#include "models.h" llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); int sections[4]; std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); bool use_mrope = hparams.use_mrope(); if (ubatch.embd && !use_mrope) { // unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results GGML_ABORT("This GGUF does not support multimodal. Please reconvert it."); } // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv(); ggml_tensor * inp_out_ids = build_inp_out_ids(); // Only process up to last layer (skip final NextN layer) // Final layer tensors are loaded but not processed in forward pass const int n_transformer_layers = n_layer - hparams.nextn_predict_layers; for (int il = 0; il < n_transformer_layers; ++il) { ggml_tensor * inpSA = inpL; // Pre-attention norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); } cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); } cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); } cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); // Apply Q/K norm if available (GLM-4.5 355B variant) if (model.layers[il].attn_q_norm) { Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur_normed", il); } if (model.layers[il].attn_k_norm) { Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur_normed", il); } if (use_mrope) { Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr, n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr, n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); } else { // Normal RoPE Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_transformer_layers - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // Post-attention norm cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "post_attn_norm", il); // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense) if (static_cast(il) < hparams.n_layer_dense_lead) { // Dense FFN layer cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } else { // Process routed experts using existing MoE infrastructure ggml_tensor * routed_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, hparams.expert_weights_norm, true, hparams.expert_weights_scale, (llama_expert_gating_func_type) hparams.expert_gating_func, il); cb(routed_out, "ffn_moe_out", il); // Process shared expert on original input ggml_tensor * shared_out = build_ffn(cur, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(shared_out, "ffn_shexp_out", il); // Final output: routed_output + shared_output cur = ggml_add(ctx0, routed_out, shared_out); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }