, &x[i * 8 + 5], 5); unpack_mxfp4_quants(qs, &x[i * 8 + 6], 6); unpack_mxfp4_quants(qs, &x[i * 8 + 7], 7); uint8_t * q = y_q + (i * qblk_size); for (int j = 0; j < qk / 2; j++) { q[j] = (qs[j + 128] << 4) | qs[j]; } } // Repack the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Repack the scales uint8_t * e = (uint8_t *) (y_e + i * eblk_size); e[0] = x[i * 8 + 0].e; e[1] = x[i * 8 + 1].e; e[2] = x[i * 8 + 2].e; e[3] = x[i * 8 + 3].e; e[4] = x[i * 8 + 4].e; e[5] = x[i * 8 + 5].e; e[6] = x[i * 8 + 6].e; e[7] = x[i * 8 + 7].e; } if (opt_verbose > 1) { for (int i = 0; i < nb; i++) { dump_packed_block_mxfp4x4x2(y, i, k); } } } static void unpack_row_mxfp4x4x2(block_mxfp4 * x, const uint8_t * y, int64_t k) { static const int qk = QK_MXFP4x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) const int eblk_size = 8 * 1; // 8x E8M0 const int qblk_size = qk / 2; // int4 const int qrow_size = k / 2; // int4 (not padded to blocks) const uint8_t * y_q = y + 0; // quants first const uint8_t * y_e = y + qrow_size; // then scales if (opt_verbose > 1) { for (int i = 0; i < nb; i++) { dump_packed_block_mxfp4x4x2(y, i, k); } } // Unpack the quants for (int i = 0; i < nb; i++) { uint8_t qs[QK_MXFP4x4x2]; // unpacked quants const uint8_t * q = y_q + (i * qblk_size); for (int j = 0; j < qk / 2; j++) { qs[j] = q[j] & 0xf; qs[j + 128] = q[j] >> 4; } pack_mxfp4_quants(&x[i * 8 + 0], qs, 0); pack_mxfp4_quants(&x[i * 8 + 1], qs, 1); pack_mxfp4_quants(&x[i * 8 + 2], qs, 2); pack_mxfp4_quants(&x[i * 8 + 3], qs, 3); pack_mxfp4_quants(&x[i * 8 + 4], qs, 4); pack_mxfp4_quants(&x[i * 8 + 5], qs, 5); pack_mxfp4_quants(&x[i * 8 + 6], qs, 6); pack_mxfp4_quants(&x[i * 8 + 7], qs, 7); } // Repack the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4_0x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Unpack the scales const uint8_t * e = (const uint8_t *) (y_e + i * eblk_size); x[i * 8 + 0].e = e[0]; x[i * 8 + 1].e = e[1]; x[i * 8 + 2].e = e[2]; x[i * 8 + 3].e = e[3]; x[i * 8 + 4].e = e[4]; x[i * 8 + 5].e = e[5]; x[i * 8 + 6].e = e[6]; x[i * 8 + 7].e = e[7]; } if (opt_verbose > 2) { for (int i = 0; i < nb; i++) { dump_block_mxfp4(&x[i * 8 + 0], 0); dump_block_mxfp4(&x[i * 8 + 1], 1); dump_block_mxfp4(&x[i * 8 + 2], 2); dump_block_mxfp4(&x[i * 8 + 3], 3); dump_block_mxfp4(&x[i * 8 + 4], 4); dump_block_mxfp4(&x[i * 8 + 5], 5); dump_block_mxfp4(&x[i * 8 + 6], 6); dump_block_mxfp4(&x[i * 8 + 7], 7); } } } static void init_row_mxfp4x4x2(block_mxfp4 * x, int64_t k) { static const int qk = QK_MXFP4x4x2; const int nb = (k + qk - 1) / qk; // number of blocks (padded) // Init the quants such that they unpack into zeros uint8_t qs[QK_MXFP4x4x2]; // unpacked quants memset(qs, 0, sizeof(qs)); for (int i = 0; i < nb; i++) { pack_mxfp4_quants(&x[i * 8 + 0], qs, 0); pack_mxfp4_quants(&x[i * 8 + 1], qs, 1); pack_mxfp4_quants(&x[i * 8 + 2], qs, 2); pack_mxfp4_quants(&x[i * 8 + 3], qs, 3); pack_mxfp4_quants(&x[i * 8 + 4], qs, 4); pack_mxfp4_quants(&x[i * 8 + 5], qs, 5); pack_mxfp4_quants(&x[i * 8 + 6], qs, 6); pack_mxfp4_quants(&x[i * 8 + 7], qs, 7); } // Init the scales // Note: Do not combine with the loop above. For tensor sizes not multiple of 256 (QK_MXFP4x4x2) // the last block is truncated and overriden by the scales. for (int i = 0; i < nb; i++) { // Unpack the scales x[i * 8 + 0].e = 0; x[i * 8 + 1].e = 0; x[i * 8 + 2].e = 0; x[i * 8 + 3].e = 0; x[i * 8 + 4].e = 0; x[i * 8 + 5].e = 0; x[i * 8 + 6].e = 0; x[i * 8 + 7].e = 0; } } // repack mxfp4 data into mxfp4x4x2 tensor static void repack_mxfp4_mxfp4x4x2(ggml_tensor * t, const void * data, size_t size) { int64_t nrows = ggml_nrows(t); size_t row_size = ggml_row_size(t->type, t->ne[0]); size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_MXFP4x4x2)); // extra elements for the pad size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any) void * buf_pd = ggml_aligned_malloc(row_size_pd); GGML_ASSERT(buf_pd != NULL); void * buf_rp = ggml_aligned_malloc(row_size_rp); GGML_ASSERT(buf_rp != NULL); HEX_VERBOSE("ggml-hex: repack-mxfp4-mxfp4x4x2 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size, t->ne[0], nrows, row_size); init_row_mxfp4x4x2((block_mxfp4 *) buf_pd, t->ne[0]); // init padded buffer to make sure the tail is all zeros for (int64_t i = 0; i < nrows; i++) { const uint8_t * src = (const uint8_t *) data + (i * row_size); uint8_t * dst = (uint8_t *) t->data + (i * row_size); memcpy(buf_pd, src, row_size); repack_row_mxfp4x4x2((uint8_t *) buf_rp, (const block_mxfp4 *) buf_pd, t->ne[0]); memcpy(dst, buf_rp, row_size); } ggml_aligned_free(buf_pd, row_size_pd); ggml_aligned_free(buf_rp, row_size_rp); } // repack mxfp4x4x2 tensor into mxfp4 data static void repack_mxfp4x4x2_mxfp4(void * data, const ggml_tensor * t, size_t size) { int64_t nrows = ggml_nrows(t); size_t row_size = ggml_row_size(t->type, t->ne[0]); size_t row_size_pd = ggml_row_size(t->type, hex_round_up(t->ne[0], QK_MXFP4x4x2)); // extra elements for the pad size_t row_size_rp = row_size * 2; // extra space for tmp pad (if any) void * buf_pd = ggml_aligned_malloc(row_size_pd); GGML_ASSERT(buf_pd != NULL); void * buf_rp = ggml_aligned_malloc(row_size_rp); GGML_ASSERT(buf_rp != NULL); HEX_VERBOSE("ggml-hex: repack-mxfp4x4x2-mxfp4 %s : data %p size %zu dims %ldx%ld row-size %zu\n", t->name, data, size, t->ne[0], nrows, row_size); memset(buf_pd, 0, row_size_pd); // clear-out padded buffer to make sure the tail is all zeros for (int64_t i = 0; i < nrows; i++) { const uint8_t * src = (const uint8_t *) t->data + (i * row_size); uint8_t * dst = (uint8_t *) data + (i * row_size); memcpy(buf_pd, src, row_size); unpack_row_mxfp4x4x2((block_mxfp4 *) buf_rp, (const uint8_t *) buf_pd, t->ne[0]); memcpy(dst, buf_rp, row_size); } ggml_aligned_free(buf_pd, row_size_pd); ggml_aligned_free(buf_rp, row_size_rp); } static void ggml_backend_hexagon_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context; auto sess = ctx->sess; HEX_VERBOSE("ggml-hex: %s set-tensor %s : data %p offset %zu size %zu\n", sess->name.c_str(), tensor->name, data, offset, size); switch (tensor->type) { case GGML_TYPE_Q4_0: GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); repack_q4_0_q4x4x2(tensor, data, size); break; case GGML_TYPE_Q8_0: GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); repack_q8_0_q8x4x2(tensor, data, size); break; case GGML_TYPE_MXFP4: GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); repack_mxfp4_mxfp4x4x2(tensor, data, size); break; default: memcpy((char *) tensor->data + offset, data, size); break; } } static void ggml_backend_hexagon_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context; auto sess = ctx->sess; HEX_VERBOSE("ggml-hex: %s get-tensor %s : data %p offset %zu size %zu\n", sess->name.c_str(), tensor->name, data, offset, size); switch (tensor->type) { case GGML_TYPE_Q4_0: GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); repack_q4x4x2_q4_0(data, tensor, size); break; case GGML_TYPE_Q8_0: GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); repack_q8x4x2_q8_0(data, tensor, size); break; case GGML_TYPE_MXFP4: GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); repack_mxfp4x4x2_mxfp4(data, tensor, size); break; default: memcpy(data, (const char *) tensor->data + offset, size); break; } } static bool ggml_backend_hexagon_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { GGML_UNUSED(buffer); GGML_UNUSED(src); GGML_UNUSED(dst); // we might optimize this later, for now take the slow path (ie get/set_tensor) return false; } static void ggml_backend_hexagon_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { auto ctx = (ggml_backend_hexagon_buffer_context *) buffer->context; auto sess = ctx->sess; HEX_VERBOSE("ggml-hex: %s clear-buff base %p size %zu\n", sess->name.c_str(), (void *) ctx->base, ctx->size); memset(ctx->base, value, ctx->size); } static ggml_backend_buffer_i ggml_backend_hexagon_buffer_interface = { /* .free_buffer = */ ggml_backend_hexagon_buffer_free_buffer, /* .get_base = */ ggml_backend_hexagon_buffer_get_base, /* .init_tensor = */ ggml_backend_hexagon_buffer_init_tensor, /* .memset_tensor = */ NULL, /* .set_tensor = */ ggml_backend_hexagon_buffer_set_tensor, /* .get_tensor = */ ggml_backend_hexagon_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_hexagon_buffer_cpy_tensor, /* .clear = */ ggml_backend_hexagon_buffer_clear, /* .reset = */ NULL, }; // ** backend buffer type static const char * ggml_backend_hexagon_buffer_type_name(ggml_backend_buffer_type_t buffer_type) { return static_cast(buffer_type->context)->name.c_str(); } static ggml_backend_buffer_t ggml_backend_hexagon_buffer_type_alloc_buffer( ggml_backend_buffer_type_t buffer_type, size_t size) { auto sess = static_cast(buffer_type->context)->sess; try { ggml_backend_hexagon_buffer_context * ctx = new ggml_backend_hexagon_buffer_context(sess, size, false /*repack*/); return ggml_backend_buffer_init(buffer_type, ggml_backend_hexagon_buffer_interface, ctx, size); } catch (std::exception const &exc) { GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer context: %s\n", sess->name.c_str(), exc.what()); return nullptr; } } static ggml_backend_buffer_t ggml_backend_hexagon_repack_buffer_type_alloc_buffer( ggml_backend_buffer_type_t buffer_type, size_t size) { auto sess = static_cast(buffer_type->context)->sess; try { ggml_backend_hexagon_buffer_context * ctx = new ggml_backend_hexagon_buffer_context(sess, size, true /*repack*/); return ggml_backend_buffer_init(buffer_type, ggml_backend_hexagon_buffer_interface, ctx, size); } catch (std::exception const &exc) { GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer context: %s\n", sess->name.c_str(), exc.what()); return nullptr; } } static size_t ggml_backend_hexagon_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) { return 128; // HVX alignment GGML_UNUSED(buffer_type); } static size_t ggml_backend_hexagon_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * t) { return ggml_nbytes(t); } static size_t ggml_backend_hexagon_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) { return 1 * 1024 * 1024 * 1024; // 1GB per buffer GGML_UNUSED(buffer_type); } static bool ggml_backend_hexagon_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return opt_hostbuf; GGML_UNUSED(buft); } static bool ggml_backend_hexagon_repack_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return false; GGML_UNUSED(buft); } static ggml_backend_buffer_type_i ggml_backend_hexagon_buffer_type_interface = { /* .get_name = */ ggml_backend_hexagon_buffer_type_name, /* .alloc_buffer = */ ggml_backend_hexagon_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_hexagon_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_hexagon_buffer_type_get_max_size, /* .get_alloc_size = */ ggml_backend_hexagon_buffer_type_get_alloc_size, /* .is_host = */ ggml_backend_hexagon_buffer_type_is_host, }; static ggml_backend_buffer_type_i ggml_backend_hexagon_repack_buffer_type_interface = { /* .get_name = */ ggml_backend_hexagon_buffer_type_name, /* .alloc_buffer = */ ggml_backend_hexagon_repack_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_hexagon_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_hexagon_buffer_type_get_max_size, /* .get_alloc_size = */ ggml_backend_hexagon_buffer_type_get_alloc_size, /* .is_host = */ ggml_backend_hexagon_repack_buffer_type_is_host, }; void ggml_hexagon_session::allocate(int dev_id) noexcept(false) { this->valid_session = false; this->valid_handle = false; this->valid_queue = false; this->valid_iface = false; this->domain_id = 3; // Default for CDSP, updated after the session is created this->session_id = 0; // Default for CDSP, updated after the session is created this->dev_id = dev_id; this->name = std::string("HTP") + std::to_string(dev_id); this->op_pending = 0; this->prof_usecs = 0; this->prof_cycles = 0; this->prof_pkts = 0; GGML_LOG_INFO("ggml-hex: allocating new session: %s\n", this->name.c_str()); domain * my_domain = get_domain(this->domain_id); if (my_domain == NULL) { GGML_LOG_ERROR("ggml-hex: unable to get domain struct for CDSP\n"); throw std::runtime_error("ggml-hex: failed to get CDSP domain (see log for details)"); } // Create new session if (dev_id != 0) { struct remote_rpc_reserve_new_session n; n.domain_name_len = strlen(CDSP_DOMAIN_NAME); n.domain_name = const_cast(CDSP_DOMAIN_NAME); n.session_name = const_cast(this->name.c_str()); n.session_name_len = this->name.size(); int err = remote_session_control(FASTRPC_RESERVE_NEW_SESSION, (void *) &n, sizeof(n)); if (err != AEE_SUCCESS) { GGML_LOG_ERROR("ggml-hex: failed to reserve new session %d : error 0x%x\n", dev_id, err); throw std::runtime_error("ggml-hex: remote_session_control(new-sess) failed (see log for details)"); } // Save the IDs this->session_id = n.session_id; this->domain_id = n.effective_domain_id; this->valid_session = true; } // Get session URI char htp_uri[256]; sprintf(htp_uri, "file:///libggml-htp-v%u.so?htp_iface_skel_handle_invoke&_modver=1.0", opt_arch); char session_uri[256]; { struct remote_rpc_get_uri u; u.session_id = this->session_id; u.domain_name = const_cast(CDSP_DOMAIN_NAME); u.domain_name_len = strlen(CDSP_DOMAIN_NAME); u.module_uri = const_cast(htp_uri); u.module_uri_len = strlen(htp_uri); u.uri = session_uri; u.uri_len = sizeof(session_uri); int err = remote_session_control(FASTRPC_GET_URI, (void *) &u, sizeof(u)); if (err != AEE_SUCCESS) { GGML_LOG_ERROR("ggml-hex: failed to get URI for session %d : error 0x%x\n", dev_id, err); throw std::runtime_error("ggml-hex: remote_session_control(get-uri) failed (see log for details)"); } } // Enable Unsigned PD { struct remote_rpc_control_unsigned_module u; u.domain = this->domain_id; u.enable = 1; int err = remote_session_control(DSPRPC_CONTROL_UNSIGNED_MODULE, (void *) &u, sizeof(u)); if (err != AEE_SUCCESS) { GGML_LOG_ERROR("ggml-hex: failed to enable unsigned PD for session %d : error 0x%x\n", dev_id, err); throw std::runtime_error("ggml-hex: remote_session_control(unsign) failed (see log for details)"); } } // Open session int err = htp_iface_open(session_uri, &this->handle); if (err != AEE_SUCCESS) { GGML_LOG_ERROR("ggml-hex: failed to open session %d : error 0x%x\n", dev_id, err); throw std::runtime_error("ggml-hex: failed to open session (see log for details)"); } this->valid_handle = true; GGML_LOG_INFO("ggml-hex: new session: %s : session-id %d domain-id %d uri %s handle 0x%lx\n", this->name.c_str(), this->session_id, this->domain_id, session_uri, (unsigned long) this->handle); // Enable FastRPC QoS mode { struct remote_rpc_control_latency l; l.enable = 1; int err = remote_handle64_control(this->handle, DSPRPC_CONTROL_LATENCY, (void *) &l, sizeof(l)); if (err != 0) { GGML_LOG_WARN("ggml-hex: failed to enable fastrpc QOS mode: 0x%08x\n", (unsigned) err); } } // Now let's setup the DSP queue err = dspqueue_create(this->domain_id, 0, // Flags 128 * 1024, // Request queue size (in bytes) 64 * 1024, // Response queue size (in bytes) htp_packet_callback, htp_error_callback, (void *) this, // Callback context &queue); if (err != 0) { GGML_LOG_ERROR("ggml-hex: %s dspqueue_create failed: 0x%08x\n", this->name.c_str(), (unsigned) err); throw std::runtime_error("ggml-hex: failed to create dspqueue (see log for details)"); } this->valid_queue = true; // Export queue for use on the DSP err = dspqueue_export(queue, &this->queue_id); if (err != 0) { GGML_LOG_ERROR("ggml-hex: dspqueue_export failed: 0x%08x\n", (unsigned) err); throw std::runtime_error("ggml-hex: dspqueue export failed (see log for details)"); } if (opt_etm) { err = htp_iface_enable_etm(this->handle); if (err != 0) { GGML_LOG_ERROR("ggml-hex: failed to enable ETM tracing: 0x%08x\n", (unsigned) err); } } // Start the DSP-side service. We need to pass the queue ID to the // DSP in a FastRPC call; the DSP side will import the queue and start // listening for packets in a callback. err = htp_iface_start(this->handle, dev_id, this->queue_id, opt_nhvx); if (err != 0) { GGML_LOG_ERROR("ggml-hex: failed to start session: 0x%08x\n", (unsigned) err); throw std::runtime_error("ggml-hex: iface start failed (see log for details)"); } this->valid_iface = true; } void ggml_hexagon_session::release() noexcept(true) { GGML_LOG_INFO("ggml-hex: releasing session: %s\n", this->name.c_str()); int err; // Stop the DSP-side service and close the queue if (this->valid_iface) { err = htp_iface_stop(this->handle); if (err != 0) { GGML_ABORT("ggml-hex: htp_iface_stop failed: 0x%08x\n", (unsigned) err); } } if (opt_etm) { err = htp_iface_disable_etm(this->handle); if (err != 0) { GGML_LOG_ERROR("ggml-hex: warn : failed to disable ETM tracing: 0x%08x\n", (unsigned) err); } } if (this->valid_queue) { err = dspqueue_close(queue); if (err != 0) { GGML_ABORT("ggml-hex: dspqueue_close failed: 0x%08x\n", (unsigned) err); } } if (this->valid_handle) { htp_iface_close(this->handle); } } ggml_hexagon_session::ggml_hexagon_session(int dev_id) noexcept(false) { buffer_type.context = nullptr; repack_buffer_type.context = nullptr; try { allocate(dev_id); buffer_type.iface = ggml_backend_hexagon_buffer_type_interface; buffer_type.context = new ggml_backend_hexagon_buffer_type_context(this->name, this); repack_buffer_type.iface = ggml_backend_hexagon_repack_buffer_type_interface; repack_buffer_type.context = new ggml_backend_hexagon_buffer_type_context(this->name + "-REPACK", this); } catch (std::exception const &exc) { release(); throw; } } ggml_hexagon_session::~ggml_hexagon_session() noexcept(true) { release(); delete static_cast(buffer_type.context); delete static_cast(repack_buffer_type.context); } // ** backend interface static bool ggml_backend_buffer_is_hexagon(const struct ggml_backend_buffer * b) { return b->buft->iface.get_alignment == ggml_backend_hexagon_buffer_type_get_alignment; } static inline bool ggml_backend_buffer_is_hexagon_repack(const struct ggml_backend_buffer * b) { return b->buft->iface.alloc_buffer == ggml_backend_hexagon_repack_buffer_type_alloc_buffer; } static bool hex_supported_dims2(const struct ggml_tensor * x, const struct ggml_tensor * y) { if (x->ne[0] != y->ne[0]) { return false; } if (x->ne[1] != y->ne[1]) { return false; } if (x->ne[2] != y->ne[2]) { return false; } if (x->ne[3] != y->ne[3]) { return false; } return true; } static bool hex_supported_src0_type(ggml_type t) { return t == GGML_TYPE_F32; } static bool hex_supported_src1_type(ggml_type t) { return t == GGML_TYPE_F32; } static bool hex_supported_src2_type(ggml_type t) { return t == GGML_TYPE_F32; } static bool hex_supported_src1_type2(ggml_type t) { return t == GGML_TYPE_F16; } static bool hex_supported_src1_type3(ggml_type t) { return t == GGML_TYPE_I32; } static bool hex_supported_dst_type(ggml_type t) { return t == GGML_TYPE_F32; } static bool hex_supported_dims(const struct ggml_tensor * x, const struct ggml_tensor * y) { // TODO: support broadcast for ne[2 and 3] if (x->ne[0] != y->ne[0]) { return false; } if (x->ne[2] != y->ne[2]) { return false; } if (x->ne[3] != y->ne[3]) { return false; } return true; } static bool ggml_hexagon_supported_mul_mat(const struct ggml_hexagon_session * sess, const struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; if (src1->type != GGML_TYPE_F32 || dst->type != GGML_TYPE_F32) { return false; } // TODO: add support for non-cont tensors if (!ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) { return false; } switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q8_0: case GGML_TYPE_MXFP4: if (src0->ne[0] % 32) { return false; } if (src0->ne[1] > 16 * 1024) { return false; // typically the lm-head which would be too large for VTCM } // if ((src0->ne[2] != src1->ne[2] || src0->ne[3] != src1->ne[3])) return false; if ((src1->ne[2] != 1 || src1->ne[3] != 1)) { return false; } // src0 (weights) must be repacked if (src0->buffer && !ggml_backend_buffer_is_hexagon_repack(src0->buffer)) { return false; } break; case GGML_TYPE_F16: if (!opt_experimental) { return false; } break; default: return false; } // src0 & src1 & dst must be mapped to the same session if (src0->buffer && (!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) { return false; } if (src1->buffer && (!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) { return false; } if (dst->buffer && (!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) { return false; } return true; } static bool ggml_hexagon_supported_mul_mat_id(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * src2 = op->src[2]; const struct ggml_tensor * dst = op; if (src1->type != GGML_TYPE_F32 || dst->type != GGML_TYPE_F32 || src2->type != GGML_TYPE_I32) { return false; } switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q8_0: case GGML_TYPE_MXFP4: if ((src0->ne[0] % 32)) { return false; } // src0 (weights) must be repacked if (src0->buffer && !ggml_backend_buffer_is_hexagon_repack(src0->buffer)) { return false; } break; case GGML_TYPE_F16: if (!opt_experimental) { return false; } break; default: return false; } // TODO: add support for non-cont tensors if (!ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) { return false; } // src0 (weights) must be repacked and mapped to the same session // src1 & sr2 & dst must be mapped to the same session if (src0->buffer && (!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) { return false; } if (src1->buffer && (!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) { return false; } if (src2->buffer && (!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) { return false; } if (dst->buffer && (!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) { return false; } return true; } static bool ggml_hexagon_supported_binary(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * dst = op; if (!hex_supported_src0_type(src0->type)) { return false; } if (!hex_supported_src1_type(src1->type)) { return false; } if (!hex_supported_dst_type(dst->type)) { return false; } if (!hex_supported_dims2(src0, dst)) { return false; } if (!ggml_can_repeat(src1, src0)) { return false; } // TODO: add support for non-contigiuos tensors if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) { return false; } // src0, src1 & dst must be mapped to the same session if (src0->buffer && (!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) { return false; } if (src1->buffer && (!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) { return false; } if (dst->buffer && (!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) { return false; } return true; } static bool ggml_hexagon_supported_add_id(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * src2 = op->src[2]; const struct ggml_tensor * dst = op; if (!hex_supported_src0_type(src0->type)) { return false; } if (!hex_supported_src1_type(src1->type)) { return false; } if (!hex_supported_dst_type(dst->type)) { return false; } if (!hex_supported_dims2(src0, dst)) { return false; } // REVISIT: add support for non-contigiuos tensors if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) { return false; } // src0, src1 & dst must be mapped to the same session if (src0->buffer && (!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) { return false; } if (src1->buffer && (!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) { return false; } if (src2->buffer && (!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) { return false; } if (dst->buffer && (!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) { return false; } return true; } static bool ggml_hexagon_supported_unary(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * dst = op; if (!hex_supported_src0_type(src0->type)) { return false; } if (!hex_supported_dst_type(dst->type)) { return false; } if (!hex_supported_dims2(src0, dst)) { return false; } // TODO: add support for non-contigiuos tensors if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) { return false; } // src0 & dst must be mapped to the same session if (src0->buffer && (!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) { return false; } if (dst->buffer && (!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) { return false; } return true; } static bool ggml_hexagon_supported_activations(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * dst = op; if (!hex_supported_src0_type(src0->type)) { return false; } if (!hex_supported_dst_type(dst->type)) { return false; } if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) { return false; } if (src1) { if (!hex_supported_src1_type(src1->type)) { return false; } if (!hex_supported_dims2(src0, src1)) { return false; } if (!ggml_is_contiguous(src1)) { return false; } } // src0, src1 & dst must be mapped to the same session if (src0->buffer && (!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) { return false; } if (src1 && src1->buffer && (!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) { return false; } if (dst->buffer && (!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) { return false; } return true; } static bool ggml_hexagon_supported_softmax(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * src2 = op->src[2]; const struct ggml_tensor * dst = op; if (src2) { return false; // FIXME: add support for sinks } if (!hex_supported_src0_type(src0->type)) { return false; } if (!hex_supported_dst_type(dst->type)) { return false; } if (src1) { if (!hex_supported_src1_type(src1->type) && !hex_supported_src1_type2(src1->type)) { return false; } if (src0->ne[0] != src1->ne[0]) { return false; } if (src1->ne[1] < src0->ne[1]) { return false; } if (src0->ne[2] % src1->ne[2] != 0) { return false; } if (src0->ne[3] % src1->ne[3] != 0) { return false; } } if (src1) { if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) { return false; } } else { if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) { return false; } } // src0, src1 & dst must be mapped to the same session if (src0->buffer && (!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) { return false; } if (src1 && src1->buffer && (!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) { return false; } if (dst->buffer && (!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) { return false; } return true; } static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) { const int32_t * op_params = &op->op_params[0]; int mode = op_params[2]; if ((mode & GGML_ROPE_TYPE_NEOX) || (mode & GGML_ROPE_TYPE_MROPE) || (mode & GGML_ROPE_TYPE_VISION)) { return false; } if (mode & 1) { return false; } const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * src2 = op->src[2]; const struct ggml_tensor * dst = op; if (!hex_supported_src0_type(src0->type)) { return false; // FIXME: add support for GGML_TYPE_F16 for src0 } if (!hex_supported_dst_type(dst->type)) { return false; } if (!hex_supported_src1_type3(src1->type)) { return false; } if (src2) { if (!hex_supported_src2_type(src2->type)) { return false; } int n_dims = op_params[1]; if (src2->ne[0] < (n_dims / 2)) { return false; } } if (src2) { if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(src2) || !ggml_is_contiguous(dst)) { return false; } } else { if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) { return false; } } // src0, src1, src2 & dst must be mapped to the same session if (src0->buffer && (!ggml_backend_buffer_is_hexagon(src0->buffer) || ggml_backend_hexagon_buffer_get_sess(src0->buffer) != sess)) { return false; } if (src1->buffer && (!ggml_backend_buffer_is_hexagon(src1->buffer) || ggml_backend_hexagon_buffer_get_sess(src1->buffer) != sess)) { return false; } if (src2 && src2->buffer && (!ggml_backend_buffer_is_hexagon(src2->buffer) || ggml_backend_hexagon_buffer_get_sess(src2->buffer) != sess)) { return false; } if (dst->buffer && (!ggml_backend_buffer_is_hexagon(dst->buffer) || ggml_backend_hexagon_buffer_get_sess(dst->buffer) != sess)) { return false; } return true; } // Init hexagon tensor from GGML tensor and Hexagon buffer static void init_htp_tensor(htp_tensor * h, const ggml_tensor * t) { h->data = 0; // updated by the receiver h->type = t->type; h->ne[0] = t->ne[0]; h->ne[1] = t->ne[1]; h->ne[2] = t->ne[2]; h->ne[3] = t->ne[3]; h->nb[0] = t->nb[0]; h->nb[1] = t->nb[1]; h->nb[2] = t->nb[2]; h->nb[3] = t->nb[3]; } static void hex_dump_dspbuf(const struct ggml_tensor * t, const dspqueue_buffer * d) { auto buf = static_cast(t->buffer->context); auto sess = buf->sess; HEX_VERBOSE("ggml-hex: %s dspqbuf : %s base-addr %p base-size %zu data %p offset %u size %u\n", sess->name.c_str(), t->name, (void *) buf->base, buf->size, (void *) d->ptr, (unsigned int) d->offset, (unsigned int) d->size); } static void ggml_hexagon_mul_mat(const struct ggml_tensor * op, uint32_t flags) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * dst = op; auto src0_buf = static_cast(src0->buffer->context); auto src1_buf = static_cast(src1->buffer->context); auto dst_buf = static_cast(dst->buffer->context); uint64_t t1, t2; t1 = ggml_time_us(); // Construct HTP message htp_general_req req; req.op = HTP_OP_MUL_MAT; req.flags = flags; init_htp_tensor(&req.src0, src0); init_htp_tensor(&req.src1, src1); init_htp_tensor(&req.dst, dst); // Use opmask to override flags if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) { req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE; } if (!(opt_opmask & HTP_OPMASK_COMPUTE)) { req.flags |= HTP_OPFLAGS_SKIP_COMPUTE; } dspqueue_buffer bufs[3]; memset(bufs, 0, sizeof(bufs)); // First buffer Weights. // The content is static, there is no need to do any cache management bufs[0].fd = src0_buf->fd; bufs[0].ptr = src0->data; bufs[0].offset = (uint8_t *) src0->data - src0_buf->base; bufs[0].size = ggml_nbytes(src0); bufs[0].flags = DSPQUEUE_BUFFER_FLAG_REF; // Second buffer Input Activations. This is a buffer that the CPU // writes and the DSP reads, so we'll need to flush CPU caches and // invalidate DSP ones. On platforms with I/O coherency support the // framework will automatically skip cache operations where possible. bufs[1].fd = src1_buf->fd; bufs[1].ptr = src1->data; bufs[1].offset = (uint8_t *) src1->data - src1_buf->base; bufs[1].size = ggml_nbytes(src1); bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP // Third buffer Output Activations. We'll handle DSP // cache maintenance in the response message but need to flush // CPU caches to ensure any previously written dirty lines are // written out before writes from the DSP start. bufs[2].fd = dst_buf->fd; bufs[2].ptr = dst->data; bufs[2].offset = (uint8_t *) dst->data - dst_buf->base; bufs[2].size = ggml_nbytes(dst); bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER); // Primary DSP session from the src0 (normally weight) tensor auto sess = src0_buf->sess; if (opt_verbose) { char dims[64 * GGML_MAX_SRC]; char strides[64 * GGML_MAX_SRC]; char types[16 * GGML_MAX_SRC]; char buffs[64 * GGML_MAX_SRC]; char names[64 * GGML_MAX_SRC]; hex_format_op_dims(dims, op); hex_format_op_strides(strides, op); hex_format_op_types(types, op); hex_format_op_buffs(buffs, op); hex_format_op_names(names, op); HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op), names, dims, types, strides, buffs, req.flags); if (opt_verbose > 1) { hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(dst, &bufs[2]); } } if ((opt_opmask & HTP_OPMASK_QUEUE)) { // Bump pending flag (cleared in the callback once we get the responce) sess->op_pending++; // atomic inc int err = dspqueue_write(sess->queue, 0, // flags - the framework will autoset this 3, // number of buffers bufs, // buffer references sizeof(req), (const uint8_t *) &req, // Message 1000000 // Timeout ); if (err != 0) { GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err); } } if (opt_opsync) { while (sess->op_pending) { ; } } t2 = ggml_time_us(); HEX_PROFILE( "ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) " "call-usec %llu\n", sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts, (float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1); } static void ggml_hexagon_mul_mat_id(const struct ggml_tensor * op, uint32_t flags) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * src2 = op->src[2]; const struct ggml_tensor * dst = op; auto src0_buf = static_cast(src0->buffer->context); auto src1_buf = static_cast(src1->buffer->context); auto src2_buf = static_cast(src2->buffer->context); auto dst_buf = static_cast(dst->buffer->context); uint64_t t1, t2; t1 = ggml_time_us(); // Construct HTP message htp_general_req req; req.op = HTP_OP_MUL_MAT_ID; req.flags = flags; init_htp_tensor(&req.src0, src0); init_htp_tensor(&req.src1, src1); init_htp_tensor(&req.src2, src2); init_htp_tensor(&req.dst, dst); // Use opmask to override flags if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) { req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE; } if (!(opt_opmask & HTP_OPMASK_COMPUTE)) { req.flags |= HTP_OPFLAGS_SKIP_COMPUTE; } dspqueue_buffer bufs[4]; memset(bufs, 0, sizeof(bufs)); // First buffer Weights. // The content is static, there is no need to do any cache management bufs[0].fd = src0_buf->fd; bufs[0].ptr = src0->data; bufs[0].offset = (uint8_t *) src0->data - src0_buf->base; bufs[0].size = ggml_nbytes(src0); bufs[0].flags = DSPQUEUE_BUFFER_FLAG_REF; // Second buffer Input Activations. This is a buffer that the CPU // writes and the DSP reads, so we'll need to flush CPU caches and // invalidate DSP ones. On platforms with I/O coherency support the // framework will automatically skip cache operations where possible. bufs[1].fd = src1_buf->fd; bufs[1].ptr = src1->data; bufs[1].offset = (uint8_t *) src1->data - src1_buf->base; bufs[1].size = ggml_nbytes(src1); bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP // Third buffer expert IDs. This is a buffer that the CPU // writes and the DSP reads, so we'll need to flush CPU caches and // invalidate DSP ones. On platforms with I/O coherency support the // framework will automatically skip cache operations where possible. bufs[2].fd = src2_buf->fd; bufs[2].ptr = src2->data; bufs[2].offset = (uint8_t *) src2->data - src2_buf->base; bufs[2].size = ggml_nbytes(src2); bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP // Forth buffer Output Activations. We'll handle DSP // cache maintenance in the response message but need to flush // CPU caches to ensure any previously written dirty lines are // written out before writes from the DSP start. bufs[3].fd = dst_buf->fd; bufs[3].ptr = dst->data; bufs[3].offset = (uint8_t *) dst->data - dst_buf->base; bufs[3].size = ggml_nbytes(dst); bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER); // Primary DSP session from the src0 (normally weight) tensor auto sess = src0_buf->sess; if (opt_verbose) { char dims[64 * GGML_MAX_SRC]; char strides[64 * GGML_MAX_SRC]; char types[16 * GGML_MAX_SRC]; char buffs[64 * GGML_MAX_SRC]; char names[64 * GGML_MAX_SRC]; hex_format_op_dims(dims, op); hex_format_op_types(types, op); hex_format_op_buffs(buffs, op); hex_format_op_names(names, op); HEX_VERBOSE("ggml-hex: %s %s: %s : %s : %s : %s : %s: flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op), names, dims, types, strides, buffs, req.flags); if (opt_verbose > 1) { hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(src2, &bufs[2]); hex_dump_dspbuf(dst, &bufs[3]); } } if ((opt_opmask & HTP_OPMASK_QUEUE)) { // Bump pending flag (cleared in the callback once we get the responce) sess->op_pending++; // atomic inc int err = dspqueue_write(sess->queue, 0, // flags - the framework will autoset this 4, // number of buffers bufs, // buffer references sizeof(req), (const uint8_t *) &req, // Message 1000000 // Timeout ); if (err != 0) { GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err); } } if (opt_opsync) { while (sess->op_pending) { ; } } t2 = ggml_time_us(); HEX_PROFILE( "ggml-hex: %s matmul-id %s %u:%u:%u:%u x %s %u:%u:%u:%u (%s %u:%u:%u:%u) -> %s %u:%u:%u:%u : op-usec %u " "op-cycles %u op-pkts %u (%f) call-usec %llu\n", sess->name.c_str(), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2], (uint32_t) src1->ne[3], src2->name, (uint32_t) src2->ne[0], (uint32_t) src2->ne[1], (uint32_t) src2->ne[2], (uint32_t) src2->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts, (float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1); } static void ggml_hexagon_binary(const struct ggml_tensor * op, uint32_t flags) { const struct ggml_tensor * node = op; const struct ggml_tensor * src0 = node->src[0]; const struct ggml_tensor * src1 = node->src[1]; const struct ggml_tensor * dst = node; auto src0_buf = static_cast(src0->buffer->context); auto src1_buf = static_cast(src1->buffer->context); auto dst_buf = static_cast(dst->buffer->context); uint64_t t1 = 0; uint64_t t2 = 0; t1 = ggml_time_us(); // Construct HTP message htp_general_req req; req.flags = flags; // Use opmask to override flags if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) { req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE; } if (!(opt_opmask & HTP_OPMASK_COMPUTE)) { req.flags |= HTP_OPFLAGS_SKIP_COMPUTE; } switch (node->op) { case GGML_OP_MUL: req.op = HTP_OP_MUL; break; case GGML_OP_ADD: req.op = HTP_OP_ADD; break; case GGML_OP_SUB: req.op = HTP_OP_SUB; break; default: GGML_ABORT("ggml-hex: binary : unsupported op:%d\n", node->op); } init_htp_tensor(&req.src0, src0); init_htp_tensor(&req.src1, src1); init_htp_tensor(&req.dst, dst); dspqueue_buffer bufs[3]; memset(bufs, 0, sizeof(bufs)); // First buffer = First Operand of Binary op // This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip // cache operations where possible. bufs[0].fd = src0_buf->fd; bufs[0].ptr = src0->data; bufs[0].offset = (uint8_t *) src0->data - src0_buf->base; bufs[0].size = ggml_nbytes(src0); bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP; // Second buffer = Second Operand of Binary op // This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip // cache operations where possible. bufs[1].fd = src1_buf->fd; bufs[1].ptr = src1->data; bufs[1].offset = (uint8_t *) src1->data - src1_buf->base; bufs[1].size = ggml_nbytes(src1); bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP // Third buffer = Output Activations. We'll handle DSP // cache maintenance in the response message but need to flush // CPU caches to ensure any previously written dirty lines are // written out before writes from the DSP start. bufs[2].fd = dst_buf->fd; bufs[2].ptr = dst->data; bufs[2].offset = (uint8_t *) dst->data - dst_buf->base; bufs[2].size = ggml_nbytes(dst); bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER); // Primary DSP session from the src0 tensor ggml_hexagon_session * sess = src0_buf->sess; if (opt_verbose) { char dims[64 * GGML_MAX_SRC]; char strides[16 * GGML_MAX_SRC]; char types[16 * GGML_MAX_SRC]; char buffs[64 * GGML_MAX_SRC]; char names[64 * GGML_MAX_SRC]; hex_format_op_dims(dims, op); hex_format_op_strides(strides, op); hex_format_op_types(types, op); hex_format_op_buffs(buffs, op); hex_format_op_names(names, op); HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags); if (opt_verbose > 1) { hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(dst, &bufs[2]); } } if ((opt_opmask & HTP_OPMASK_QUEUE)) { // Bump pending flag (cleared in the callback once we get the responce) sess->op_pending++; // atomic inc int err = dspqueue_write(sess->queue, 0, // flags - the framework will autoset this 3, // number of buffers bufs, // buffer references sizeof(req), (const uint8_t *) &req, // Message 1000000); // Timeout if (0 != err) { GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err); } } if (opt_opsync) { while (sess->op_pending) { ; } } t2 = ggml_time_us(); HEX_PROFILE( "ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) " "call-usec %llu\n", sess->name.c_str(), ggml_op_name(node->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts, (float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1); } static void ggml_hexagon_add_id(const struct ggml_tensor * op, uint32_t flags) { const struct ggml_tensor * node = op; const struct ggml_tensor * src0 = node->src[0]; const struct ggml_tensor * src1 = node->src[1]; const struct ggml_tensor * src2 = node->src[2]; const struct ggml_tensor * dst = node; auto src0_buf = static_cast(src0->buffer->context); auto src1_buf = static_cast(src1->buffer->context); auto src2_buf = static_cast(src2->buffer->context); auto dst_buf = static_cast(dst->buffer->context); uint64_t t1 = 0; uint64_t t2 = 0; t1 = ggml_time_us(); // Construct HTP message htp_general_req req; req.flags = flags; // Use opmask to override flags if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) { req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE; } if (!(opt_opmask & HTP_OPMASK_COMPUTE)) { req.flags |= HTP_OPFLAGS_SKIP_COMPUTE; } switch (node->op) { case GGML_OP_ADD_ID: req.op = HTP_OP_ADD_ID; break; default: GGML_ABORT("ggml-hex: unsupported op:%d\n", node->op); } init_htp_tensor(&req.src0, src0); init_htp_tensor(&req.src1, src1); init_htp_tensor(&req.src2, src2); init_htp_tensor(&req.dst, dst); dspqueue_buffer bufs[4]; memset(bufs, 0, sizeof(bufs)); // First buffer = input activations bufs[0].fd = src0_buf->fd; bufs[0].ptr = src0->data; bufs[0].offset = (uint8_t *) src0->data - src0_buf->base; bufs[0].size = ggml_nbytes(src0); bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP; // Second buffer = experts bias bufs[1].fd = src1_buf->fd; bufs[1].ptr = src1->data; bufs[1].offset = (uint8_t *) src1->data - src1_buf->base; bufs[1].size = ggml_nbytes(src1); bufs[1].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP // Third buffer = activated experts bufs[2].fd = src2_buf->fd; bufs[2].ptr = src2->data; bufs[2].offset = (uint8_t *) src2->data - src2_buf->base; bufs[2].size = ggml_nbytes(src2); bufs[2].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP // Forth buffer = output activations bufs[3].fd = dst_buf->fd; bufs[3].ptr = dst->data; bufs[3].offset = (uint8_t *) dst->data - dst_buf->base; bufs[3].size = ggml_nbytes(dst); bufs[3].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER); // Primary DSP session from the src0 tensor ggml_hexagon_session * sess = src0_buf->sess; if (opt_verbose) { char dims[64 * GGML_MAX_SRC]; char strides[16 * GGML_MAX_SRC]; char types[16 * GGML_MAX_SRC]; char buffs[64 * GGML_MAX_SRC]; char names[64 * GGML_MAX_SRC]; hex_format_op_dims(dims, op); hex_format_op_strides(strides, op); hex_format_op_types(types, op); hex_format_op_buffs(buffs, op); hex_format_op_names(names, op); HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(node->op), names, dims, types, strides, buffs, req.flags); if (opt_verbose > 1) { hex_dump_dspbuf(src0, &bufs[0]); hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(src2, &bufs[2]); hex_dump_dspbuf(dst, &bufs[3]); } } if ((opt_opmask & HTP_OPMASK_QUEUE)) { // Bump pending flag (cleared in the callback once we get the responce) sess->op_pending++; // atomic inc int err = dspqueue_write(sess->queue, 0, // flags - the framework will autoset this 4, // number of buffers bufs, // buffer references sizeof(req), (const uint8_t *) &req, // Message 1000000); // Timeout if (0 != err) { GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err); } } if (opt_opsync) { while (sess->op_pending) { ; } } t2 = ggml_time_us(); HEX_PROFILE( "ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) " "call-usec %llu\n", sess->name.c_str(), ggml_op_name(node->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts, (float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1); } static void ggml_hexagon_unary(const struct ggml_tensor * op, uint32_t flags) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * dst = op; uint64_t t1 = 0; uint64_t t2 = 0; t1 = ggml_time_us(); // Construct HTP message htp_general_req req; memset(&req, 0, sizeof(htp_general_req)); memcpy(&req.op_params, &op->op_params, sizeof(op->op_params)); req.flags = flags; bool supported = false; switch (op->op) { case GGML_OP_RMS_NORM: req.op = HTP_OP_RMS_NORM; supported = true; break; case GGML_OP_UNARY: if (ggml_get_unary_op(dst) == GGML_UNARY_OP_SILU) { req.op = HTP_OP_UNARY_SILU; supported = true; } break; case GGML_OP_GLU: if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU) { req.op = HTP_OP_GLU_SWIGLU; supported = true; } else if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) { req.op = HTP_OP_GLU_SWIGLU_OAI; supported = true; } break; case GGML_OP_SOFT_MAX: req.op = HTP_OP_SOFTMAX; supported = true; default: break; } if (!supported) { GGML_ABORT("ggml-hex: unary : unsupported op:%d\n", op->op); } init_htp_tensor(&req.dst, dst); init_htp_tensor(&req.src0, src0); if (src1) { init_htp_tensor(&req.src1, src1); } // Use opmask to override flags if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) { req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE; } if (!