861 lines
42 KiB
Plaintext
861 lines
42 KiB
Plaintext
// #include <cuda_runtime.h>
|
|
#include "ggml.h"
|
|
#include "common.cuh"
|
|
#include "convert.cuh"
|
|
#include "conv2d-implicit.cuh"
|
|
|
|
|
|
typedef unsigned int uint;
|
|
constexpr uint WARPSIZE = 32;
|
|
|
|
static __global__ void reduce_f32(const float * __restrict__ x, float * __restrict__ dst, const int ncols, const int nrows) {
|
|
const int row = blockIdx.x;
|
|
const int col = threadIdx.x;
|
|
|
|
float sum = 0.0f;
|
|
if (row * blockDim.x + col < ncols) {
|
|
for (int i = 0; i < nrows; ++i){
|
|
sum += x[i * ncols + row * blockDim.x + col];
|
|
}
|
|
dst[row * blockDim.x + col] = sum;
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T, const int BM, const int BN, const int BK, const int WM, const int WN,
|
|
const int WNITER, const int TM, const int TN, const int NUM_THREADS,
|
|
// layout: 0, NHWC; 1, NCHW
|
|
const int layout, const bool vec_load, const int ksplit, const int PAD=4>
|
|
static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
|
|
const T * __restrict__ kernel,
|
|
float * __restrict__ output,
|
|
const param_t param) {
|
|
|
|
// __shared__ char smem[4 * (TM*TN*NUM_THREADS <= (BM * BK + BK * (BN+PAD)) ? (BM * BK + BK * (BN+PAD)) : (TM*TN*NUM_THREADS))];
|
|
__shared__ char smem[sizeof(float) * (TM*TN*NUM_THREADS) <= sizeof(float) * 2 * BM * BK + sizeof(T)*2*BK * (BN+PAD) ?
|
|
sizeof(float)*2*BM*BK + sizeof(T)*2*BK*(BN+PAD) : sizeof(float) * (TM*TN*NUM_THREADS)];
|
|
// __shared__ float smeminput[2 * BM * BK];
|
|
// __shared__ float smemweight[2 * BK * (BN+PAD)];
|
|
T *smemweight = reinterpret_cast<T *>(smem);
|
|
float *smeminput = reinterpret_cast<float *>(smem + 2 * BK * (BN+PAD) * sizeof(T));
|
|
|
|
const uint tx = threadIdx.x;
|
|
const uint bx = blockIdx.x;
|
|
const uint by = blockIdx.y;
|
|
|
|
const uint PQ = param.Oh * param.Ow;
|
|
|
|
// Warp tile
|
|
const uint lane_id = tx % WARPSIZE;
|
|
const uint warp_id = tx / WARPSIZE;
|
|
const int mma_tid_x = warp_id / (BN / WN); //(lane_id / 2) % 8;
|
|
const int mma_tid_y = warp_id % (BN / WN); //(lane_id / 16) * 2 + (lane_id % 2);
|
|
|
|
// lds addr
|
|
// int weight_lds_addr = (warp_id / 2) * 32 + mma_tid_y * 4;
|
|
// int input_lds_addr = (warp_id % 2) * 64 + mma_tid_x * 4;
|
|
|
|
// size of the warp subtile
|
|
constexpr uint WMITER = (WM * WN) / (WARPSIZE * TM * TN * WNITER);
|
|
constexpr uint WSUBM = WM / WMITER; // 64/2=32
|
|
constexpr uint WSUBN = WN / WNITER; // 32/2=16
|
|
|
|
// Placement of the thread in the warp subtile
|
|
// const uint threadIdxInWarp = tx % WARPSIZE; // [0, 31]
|
|
const uint threadColInWarp = lane_id % (WSUBN / TN); // i%(16/4)
|
|
const uint threadRowInWarp = lane_id / (WSUBN / TN); // i/4
|
|
|
|
// int x = bx * BM + input_lds_addr;
|
|
// int y = by * BN + weight_lds_addr;
|
|
int z = blockIdx.z;
|
|
|
|
|
|
// float weight_ldg_reg[4];
|
|
// float input_ldg_reg[4];
|
|
// 当前线程处理的数据点在oh、ow上的坐标
|
|
// int posh_ori = ((bx * 128 + tx / 2 ) / param.Ow) * param.u - param.p;
|
|
// int posw_ori = ((bx * 128 + tx / 2 ) % param.Ow) * param.v - param.q;
|
|
// int posh_ori = fastdiv(bx * BM + tx / 2, param.OW_fastdiv) * param.u - param.p;
|
|
// int posw_ori = fastmodulo(bx * BM + tx / 2, param.OW_fastdiv) * param.v - param.q;
|
|
|
|
|
|
// int inOffset = (ksplit > 0): z * param.c * param.h * param.w ;
|
|
// int weiOffset = (by * BN + tx / 8 * 4) * param.c * param.r * param.s;
|
|
int inChannelOffset = layout == 0 ? param.c * param.w : param.h * param.w;
|
|
// int weightChannelOffset = param.r * param.s;
|
|
int weightKOffset = param.c * param.r * param.s;
|
|
|
|
// uint ks, start_k;
|
|
|
|
// if constexpr (ksplit > 0){
|
|
// const uint ks = (weightKOffset + ksplit - 1) / ksplit;
|
|
// const uint start_k = z * ks;
|
|
// } else {
|
|
// const uint ks = weightKOffset;
|
|
// const uint start_k = 0;
|
|
// }
|
|
const uint ks = (ksplit > 0) ? (weightKOffset + ksplit - 1) / ksplit : weightKOffset;
|
|
const uint start_k = (ksplit > 0)? z * ks: 0;
|
|
const uint end_k = min(start_k + ks, weightKOffset);
|
|
|
|
// sts addr
|
|
// int weight_sts_addr = (tx % 8) * 132 +
|
|
// (tx / 8) * 4;
|
|
int write_flag = 1;
|
|
T weight_frag[2][WNITER * TN];
|
|
float input_frag[2][WMITER * TM] = {0.f};
|
|
float output_frag[WMITER * TM * WNITER * TN] = {0.f};
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 8; ++i)
|
|
// {
|
|
// #pragma unroll
|
|
// for (int j = 0; j < 8; ++j)
|
|
// {
|
|
// output_frag[i][j] = 0;
|
|
// }
|
|
// }
|
|
|
|
// calculating the indices that this thread will load into SMEM
|
|
// we'll load 128bit / 32bit = 4 elements per thread at each step
|
|
const uint innerRowA = tx / (BK / 4);
|
|
const uint innerColA = tx % (BK / 4);
|
|
constexpr uint rowStrideA = (NUM_THREADS * 4) / BK;
|
|
// const uint innerRowB = tx / (BN / 4);
|
|
// const uint innerColB = tx % (BN / 4);
|
|
// constexpr uint rowStrideB = NUM_THREADS / (BN / 4);
|
|
|
|
// ldg
|
|
const uint weight_sts_addr = innerRowA + innerColA * (BN+PAD) * 4;
|
|
#pragma unroll
|
|
for (uint offset = 0; offset + rowStrideA <= BN; offset += rowStrideA) {
|
|
if(vec_load){
|
|
// if (by * BN + innerRowA + offset < param.k && start_k + innerColA * 4 < param.c * param.r * param.s){
|
|
if (by * BN + innerRowA + offset < param.k && start_k + innerColA * 4 < end_k){
|
|
if constexpr (std::is_same_v<T, float>){
|
|
float4 tmp = reinterpret_cast<const float4 *>(&kernel[(by * BN + innerRowA + offset) * weightKOffset + start_k + innerColA * 4])[0];
|
|
smemweight[weight_sts_addr + offset + 0] = tmp.x;
|
|
smemweight[weight_sts_addr + offset + (BN+PAD)] = tmp.y;
|
|
smemweight[weight_sts_addr + offset + 2*(BN+PAD)] = tmp.z;
|
|
smemweight[weight_sts_addr + offset + 3*(BN+PAD)] = tmp.w;
|
|
}else{ // read 4 halves
|
|
// half val[4];
|
|
float2 tmp = reinterpret_cast<const float2 *>(&kernel[(by * BN + innerRowA + offset) * weightKOffset + start_k + innerColA * 4])[0];
|
|
const half *val = reinterpret_cast<const half *>(&tmp);
|
|
// val[1] = reinterpret_cast<half2 *>(&tmp.y);
|
|
smemweight[weight_sts_addr + offset + 0] = val[0];
|
|
smemweight[weight_sts_addr + offset + (BN+PAD)] = val[1];
|
|
smemweight[weight_sts_addr + offset + 2*(BN+PAD)] = val[2];
|
|
smemweight[weight_sts_addr + offset + 3*(BN+PAD)] = val[3];
|
|
}
|
|
} else {
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i){
|
|
smemweight[weight_sts_addr + offset + i*(BN+PAD)] = (T)0.f;
|
|
}
|
|
}
|
|
}else{
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i){
|
|
if (by * BN + innerRowA + offset < param.k && start_k + innerColA * 4 + i < end_k){
|
|
// float4 tmp = reinterpret_cast<float4 *>(¶m.weight[(by * BN + innerRowA + offset) * weightKOffset + innerColA * 4])[0];
|
|
smemweight[weight_sts_addr + offset + i*(BN+PAD)] = kernel[(by * BN + innerRowA + offset) * weightKOffset + start_k + innerColA * 4 + i];
|
|
} else {
|
|
smemweight[weight_sts_addr + offset + i*(BN+PAD)] = (T)0.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// int curC = (tx / 32) / (param.r * param.s); // channel offset
|
|
// int curR = ((tx / 32) % (param.r * param.s)) / param.s; // kernel r offset
|
|
// int curS = ((tx / 32) % (param.r * param.s)) % param.s; // kernel s offset
|
|
|
|
// int curR = (tx % 2) * 4 / (param.s * param.c); // channel offset
|
|
// int curS = ((tx % 2) * 4 % (param.s * param.c)) / param.c; // kernel r offset
|
|
// int curC = ((tx % 2) * 4 % (param.s * param.c)) % param.c; // kernel s offset
|
|
|
|
const uint input_sts_addr = innerRowA + innerColA * BM * 4;
|
|
#pragma unroll
