171 lines
6.8 KiB
C++
171 lines
6.8 KiB
C++
#include "models.h"
|
|
|
|
llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
|
int sections[4];
|
|
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
|
|
|
|
ggml_tensor * cur;
|
|
ggml_tensor * inpL;
|
|
|
|
inpL = build_inp_embd(model.tok_embd);
|
|
|
|
bool use_mrope = hparams.use_mrope();
|
|
if (ubatch.embd && !use_mrope) {
|
|
// unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results
|
|
GGML_ABORT("This GGUF does not support multimodal. Please reconvert it.");
|
|
}
|
|
|
|
// inp_pos - contains the positions
|
|
ggml_tensor * inp_pos = build_inp_pos();
|
|
|
|
auto * inp_attn = build_attn_inp_kv();
|
|
|
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
|
// Only process up to last layer (skip final NextN layer)
|
|
// Final layer tensors are loaded but not processed in forward pass
|
|
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
|
|
for (int il = 0; il < n_transformer_layers; ++il) {
|
|
ggml_tensor * inpSA = inpL;
|
|
|
|
// Pre-attention norm
|
|
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(cur, "attn_norm", il);
|
|
|
|
// self-attention
|
|
{
|
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
if (model.layers[il].bq) {
|
|
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
}
|
|
cb(Qcur, "Qcur", il);
|
|
|
|
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
if (model.layers[il].bk) {
|
|
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
}
|
|
cb(Kcur, "Kcur", il);
|
|
|
|
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
if (model.layers[il].bv) {
|
|
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
}
|
|
cb(Vcur, "Vcur", il);
|
|
|
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
|
// Apply Q/K norm if available (GLM-4.5 355B variant)
|
|
if (model.layers[il].attn_q_norm) {
|
|
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(Qcur, "Qcur_normed", il);
|
|
}
|
|
if (model.layers[il].attn_k_norm) {
|
|
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(Kcur, "Kcur_normed", il);
|
|
}
|
|
|
|
if (use_mrope) {
|
|
Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
|
|
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
|
|
Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
|
|
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
} else {
|
|
// Normal RoPE
|
|
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
|
|
rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
|
|
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
|
|
rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
}
|
|
|
|
cb(Qcur, "Qcur", il);
|
|
cb(Kcur, "Kcur", il);
|
|
cb(Vcur, "Vcur", il);
|
|
|
|
cur = build_attn(inp_attn,
|
|
model.layers[il].wo, NULL,
|
|
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
}
|
|
if (il == n_transformer_layers - 1 && inp_out_ids) {
|
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
}
|
|
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
cb(ffn_inp, "ffn_inp", il);
|
|
|
|
// Post-attention norm
|
|
cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(cur, "post_attn_norm", il);
|
|
|
|
// Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
|
|
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
|
|
// Dense FFN layer
|
|
cur = build_ffn(cur,
|
|
model.layers[il].ffn_up, NULL, NULL,
|
|
model.layers[il].ffn_gate, NULL, NULL,
|
|
model.layers[il].ffn_down, NULL, NULL,
|
|
NULL,
|
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
cb(cur, "ffn_out", il);
|
|
} else {
|
|
// Process routed experts using existing MoE infrastructure
|
|
ggml_tensor * routed_out = build_moe_ffn(cur,
|
|
model.layers[il].ffn_gate_inp,
|
|
model.layers[il].ffn_up_exps,
|
|
model.layers[il].ffn_gate_exps,
|
|
model.layers[il].ffn_down_exps,
|
|
model.layers[il].ffn_exp_probs_b,
|
|
n_expert, n_expert_used,
|
|
LLM_FFN_SILU, hparams.expert_weights_norm,
|
|
true, hparams.expert_weights_scale,
|
|
(llama_expert_gating_func_type) hparams.expert_gating_func,
|
|
il);
|
|
cb(routed_out, "ffn_moe_out", il);
|
|
|
|
// Process shared expert on original input
|
|
ggml_tensor * shared_out = build_ffn(cur,
|
|
model.layers[il].ffn_up_shexp, NULL, NULL,
|
|
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
|
model.layers[il].ffn_down_shexp, NULL, NULL,
|
|
NULL,
|
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
cb(shared_out, "ffn_shexp_out", il);
|
|
|
|
// Final output: routed_output + shared_output
|
|
cur = ggml_add(ctx0, routed_out, shared_out);
|
|
cb(cur, "ffn_out", il);
|
|
}
|
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
|
cur = build_cvec(cur, il);
|
|
cb(cur, "l_out", il);
|
|
|
|
// input for next layer
|
|
inpL = cur;
|
|
}
|
|
cur = inpL;
|
|
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
|
|
cb(cur, "result_norm", -1);
|
|
res->t_embd = cur;
|
|
|
|
// lm_head
|
|
cur = build_lora_mm(model.output, cur);
|
|
|
|
cb(cur, "result_output", -1);
|
|
res->t_logits = cur;
|
|
|
|
ggml_build_forward_expand(gf, cur);
|
|
}
|