(opt_opmask & HTP_OPMASK_COMPUTE)) { req.flags |= HTP_OPFLAGS_SKIP_COMPUTE; } dspqueue_buffer bufs[3]; int n_bufs = 0; memset(bufs, 0, sizeof(bufs)); // First buffer = Only Operand of Unary op // This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip // cache operations where possible. auto src0_buf = static_cast(src0->buffer->context); bufs[n_bufs].fd = src0_buf->fd; bufs[n_bufs].ptr = src0->data; bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base; bufs[n_bufs].size = ggml_nbytes(src0); bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP; ++n_bufs; if (src1) { // Second buffer = Second Operand of Binary op // This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip // cache operations where possible. auto src1_buf = static_cast(src1->buffer->context); bufs[n_bufs].fd = src1_buf->fd; bufs[n_bufs].ptr = src1->data; bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base; bufs[n_bufs].size = ggml_nbytes(src1); bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP ++n_bufs; } // Second or third buffer = Output Activations. We'll handle DSP // Second buffer = Output Activations. We'll handle DSP // cache maintenance in the response message but need to flush // CPU caches to ensure any previously written dirty lines are // written out before writes from the DSP start. auto dst_buf = static_cast(dst->buffer->context); bufs[n_bufs].fd = dst_buf->fd; bufs[n_bufs].ptr = dst->data; bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base; bufs[n_bufs].size = ggml_nbytes(dst); bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER); ++n_bufs; // Primary DSP session from the src0 tensor ggml_hexagon_session * sess = src0_buf->sess; if (opt_verbose) { char dims[64 * GGML_MAX_SRC]; char strides[64 * GGML_MAX_SRC]; char types[16 * GGML_MAX_SRC]; char buffs[64 * GGML_MAX_SRC]; char names[64 * GGML_MAX_SRC]; hex_format_op_dims(dims, op); hex_format_op_strides(strides, op); hex_format_op_types(types, op); hex_format_op_buffs(buffs, op); hex_format_op_names(names, op); HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op), names, dims, types, strides, buffs, req.flags); if (opt_verbose > 1) { hex_dump_dspbuf(src0, &bufs[0]); if (src1) { hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(dst, &bufs[2]); } else { hex_dump_dspbuf(dst, &bufs[1]); } } } if ((opt_opmask & HTP_OPMASK_QUEUE)) { // Bump pending flag (cleared in the callback once we get the responce) sess->op_pending++; // atomic inc int err = dspqueue_write(sess->queue, 0, // flags - the framework will autoset this n_bufs, // number of buffers bufs, // buffer references sizeof(req), (const uint8_t *) &req, // Message 1000000); // Timeout if (0 != err) { GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err); } } if (opt_opsync) { while (sess->op_pending) { ; } } t2 = ggml_time_us(); if (src1) { HEX_PROFILE( "ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u " "(%f) call-usec %llu\n", sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts, (float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1); } else { HEX_PROFILE( "ggml-hex: %s %s %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u (%f) call-usec " "%llu\n", sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src0->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts, (float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1); } } static void ggml_hexagon_rope(const struct ggml_tensor * op, uint32_t flags) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * src2 = op->src[2]; const struct ggml_tensor * dst = op; uint64_t t1 = 0; uint64_t t2 = 0; t1 = ggml_time_us(); // Construct HTP message htp_general_req req; memset(&req, 0, sizeof(htp_general_req)); memcpy(&req.op_params, &op->op_params, sizeof(op->op_params)); req.flags = flags; req.op = HTP_OP_ROPE; init_htp_tensor(&req.dst, dst); init_htp_tensor(&req.src0, src0); init_htp_tensor(&req.src1, src1); if (src2) { init_htp_tensor(&req.src2, src2); } // Use opmask to override flags if (!(opt_opmask & HTP_OPMASK_QUANTIZE)) { req.flags |= HTP_OPFLAGS_SKIP_QUANTIZE; } if (!(opt_opmask & HTP_OPMASK_COMPUTE)) { req.flags |= HTP_OPFLAGS_SKIP_COMPUTE; } dspqueue_buffer bufs[4]; int n_bufs = 0; memset(bufs, 0, sizeof(bufs)); // First buffer // This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip // cache operations where possible. auto src0_buf = static_cast(src0->buffer->context); bufs[n_bufs].fd = src0_buf->fd; bufs[n_bufs].ptr = src0->data; bufs[n_bufs].offset = (uint8_t *) src0->data - src0_buf->base; bufs[n_bufs].size = ggml_nbytes(src0); bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP; ++n_bufs; // Second buffer // This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip // cache operations where possible. auto src1_buf = static_cast(src1->buffer->context); bufs[n_bufs].fd = src1_buf->fd; bufs[n_bufs].ptr = src1->data; bufs[n_bufs].offset = (uint8_t *) src1->data - src1_buf->base; bufs[n_bufs].size = ggml_nbytes(src1); bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP ++n_bufs; if (src2) { // Third buffer // This is a buffer that the CPU writes and the DSP reads, so we'll // need to flush CPU caches and invalidate DSP ones. On platforms // with I/O coherency support the framework will automatically skip // cache operations where possible. auto src2_buf = static_cast(src2->buffer->context); bufs[n_bufs].fd = src2_buf->fd; bufs[n_bufs].ptr = src2->data; bufs[n_bufs].offset = (uint8_t *) src2->data - src2_buf->base; bufs[n_bufs].size = ggml_nbytes(src2); bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | // Take a reference DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush CPU DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate DSP ++n_bufs; } // Final buffer = Output Activations. We'll handle DSP // Second buffer = Output Activations. We'll handle DSP // cache maintenance in the response message but need to flush // CPU caches to ensure any previously written dirty lines are // written out before writes from the DSP start. auto dst_buf = static_cast(dst->buffer->context); bufs[n_bufs].fd = dst_buf->fd; bufs[n_bufs].ptr = dst->data; bufs[n_bufs].offset = (uint8_t *) dst->data - dst_buf->base; bufs[n_bufs].size = ggml_nbytes(dst); bufs[n_bufs].flags = (DSPQUEUE_BUFFER_FLAG_REF | DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER); ++n_bufs; // Primary DSP session from the src0 tensor ggml_hexagon_session * sess = src0_buf->sess; if (opt_verbose) { char dims[64 * GGML_MAX_SRC]; char strides[64 * GGML_MAX_SRC]; char types[16 * GGML_MAX_SRC]; char buffs[64 * GGML_MAX_SRC]; char names[64 * GGML_MAX_SRC]; hex_format_op_dims(dims, op); hex_format_op_strides(strides, op); hex_format_op_types(types, op); hex_format_op_buffs(buffs, op); hex_format_op_names(names, op); HEX_VERBOSE("ggml-hex: %s %s : %s : %s : %s : %s : %s : flags 0x%x\n", sess->name.c_str(), ggml_op_name(op->op), names, dims, types, strides, buffs, req.flags); if (opt_verbose > 1) { hex_dump_dspbuf(src0, &bufs[0]); if (src1) { hex_dump_dspbuf(src1, &bufs[1]); hex_dump_dspbuf(dst, &bufs[2]); } else { hex_dump_dspbuf(dst, &bufs[1]); } } } if ((opt_opmask & HTP_OPMASK_QUEUE)) { // Bump pending flag (cleared in the callback once we get the responce) sess->op_pending++; // atomic inc int err = dspqueue_write(sess->queue, 0, // flags - the framework will autoset this n_bufs, // number of buffers bufs, // buffer references sizeof(req), (const uint8_t *) &req, // Message 1000000); // Timeout if (0 != err) { GGML_ABORT("ggml-hex: %s dspqueue_write failed: 0x%08x\n", sess->name.c_str(), (unsigned) err); } } if (opt_opsync) { while (sess->op_pending) { ; } } t2 = ggml_time_us(); if (src2) { HEX_PROFILE( "ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles " "%u op-pkts %u (%f) call-usec %llu\n", sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2], (uint32_t) src1->ne[3], src2->name, (uint32_t) src2->ne[0], (uint32_t) src2->ne[1], (uint32_t) src2->ne[2], (uint32_t) src2->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts, (float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1); } else { HEX_PROFILE( "ggml-hex: %s %s %s %u:%u:%u:%u x %s %u:%u:%u:%u -> %s %u:%u:%u:%u : op-usec %u op-cycles %u op-pkts %u " "(%f) call-usec %llu\n", sess->name.c_str(), ggml_op_name(op->op), src0->name, (uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2], (uint32_t) src0->ne[3], src1->name, (uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2], (uint32_t) src1->ne[3], dst->name, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], sess->prof_usecs, sess->prof_cycles, sess->prof_pkts, (float) sess->prof_cycles / sess->prof_pkts, (unsigned long long) t2 - t1); } } static const char * ggml_backend_hexagon_name(ggml_backend_t backend) { auto sess = static_cast(backend->context); return sess->name.c_str(); } static void ggml_backend_hexagon_free(ggml_backend_t backend) { // we just need to delete the backend here // the sessions are allocated & freed as part of the registry delete backend; } static inline bool op_reuse_src1(const ggml_tensor * op1, const ggml_tensor * op0) { return (op0 && op0->src[1] == op1->src[1]); } // scan the graph and figure out last compute op index static inline int last_compute_op(ggml_cgraph * graph) { int last; for (int i = 0; i < graph->n_nodes; ++i) { ggml_tensor * node = graph->nodes[i]; switch (node->op) { case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL: case GGML_OP_ADD: case GGML_OP_SUB: case GGML_OP_RMS_NORM: case GGML_OP_GLU: case GGML_OP_ADD_ID: last = i; break; default: break; } } return last; } static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) { auto sess = static_cast(backend->context); HEX_VERBOSE("ggml-hex: %s graph-compute n_nodes %d\n", sess->name.c_str(), graph->n_nodes); const int last = last_compute_op(graph); const struct ggml_tensor * prev_quant_op = nullptr; // prev executed op with quantizer for (int i = 0; i < graph->n_nodes; ++i) { ggml_tensor * node = graph->nodes[i]; uint32_t flags = 0; // skip quantizer if src1 is reused if (op_reuse_src1(node, prev_quant_op)) { flags |= HTP_OPFLAGS_SKIP_QUANTIZE; } // ask for early notification for the last Op if (i == last) { flags |= HTP_OPFLAGS_EARLY_WAKEUP; } switch (node->op) { case GGML_OP_MUL_MAT: ggml_hexagon_mul_mat(node, flags); prev_quant_op = node; break; case GGML_OP_MUL_MAT_ID: ggml_hexagon_mul_mat_id(node, flags); prev_quant_op = node; break; case GGML_OP_MUL: case GGML_OP_ADD: case GGML_OP_SUB: ggml_hexagon_binary(node, flags); break; case GGML_OP_ADD_ID: ggml_hexagon_add_id(node, flags); break; case GGML_OP_RMS_NORM: ggml_hexagon_unary(node, flags); break; case GGML_OP_UNARY: if (ggml_get_unary_op(node) == GGML_UNARY_OP_SILU) { ggml_hexagon_unary(node, flags); } break; case GGML_OP_GLU: if ((ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU) || (ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU_OAI)) { ggml_hexagon_unary(node, flags); } break; case GGML_OP_SOFT_MAX: ggml_hexagon_unary(node, flags); break; case GGML_OP_ROPE: ggml_hexagon_rope(node, flags); break; // non-compute ops case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: break; default: GGML_ABORT("\nggml-hex: graph-compute %s is not supported\n", ggml_op_desc(node)); } } // Wait until all pending ops complete while (sess->op_pending) { ; } return GGML_STATUS_SUCCESS; } static void ggml_backend_hexagon_synchronize(ggml_backend_t backend) { auto sess = static_cast(backend->context); HEX_VERBOSE("ggml-hex: %s synchronize\n", sess->name.c_str()); // Wait until all pending ops complete while (sess->op_pending) { ; } } struct node_info { ggml_tensor * node; std::vector fused; ggml_op op() const { return node->op; } const ggml_tensor * dst() const { return fused.empty() ? node : fused.back(); } const ggml_tensor * src0() const { return node->src[0]; } const ggml_tensor * src1() const { return node->src[1]; } bool is_empty() const { return ggml_op_is_empty(node->op); } void add_fused(ggml_tensor * t) { fused.push_back(t); } bool stackable() const { switch (this->op()) { case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: return ggml_is_quantized(this->src0()->type); default: return false; } } bool same_input(const node_info& n) const { return n.src1() == this->src1(); } }; static std::vector ggml_hexagon_graph_optimize_reorder(const std::vector & nodes) { const int n = nodes.size(); std::vector res; res.reserve(n); std::vector used(n, false); // The main goal here is to stack the MUL_MAT ops with the same src1 input. // This allows use to reuse dynamically quantized src1 in VTCM. // TODO: the current version might do incorrect reodering in cases where quantized src0 // input is an output of another Op. for (int i0 = 0; i0 < n; i0++) { if (used[i0]) { continue; } res.push_back(i0); const auto & node0 = nodes[i0]; if (!node0.stackable()) { continue; } // that many nodes forward to search for stackable nodes that can reuse VTCM constexpr int N_FORWARD = 8; for (int i1 = i0 + 1; i1 < i0 + N_FORWARD && i1 < n; i1++) { if (used[i1]) { continue; } const auto & node1 = nodes[i1]; if (node1.stackable() && node1.same_input(node0)) { res.push_back(i1); used[i1] = true; } } } return res; } static void ggml_backend_hexagon_graph_optimize(ggml_backend_t backend, ggml_cgraph * gf) { const int n = gf->n_nodes; constexpr int MAX_FUSE = 16; enum ggml_op ops[MAX_FUSE]; std::vector nodes; nodes.reserve(gf->n_nodes); // fuse nodes: // we don't want to make reorders that break fusing, so we first pack all fusable tensors // and perform the reorder over the fused nodes. after the reorder is done, we unfuse for (int i = 0; i < n; i++) { node_info node = { /*.node =*/ gf->nodes[i], /*.fused =*/ {}, }; // fuse only ops that start with these operations // can be expanded when needed if (node.op() == GGML_OP_ADD || node.op() == GGML_OP_NORM || node.op() == GGML_OP_RMS_NORM) { ops[0] = node.op(); int f = i + 1; while (f < n && f < i + MAX_FUSE) { // conservatively allow fusing only these ops // can be expanded when needed if (gf->nodes[f]->op != GGML_OP_ADD && gf->nodes[f]->op != GGML_OP_MUL && gf->nodes[f]->op != GGML_OP_NORM && gf->nodes[f]->op != GGML_OP_RMS_NORM) { break; } ops[f - i] = gf->nodes[f]->op; f++; } f -= i; for (; f > 1; f--) { if (ggml_can_fuse(gf, i, ops, f)) { break; } } // add the fused tensors into the node info so we can unfuse them later for (int k = 1; k < f; k++) { ++i; // the .dst() becomes the last fused tensor node.add_fused(gf->nodes[i]); } } nodes.push_back(std::move(node)); } const auto order = ggml_hexagon_graph_optimize_reorder(nodes); // unfuse { int j = 0; for (const auto i : order) { const auto & node = nodes[i]; gf->nodes[j++] = node.node; for (auto * fused : node.fused) { gf->nodes[j++] = fused; } } } } static struct ggml_backend_i hexagon_backend_i = { /* .get_name = */ ggml_backend_hexagon_name, /* .free = */ ggml_backend_hexagon_free, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ ggml_backend_hexagon_synchronize, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_hexagon_graph_compute, /* .event_record = */ NULL, /* .event_wait = */ NULL, /* .graph_optimize = */ ggml_backend_hexagon_graph_optimize, }; static ggml_guid_t ggml_backend_hexagon_guid() { static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11 }; return &guid; } bool ggml_backend_is_hexagon(ggml_backend_t backend) { return backend && backend->iface.get_name == ggml_backend_hexagon_name; } // device interface static ggml_backend_t ggml_backend_hexagon_device_init(ggml_backend_dev_t dev, const char * params) { auto sess = static_cast(dev->context); return new ggml_backend{ /* .guid = */ ggml_backend_hexagon_guid(), /* .interface = */ hexagon_backend_i, /* .device = */ dev, /* .context = */ sess, }; GGML_UNUSED(params); } static const char * ggml_backend_hexagon_device_get_name(ggml_backend_dev_t dev) { auto sess = static_cast(dev->context); return sess->name.c_str(); GGML_UNUSED(dev); } static const char * ggml_backend_hexagon_device_get_description(ggml_backend_dev_t dev) { return "Hexagon"; GGML_UNUSED(dev); } static void ggml_backend_hexagon_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { // ~2GB per session for now *free = 2ULL * 1024 * 1024 * 1024; *total = *free; GGML_UNUSED(dev); } static enum ggml_backend_dev_type ggml_backend_hexagon_device_get_type(ggml_backend_dev_t dev) { return GGML_BACKEND_DEVICE_TYPE_GPU; GGML_UNUSED(dev); } static