|
|
for (uint offset = 0; offset + rowStrideA <= BM; offset += rowStrideA) {
|
|
int n = (ksplit > 0) ? (bx * BM + innerRowA + offset) / PQ : z;
|
|
const unsigned int npq_res = (bx * BM + innerRowA + offset) % PQ;
|
|
const int posh_ori = fastdiv((ksplit > 0) ? npq_res: bx * BM + innerRowA + offset, param.OW_fastdiv) * param.u - param.p;
|
|
const int posw_ori = fastmodulo((ksplit > 0) ? npq_res: bx * BM + innerRowA + offset, param.OW_fastdiv) * param.v - param.q;
|
|
int inOffset = n * param.c * param.h * param.w ;
|
|
if(vec_load){
|
|
// const uint curR = fastdiv(start_k + innerColA * 4, param.SC_fastdiv); // channel offset
|
|
// const uint curS = fastdiv(fastmodulo(start_k + innerColA * 4, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
// const uint curC = fastmodulo(fastmodulo(start_k + innerColA * 4, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
const uint cur0 = fastdiv(start_k + innerColA * 4,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv); // channel offset
|
|
const uint cur1 = fastdiv(fastmodulo(start_k + innerColA * 4,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
|
|
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
|
|
const uint cur2 = fastmodulo(fastmodulo(start_k + innerColA * 4,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
|
|
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
|
|
const uint curC = layout == 0 ? cur2 : cur0;
|
|
const uint curR = layout == 0 ? cur0 : cur1;
|
|
const uint curS = layout == 0 ? cur1 : cur2;
|
|
const int curH = posh_ori + curR * param.d_h; // input h
|
|
const int curW = posw_ori + curS * param.d_w; // input w
|
|
if (curH >= 0 && curW >= 0 && curW < param.w && curH < param.h && start_k + innerColA * 4 < end_k){
|
|
// int inOffsetTmp = curH * inChannelOffset + curW * param.c + curC;
|
|
int inOffsetTmp = layout == 0 ?
|
|
curH * inChannelOffset + curW * param.c + curC:
|
|
curC * inChannelOffset + curH * param.w + curW;
|
|
float4 tmp = reinterpret_cast<const float4 *>(&input[inOffset + inOffsetTmp])[0];
|
|
smeminput[input_sts_addr + offset + 0] = tmp.x;
|
|
smeminput[input_sts_addr + offset + BM] = tmp.y;
|
|
smeminput[input_sts_addr + offset + 2*BM] = tmp.z;
|
|
smeminput[input_sts_addr + offset + 3*BM] = tmp.w;
|
|
} else {
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i)
|
|
smeminput[input_sts_addr + offset + i*BM] = 0.f;
|
|
}
|
|
} else {
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i){
|
|
// const uint curR = fastdiv(start_k + innerColA * 4 + i, param.SC_fastdiv); // channel offset
|
|
// const uint curS = fastdiv(fastmodulo(start_k + innerColA * 4 + i, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
// const uint curC = fastmodulo(fastmodulo(start_k + innerColA * 4 + i, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
const uint cur0 = fastdiv(start_k + innerColA * 4 + i,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv); // channel offset
|
|
const uint cur1 = fastdiv(fastmodulo(start_k + innerColA * 4 + i,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
|
|
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
|
|
const uint cur2 = fastmodulo(fastmodulo(start_k + innerColA * 4 + i,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
|
|
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
|
|
const uint curC = layout == 0 ? cur2 : cur0;
|
|
const uint curR = layout == 0 ? cur0 : cur1;
|
|
const uint curS = layout == 0 ? cur1 : cur2;
|
|
const int curH = posh_ori + curR * param.d_h; // input h
|
|
const int curW = posw_ori + curS * param.d_w; // input w
|
|
if (curH >= 0 && curW >= 0 && curW < param.w && curH < param.h && start_k + innerColA * 4 + i < end_k){
|
|
// int inOffsetTmp = curH * inChannelOffset + curW * param.c + curC;
|
|
int inOffsetTmp = layout == 0 ?
|
|
curH * inChannelOffset + curW * param.c + curC:
|
|
curC * inChannelOffset + curH * param.w + curW;
|
|
smeminput[input_sts_addr + offset + i*BM] = input[inOffset + inOffsetTmp];
|
|
} else {
|
|
smeminput[input_sts_addr + offset + i*BM] = 0.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// sts
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// smemweight[weight_sts_addr + i*132] = weight_ldg_reg[i];
|
|
// }
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// smeminput[input_sts_addr + i * 128] = input_ldg_reg[i];
|
|
// }
|
|
|
|
__syncthreads();
|
|
|
|
// if(tx == 0 && bx == 0 && by == 0 && z == 0){
|
|
// for(int i=0; i < 128; ++i)
|
|
// printf("%.2f,", smeminput[i]);
|
|
// printf("\n");
|
|
// for(int i=128; i < 256; ++i)
|
|
// printf("%.2f,", smeminput[i]);
|
|
// printf("\n");
|
|
// }
|
|
|
|
// if(tx == 0 && bx == 0 && by == 0 && z == 0){
|
|
// printf("%u, %u, %u, %u \n", innerRowA, innerColA, rowStrideA, weight_sts_addr);
|
|
// for(int i=0; i < 16; ++i)
|
|
// printf("%f,", smemweight[i]);
|
|
// printf("\n");
|
|
// for(int i=0; i < 16; ++i)
|
|
// printf("%f,", param.weight[i*param.c*param.r*param.s]);
|
|
// printf("\n");
|
|
// }
|
|
|
|
// lds
|
|
// int input_lds_addr = (warp_id % 2) * 64 + mma_tid_x * 4;
|
|
const uint input_lds_addr = mma_tid_x * WM;
|
|
#pragma unroll
|
|
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx)
|
|
#pragma unroll
|
|
for (uint i = 0; i < TM; ++i)
|
|
input_frag[0][wSubRowIdx * TM + i] = smeminput[input_lds_addr + wSubRowIdx * WSUBM +
|
|
threadRowInWarp * TM + i];
|
|
|
|
// int weight_lds_addr = (warp_id / 2) * 32 + mma_tid_y * 4;
|
|
const uint weight_lds_addr = mma_tid_y * WN;
|
|
#pragma unroll
|
|
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx)
|
|
#pragma unroll
|
|
for (uint i = 0; i < TN; ++i)
|
|
weight_frag[0][wSubColIdx * TN + i] = smemweight[weight_lds_addr + wSubColIdx * WSUBN +
|
|
threadColInWarp * TN + i];
|
|
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// weight_frag[0][i] = smemweight[weight_lds_addr + i];
|
|
// weight_frag[0][i + 4] = smemweight[weight_lds_addr + i + 16];
|
|
// }
|
|
// if(tx == 0 && bx == 0 && by == 0 && z == 0)
|
|
// {
|
|
// printf("weight_ldg_reg:%f,%f,%f,%f\n", weight_frag[0][0], weight_frag[0][1], weight_frag[0][2], weight_frag[0][3]);
|
|
// printf("weight_ldg_reg:%f,%f,%f,%f\n", weight_frag[0][4], weight_frag[0][5], weight_frag[0][6], weight_frag[0][7]);
|
|
// }
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// input_frag[0][i] = smeminput[input_lds_addr + i];
|
|
// input_frag[0][i + 4] = smeminput[input_lds_addr + i + 32];
|
|
// }
|
|
|
|
|
|
for (int crs = start_k; crs < end_k; crs += BK)
|
|
{
|
|
// ldg
|
|
// if (by * BN + tx / 2 < param.k && tx % 2 * 4 < param.c * param.r * param.s){
|
|
// float4 tmp = reinterpret_cast<float4 *>(¶m.weight[by * BN + tx / 2 * weightKOffset + tx % 2 * 4 + crs + 8])[0];
|
|
// weight_ldg_reg[0] = tmp.x;
|
|
// weight_ldg_reg[1] = tmp.y;
|
|
// weight_ldg_reg[2] = tmp.z;
|
|
// weight_ldg_reg[3] = tmp.w;
|
|
// } else {
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 4; ++i)
|
|
// weight_ldg_reg[i] = 0.0;
|
|
// }
|
|
// curR = (crs + 8 + tx % 2 * 4) / (param.s * param.c); // channel offset
|
|
// curS = ((crs + 8 + tx % 2 * 4) % (param.s * param.c)) / param.c; // kernel r offset
|
|
// curC = ((crs + 8 + tx % 2 * 4) % (param.s * param.c)) % param.c; // kernel s offset
|
|
// curR = fastdiv(crs + 8 + (tx % 2) * 4, param.SC_fastdiv); // channel offset
|
|
// curS = fastdiv(fastmodulo(crs + 8 + (tx % 2) * 4, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
// curC = fastmodulo(fastmodulo(crs + 8 + (tx % 2) * 4, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
|
|
// int curH = posh_ori + curR; // input h
|
|
// int curW = posw_ori + curS; // input w
|
|
// if (curH >= 0 && curW >= 0 && curW < param.w && curH < param.h){