void ggml_backend_hexagon_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { props->name = ggml_backend_hexagon_device_get_name(dev); props->description = ggml_backend_hexagon_device_get_description(dev); props->type = ggml_backend_hexagon_device_get_type(dev); ggml_backend_hexagon_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = { /* .async = */ true, /* .host_buffer = */ (bool) opt_hostbuf, /* .buffer_from_host_ptr = */ false, /* .events = */ false, }; } static ggml_backend_buffer_type_t ggml_backend_hexagon_device_get_buffer_type(ggml_backend_dev_t dev) { auto sess = static_cast(dev->context); return &sess->buffer_type; } static ggml_backend_buffer_type_t ggml_backend_hexagon_device_get_repack_buffer_type(ggml_backend_dev_t dev) { auto sess = static_cast(dev->context); return &sess->repack_buffer_type; } static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { auto sess = static_cast(dev->context); bool supp = false; switch (op->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: supp = true; break; case GGML_OP_MUL_MAT: supp = ggml_hexagon_supported_mul_mat(sess, op); break; case GGML_OP_MUL_MAT_ID: supp = ggml_hexagon_supported_mul_mat_id(sess, op); break; case GGML_OP_MUL: case GGML_OP_ADD: case GGML_OP_SUB: supp = ggml_hexagon_supported_binary(sess, op); break; case GGML_OP_ADD_ID: supp = ggml_hexagon_supported_add_id(sess, op); break; case GGML_OP_RMS_NORM: supp = ggml_hexagon_supported_unary(sess, op); break; case GGML_OP_SOFT_MAX: supp = ggml_hexagon_supported_softmax(sess, op); break; case GGML_OP_UNARY: if (ggml_get_unary_op(op) == GGML_UNARY_OP_SILU) { supp = ggml_hexagon_supported_activations(sess, op); } break; case GGML_OP_GLU: if ((ggml_get_glu_op(op) == GGML_GLU_OP_SWIGLU) /* || (ggml_get_glu_op(op) == GGML_GLU_OP_SWIGLU_OAI) */) { supp = ggml_hexagon_supported_activations(sess, op); } break; case GGML_OP_ROPE: supp = ggml_hexagon_supported_rope(sess, op); break; default: break; } if (opt_verbose) { char dims[64 * GGML_MAX_SRC]; char strides[64 * GGML_MAX_SRC]; char types[16 * GGML_MAX_SRC]; char buffs[64 * GGML_MAX_SRC]; char names[64 * GGML_MAX_SRC]; hex_format_op_dims(dims, op); hex_format_op_strides(strides, op); hex_format_op_types(types, op); hex_format_op_buffs(buffs, op); hex_format_op_names(names, op); HEX_VERBOSE("ggml-hex: %s device-supports-op %s : %s : %s : %s : %s : %s : (%d)\n", sess->name.c_str(), ggml_op_name(op->op), names, dims, types, strides, buffs, (int) supp); } return supp; GGML_UNUSED(dev); } static bool ggml_backend_hexagon_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { if (buft->iface.get_alignment != ggml_backend_hexagon_buffer_type_get_alignment) { return false; } auto s0 = static_cast(dev->context); auto s1 = static_cast(buft->context)->sess; // Need session/domain-id for buffers to be compatible bool supp = (s0->session_id == s1->session_id); HEX_VERBOSE("ggml-hex: %s device-supports-buft %s (%d)\n", s0->name.c_str(), s1->name.c_str(), (int) supp); return supp; } static ggml_backend_buffer_type_t * ggml_backend_hexagon_device_get_extra_buffers_type(ggml_backend_dev_t dev) { auto s0 = static_cast(dev->context); HEX_VERBOSE("ggml-hex: device-get-extra-buft : %s \n", s0->name.c_str()); static ggml_backend_buffer_type_t bufts[2]; bufts[0] = ggml_backend_hexagon_device_get_repack_buffer_type(dev); bufts[1] = NULL; return bufts; } static const struct ggml_backend_device_i ggml_backend_hexagon_device_i = { /* .get_name = */ ggml_backend_hexagon_device_get_name, /* .get_description = */ ggml_backend_hexagon_device_get_description, /* .get_memory = */ ggml_backend_hexagon_device_get_memory, /* .get_type = */ ggml_backend_hexagon_device_get_type, /* .get_props = */ ggml_backend_hexagon_device_get_props, /* .init_backend = */ ggml_backend_hexagon_device_init, /* .get_buffer_type = */ ggml_backend_hexagon_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, // ggml_backend_hexagon_device_get_host_buffer_type, /* .buffer_from_host_ptr = */ NULL, // ggml_backend_hexagon_device_buffer_from_ptr, /* .supports_op = */ ggml_backend_hexagon_device_supports_op, /* .supports_buft = */ ggml_backend_hexagon_device_supports_buft, /* .offload_op = */ NULL, // ggml_backend_hexagon_device_offload_op, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; //** backend registry #define GGML_HEXAGON_MAX_SESSIONS 16 struct ggml_hexagon_registry { ggml_hexagon_registry(ggml_backend_reg_t reg); ~ggml_hexagon_registry(); ggml_backend_device devices[GGML_HEXAGON_MAX_SESSIONS]; }; ggml_hexagon_registry::ggml_hexagon_registry(ggml_backend_reg_t reg) { GGML_LOG_INFO("ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev %zu\n", opt_ndev); if (!opt_arch) { int err = get_hex_arch_ver(CDSP_DOMAIN_ID, &opt_arch); if (err != 0) { GGML_LOG_ERROR("ggml-hex: failed to query HTP version (err %d) defaulting to v73\n", err); opt_arch = 73; } } GGML_LOG_INFO("ggml-hex: Hexagon Arch version v%d\n", opt_arch); // Create devices / sessions for (size_t i = 0; i < opt_ndev; i++) { devices[i].iface = ggml_backend_hexagon_device_i; devices[i].reg = reg; try { devices[i].context = new ggml_hexagon_session(i); } catch (std::exception const &exc) { GGML_LOG_ERROR("ggml-hex: failed to create device/session %zu\n", i); devices[i].context = nullptr; } } } ggml_hexagon_registry::~ggml_hexagon_registry() { GGML_LOG_INFO("ggml-hex: releasing registry\n"); // Release devices / sessions for (size_t i = 0; i < opt_ndev; i++) { auto sess = static_cast(devices[i].context); delete sess; } } static const char * ggml_backend_hexagon_reg_get_name(ggml_backend_reg_t reg) { return "HTP"; GGML_UNUSED(reg); } static size_t ggml_backend_hexagon_reg_get_device_count(ggml_backend_reg_t reg) { return opt_ndev; GGML_UNUSED(reg); } static ggml_backend_dev_t ggml_backend_hexagon_reg_get_device(ggml_backend_reg_t reg, size_t index) { auto hreg = static_cast(reg->context); if (index >= opt_ndev || !hreg->devices[index].context) { return nullptr; } return &hreg->devices[index]; } static void * ggml_backend_hexagon_get_proc_address(ggml_backend_reg_t reg, const char * name) { if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) { ggml_backend_dev_get_extra_bufts_t fct = ggml_backend_hexagon_device_get_extra_buffers_type; return (void *) fct; } return NULL; } static void ggml_hexagon_init(ggml_backend_reg * reg) { // Basic sanity checks to make sure definitions match static_assert((unsigned int) HTP_TYPE_Q4_0 == (unsigned int) GGML_TYPE_Q4_0, "please update hexagon_type to match ggml_type"); static_assert((unsigned int) HTP_TYPE_Q8_0 == (unsigned int) GGML_TYPE_Q8_0, "please update hexagon_type to match ggml_type"); static_assert((unsigned int) HTP_TYPE_MXFP4 == (unsigned int) GGML_TYPE_MXFP4, "please update hexagon_type to match ggml_type"); const char * str_verbose = getenv("GGML_HEXAGON_VERBOSE"); const char * str_hostbuf = getenv("GGML_HEXAGON_HOSTBUF"); opt_verbose = str_verbose ? atoi(str_verbose) : 0; opt_profile = getenv("GGML_HEXAGON_PROFILE") != nullptr; opt_etm = getenv("GGML_HEXAGON_ETM") != nullptr; opt_experimental = getenv("GGML_HEXAGON_EXPERIMENTAL") != nullptr; const char * str_opmask = getenv("GGML_HEXAGON_OPMASK"); if (str_opmask != nullptr) { opt_opmask = strtoul(str_opmask, NULL, 0); } opt_opsync = getenv("GGML_HEXAGON_OPSYNC") != nullptr; const char * str_ndev = getenv("GGML_HEXAGON_NDEV"); if (str_ndev) { opt_ndev = strtoul(str_ndev, NULL, 0); if (opt_ndev > GGML_HEXAGON_MAX_SESSIONS) { opt_ndev = GGML_HEXAGON_MAX_SESSIONS; } } const char * str_nhvx = getenv("GGML_HEXAGON_NHVX"); if (str_nhvx) { opt_nhvx = strtoul(str_nhvx, NULL, 0); } const char * str_arch = getenv("GGML_HEXAGON_ARCH"); if (str_arch) { if (str_arch[0] == 'v') { str_arch++; } opt_arch = strtoul(str_arch, NULL, 0); } opt_hostbuf = str_hostbuf ? atoi(str_hostbuf) : 1; reg->context = new ggml_hexagon_registry(reg); HEX_VERBOSE("ggml-hex: size-of-general-req %zu size-of-general-rsp %zu\n", sizeof(struct htp_general_req), sizeof(struct htp_general_rsp)); } static const struct ggml_backend_reg_i ggml_backend_hexagon_reg_i = { /* .get_name = */ ggml_backend_hexagon_reg_get_name, /* .get_device_count = */ ggml_backend_hexagon_reg_get_device_count, /* .get_device = */ ggml_backend_hexagon_reg_get_device, /* .get_proc_address = */ ggml_backend_hexagon_get_proc_address, }; ggml_backend_reg_t ggml_backend_hexagon_reg(void) { static bool initialized = false; static ggml_backend_reg reg = { /* .api_version = */ GGML_BACKEND_API_VERSION, /* .iface = */ ggml_backend_hexagon_reg_i, /* .context = */ NULL }; { static std::mutex mutex; std::lock_guard lock(mutex); if (!initialized) { ggml_hexagon_init(®); } initialized = true; } return ® } GGML_BACKEND_DL_IMPL(ggml_backend_hexagon_reg)