|
|
// int inOffsetTmp = curH * inChannelOffset + curW * param.c + curC;
|
|
|
|
// // float4 tmp = reinterpret_cast<float4 *>(¶m.input[inOffset + inOffsetTmp])[0];
|
|
// // input_ldg_reg[0] = tmp.x;
|
|
// // input_ldg_reg[1] = tmp.y;
|
|
// // input_ldg_reg[2] = tmp.z;
|
|
// // input_ldg_reg[3] = tmp.w;
|
|
// reinterpret_cast<float4 *>(&input_ldg_reg[0])[0] = reinterpret_cast<float4 *>(¶m.input[inOffset + inOffsetTmp])[0]; } else {
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 4; ++i)
|
|
// input_ldg_reg[i] = 0.0;
|
|
// }
|
|
|
|
int load_flag = write_flag ^ 1;
|
|
#pragma unroll
|
|
for (int subcrs = 0; subcrs < BK - 1; ++subcrs)
|
|
{
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// weight_frag[(subcrs + 1) % 2][i] = smemweight[load_flag * (BN+4) * 8 + weight_lds_addr + (subcrs + 1) * (BN+4) + i];
|
|
// weight_frag[(subcrs + 1) % 2][i + 4] = smemweight[load_flag * (BN+4) * 8 + weight_lds_addr + (subcrs + 1) * (BN+4) + i + 16];
|
|
// }
|
|
#pragma unroll
|
|
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx)
|
|
#pragma unroll
|
|
for (uint i = 0; i < TN; ++i)
|
|
weight_frag[(subcrs + 1) % 2][wSubColIdx * TN + i] = smemweight[load_flag * (BN+PAD) * BK +
|
|
(subcrs + 1) * (BN+PAD) + weight_lds_addr + wSubColIdx * WSUBN + threadColInWarp * TN + i];
|
|
// float* base_ptr = smemweight + load_flag * 132 * 8 + weight_lds_addr + (subcrs + 1) * 132;
|
|
|
|
// // first 4 values -> weight_frag[...][0..3]
|
|
// float4 v0 = *reinterpret_cast<const float4*>(base_ptr);
|
|
|
|
// // next 4 values (offset +16) -> weight_frag[...][4..7]
|
|
// float4 v1 = *reinterpret_cast<const float4*>(base_ptr + 16);
|
|
|
|
// // unpack into weight_frag
|
|
// *reinterpret_cast<float4*>(&weight_frag[(subcrs + 1) % 2][0]) = v0;
|
|
// *reinterpret_cast<float4*>(&weight_frag[(subcrs + 1) % 2][4]) = v1;
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// input_frag[(subcrs + 1) % 2][i] = smeminput[load_flag * BM * 8 + input_lds_addr + (subcrs + 1) * BM + i];
|
|
// input_frag[(subcrs + 1) % 2][i + 4] = smeminput[load_flag * BM * 8 + input_lds_addr + (subcrs + 1) * BM + i + 32];
|
|
// }
|
|
#pragma unroll
|
|
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx)
|
|
#pragma unroll
|
|
for (uint i = 0; i < TM; ++i)
|
|
input_frag[(subcrs + 1) % 2][wSubRowIdx * TM + i] = smeminput[load_flag * BM * BK +
|
|
(subcrs + 1) * BM + input_lds_addr + wSubRowIdx * WSUBM + threadRowInWarp * TM + i];
|
|
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 8; ++i)
|
|
// {
|
|
// #pragma unroll
|
|
// for (int j = 0; j < 8; ++j)
|
|
// {
|
|
// output_frag[i][j] += weight_frag[subcrs % 2][i] * input_frag[subcrs % 2][j];
|
|
// }
|
|
// }
|
|
// execute warptile matmul
|
|
#pragma unroll
|
|
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx) {
|
|
#pragma unroll
|
|
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx) {
|
|
// calculate per-thread results
|
|
#pragma unroll
|
|
for (uint resIdxM = 0; resIdxM < TM; ++resIdxM) {
|
|
#pragma unroll
|
|
for (uint resIdxN = 0; resIdxN < TN; ++resIdxN) {
|
|
output_frag[(wSubRowIdx * TM + resIdxM) * (WNITER * TN) +
|
|
(wSubColIdx * TN) + resIdxN] +=
|
|
input_frag[subcrs % 2][wSubRowIdx * TM + resIdxM] *
|
|
ggml_cuda_cast<float>(weight_frag[subcrs % 2][wSubColIdx * TN + resIdxN]);
|
|
// if(tx == 0 && bx == 0 && by == 0 && z == 0){
|
|
// printf("subcrs:%d, i:%d, j:%d, %f * %f = %f, acc = %f\n", subcrs, wSubRowIdx * TM + resIdxM, wSubColIdx * TN + resIdxN,
|
|
// input_frag[subcrs % 2][wSubRowIdx * TM + resIdxM],
|
|
// weight_frag[subcrs % 2][wSubColIdx * TN + resIdxN],
|
|
// input_frag[subcrs % 2][wSubRowIdx * TM + resIdxM] *
|
|
// weight_frag[subcrs % 2][wSubColIdx * TN + resIdxN],
|
|
// output_frag[(wSubRowIdx * TM + resIdxM) * (WNITER * TN) +
|
|
// (wSubColIdx * TN) + resIdxN]);
|
|
// }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// ldg
|
|
#pragma unroll
|
|
for (uint offset = 0; offset + rowStrideA <= BN; offset += rowStrideA) {
|
|
if(vec_load){
|
|
if (by * BN + innerRowA + offset < param.k && innerColA * 4 + crs + BK < end_k){
|
|
if constexpr (std::is_same_v<T, float>){
|
|
float4 tmp = reinterpret_cast<const float4 *>(&kernel[(by * BN + innerRowA + offset) * weightKOffset + innerColA * 4 + crs + BK])[0];
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + 0] = tmp.x;
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + (BN+PAD)] = tmp.y;
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + 2*(BN+PAD)] = tmp.z;
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + 3*(BN+PAD)] = tmp.w;
|
|
} else {
|
|
float2 tmp = reinterpret_cast<const float2 *>(&kernel[(by * BN + innerRowA + offset) * weightKOffset + innerColA * 4 + crs + BK])[0];
|
|
const half *val = reinterpret_cast<const half *>(&tmp);
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + 0] = val[0];
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + (BN+PAD)] = val[1];
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + 2*(BN+PAD)] = val[2];
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + 3*(BN+PAD)] = val[3];
|
|
}
|
|
} else {
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i)
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + i*(BN+PAD)] = (T)0.f;
|
|
}
|
|
}else{
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i){
|
|
if (by * BN + innerRowA + offset < param.k && innerColA * 4 + crs + BK + i < end_k){
|
|
// float4 tmp = reinterpret_cast<float4 *>(¶m.weight[(by * BN + innerRowA + offset) * weightKOffset + innerColA * 4 + crs + BK + i])[0];
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + i*(BN+PAD)] = kernel[(by * BN + innerRowA + offset) * weightKOffset + innerColA * 4 + crs + BK + i];
|
|
} else {
|
|
smemweight[write_flag * (BN+PAD) * BK + weight_sts_addr + offset + i*(BN+PAD)] = (T)0.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#pragma unroll
|
|
for (uint offset = 0; offset + rowStrideA <= BM; offset += rowStrideA) {
|
|
int n = (ksplit > 0) ? (bx * BM + innerRowA + offset) / PQ : z;
|
|
const unsigned int npq_res = (bx * BM + innerRowA + offset) % PQ;
|
|
const int posh_ori = fastdiv((ksplit > 0) ? npq_res: bx * BM + innerRowA + offset, param.OW_fastdiv) * param.u - param.p;
|
|
const int posw_ori = fastmodulo((ksplit > 0) ? npq_res: bx * BM + innerRowA + offset, param.OW_fastdiv) * param.v - param.q;
|
|
int inOffset = n * param.c * param.h * param.w ;
|
|
if(vec_load){
|
|
// const uint curR = fastdiv(innerColA * 4 + crs + BK, param.SC_fastdiv); // channel offset
|
|
// const uint curS = fastdiv(fastmodulo(innerColA * 4 + crs + BK, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
// const uint curC = fastmodulo(fastmodulo(innerColA * 4 + crs + BK, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
const uint cur0 = fastdiv(innerColA * 4 + crs + BK,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv); // channel offset
|
|
const uint cur1 = fastdiv(fastmodulo(innerColA * 4 + crs + BK,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
|
|
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
|
|
const uint cur2 = fastmodulo(fastmodulo(innerColA * 4 + crs + BK,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
|
|
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
|
|
const uint curC = layout == 0 ? cur2 : cur0;
|
|
const uint curR = layout == 0 ? cur0 : cur1;
|
|
const uint curS = layout == 0 ? cur1 : cur2;
|
|
|
|
const int curH = posh_ori + curR * param.d_h; // input h
|
|
const int curW = posw_ori + curS * param.d_w; // input w
|
|
if (curH >= 0 && curW >= 0 && curW < param.w && curH < param.h && innerColA * 4 + crs + BK < end_k){
|
|
// int inOffsetTmp = curH * inChannelOffset + curW * param.c + curC;
|
|
int inOffsetTmp = layout == 0 ?
|
|
curH * inChannelOffset + curW * param.c + curC:
|
|
curC * inChannelOffset + curH * param.w + curW;
|
|
float4 tmp = reinterpret_cast<const float4 *>(&input[inOffset + inOffsetTmp])[0];
|
|
smeminput[write_flag * BM * BK + input_sts_addr + offset + 0] = tmp.x;
|
|
smeminput[write_flag * BM * BK + input_sts_addr + offset + BM] = tmp.y;
|
|
smeminput[write_flag * BM * BK + input_sts_addr + offset + 2*BM] = tmp.z;
|
|
smeminput[write_flag * BM * BK + input_sts_addr + offset + 3*BM] = tmp.w;
|
|
} else {
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i)
|
|
smeminput[write_flag * BM * BK + input_sts_addr + offset + i*BM] = 0.f;
|
|
}
|
|
} else {
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i){
|
|
// const uint curR = fastdiv(innerColA * 4 + crs + BK + i, param.SC_fastdiv); // channel offset
|
|
// const uint curS = fastdiv(fastmodulo(innerColA * 4 + crs + BK + i, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
// const uint curC = fastmodulo(fastmodulo(innerColA * 4 + crs + BK + i, param.SC_fastdiv), param.C_fastdiv); // kernel r offset
|
|
const uint cur0 = fastdiv(innerColA * 4 + crs + BK + i,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv); // channel offset
|
|
const uint cur1 = fastdiv(fastmodulo(innerColA * 4 + crs + BK + i,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
|
|
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
|
|
const uint cur2 = fastmodulo(fastmodulo(innerColA * 4 + crs + BK + i,
|
|
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
|
|
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
|
|
const uint curC = layout == 0 ? cur2 : cur0;
|
|
const uint curR = layout == 0 ? cur0 : cur1;
|
|
const uint curS = layout == 0 ? cur1 : cur2;
|
|
|
|
const int curH = posh_ori + curR * param.d_h; // input h
|
|
const int curW = posw_ori + curS * param.d_w; // input w
|
|
if (curH >= 0 && curW >= 0 && curW < param.w && curH < param.h && innerColA * 4 + crs + BK + i < end_k){
|
|
// int inOffsetTmp = curH * inChannelOffset + curW * param.c + curC;
|
|
int inOffsetTmp = layout == 0 ?
|
|
curH * inChannelOffset + curW * param.c + curC:
|
|
curC * inChannelOffset + curH * param.w + curW;
|
|
smeminput[write_flag * BM * BK + input_sts_addr + offset + i*BM] = input[inOffset + inOffsetTmp];
|
|
} else {
|
|
smeminput[write_flag * BM * BK + input_sts_addr + offset + i*BM] = 0.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// sts
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// smemweight[write_flag * (BN+4) * 8 + weight_sts_addr + i * (BN+4)] = weight_ldg_reg[i];
|
|
// }
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// smeminput[write_flag * BM * 8 + input_sts_addr + i * BM] = input_ldg_reg[i];
|
|
// }
|
|
__syncthreads();
|
|
write_flag ^= 1;
|
|
#pragma unroll
|
|
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx)
|
|
#pragma unroll
|
|
for (uint i = 0; i < TM; ++i)
|
|
input_frag[0][wSubRowIdx * TM + i] = smeminput[(load_flag ^ 1) * BM * BK +
|
|
input_lds_addr + wSubRowIdx * WSUBM + threadRowInWarp * TM + i];
|
|
#pragma unroll
|
|
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx)
|
|
#pragma unroll
|
|
for (uint i = 0; i < TN; ++i)
|
|
weight_frag[0][wSubColIdx * TN + i] = smemweight[(load_flag ^ 1) * (BN+PAD) * BK +
|
|
weight_lds_addr + wSubColIdx * WSUBN + threadColInWarp * TN + i];
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// weight_frag[0][i] = smemweight[(load_flag ^ 1) * (BN+4) * 8 + weight_lds_addr + i];
|
|
// weight_frag[0][i + 4] = smemweight[(load_flag ^ 1) * (BN+4) * 8 + weight_lds_addr + i + 16];
|
|
// }
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 4; ++i)
|
|
// {
|
|
// input_frag[0][i] = smeminput[(load_flag ^ 1) * BM * 8 + input_lds_addr + i];
|
|
// input_frag[0][i + 4] = smeminput[(load_flag ^ 1) * BM * 8 + input_lds_addr + i + 32];
|
|
// }
|
|
#pragma unroll
|
|
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx) {
|
|
#pragma unroll
|
|
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx) {
|
|
// calculate per-thread results
|
|
#pragma unroll
|
|
for (uint resIdxM = 0; resIdxM < TM; ++resIdxM) {
|
|
#pragma unroll
|
|
for (uint resIdxN = 0; resIdxN < TN; ++resIdxN) {
|
|
output_frag[(wSubRowIdx * TM + resIdxM) * (WNITER * TN) +
|
|
(wSubColIdx * TN) + resIdxN] +=
|
|
input_frag[1][wSubRowIdx * TM + resIdxM] *
|
|
ggml_cuda_cast<float>(weight_frag[1][wSubColIdx * TN + resIdxN]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 8; ++i)
|
|
// {
|
|
// #pragma unroll
|
|
// for (int j = 0; j < 8; ++j)
|
|
// {
|
|
// output_frag[i][j] += weight_frag[1][i] * input_frag[1][j];
|
|
// }
|
|
// }
|
|
}
|
|
|
|
// if(tx == 59 && bx == 0 && by == 0 && z == 0){
|
|
// for (int i = 0; i < WMITER * TM * WNITER * TN; ++i){
|
|
// printf("%f,", output_frag[i]);
|
|
// if((i+1) % (WNITER * TN) == 0)
|
|
// printf("\n");
|
|
// }
|
|
// printf("\n");
|
|
// }
|
|
// if(tx == 59 && bx == 0 && by == 0 && z == 0){
|
|
// int cnt[3] = {0};
|
|
// float values[3] = {-1.f};
|
|
// for (int i = 0; i < WMITER * TM * WNITER * TN; ++i){
|
|
// for(int j = 0; j < 3; j++){
|
|
// if (output_frag[i] == values[j]){
|
|
// cnt[j]++;
|
|
// break;
|
|
// } else{
|
|
// if (cnt[j] == 0){
|
|
// values[j] = output_frag[i];
|
|
// cnt[j]++;
|
|
// break;
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
// for(int j = 0; j < 3; j++){
|
|
// if(values[j] != -1.f)
|
|
// printf("value: %f, cnt: %d \n", values[j], cnt[j]);
|
|
// }
|
|
// }
|
|
|
|
// reuse smem
|
|
float *smemoutput = reinterpret_cast<float *>(smem);
|
|
// float *smembias = reinterpret_cast<float *>(smem + 16 * 1024);
|
|
|
|
// bias ldg/sts
|
|
// if (tx < BN)
|
|
// {
|
|
// smembias[tx] = param.bias[by * BN + tx];
|
|
// }
|
|
|
|
// constexpr uint OUTMITER = (TM * TN * WNITER * WMITER * NUM_THREADS) / (2 * BK * (BM + BN)) / OUTNITER;
|
|
// const uint WMITER_TM_OUTMITER = WMITER * TM / OUTMITER;
|
|
// const uint WNITER_TN_OUTNITER = WNITER * TN / OUTNITER;
|
|
|
|
|
|
|
|
// // uint32_t bias_lds_addr = warp_id / 2 * 32;
|
|
|
|
// #pragma unroll
|
|
// for (int i = 0; i < 2; ++i)
|
|
// {
|
|
// #pragma unroll
|
|
// for (int j = 0; j < 2; ++j)
|
|
// {
|
|
// __syncthreads();
|
|
|
|
// #pragma unroll
|
|
// for (int subi = 0; subi < 4; ++subi)
|
|
// {
|
|
// #pragma unroll
|
|
// for (int subj = 0; subj < 4; ++subj)
|
|
// {
|
|
// // output sts
|
|
// smemoutput[output_sts_addr + subi * 8 * 4 + subj] = output_frag[i * 4 + subi][j * 4 + subj];
|
|
// }
|
|
// }
|
|
// __syncthreads();
|
|
|
|
// #pragma unroll
|
|
// for (int subk = 0; subk < 16; ++subk)
|
|
// {
|
|
// int outOffset = z * param.k * param.Oh * param.Ow + (m_idx + i * 16 + subk) * param.Oh * param.Ow + n_idx + j * 32;
|
|
// if ((m_idx + i * 16 + subk) < param.k && (n_idx + j * 32) < param.Oh * param.Ow)
|
|
// param.output[outOffset] = smemoutput[output_lds_addr + subk * 32];
|
|
// }
|
|
// }
|
|
// }
|
|
const uint output_lds_addr = warp_id * WSUBM * WSUBN + lane_id;
|
|
// const uint m_idx = by * BN + mma_tid_y * WN + threadColInWarp * WNITER_TN_OUTNITER;
|
|
// const uint n_idx = bx * BM + mma_tid_x * WM + threadRowInWarp * WMITER_TM_OUTMITER;
|
|
// const uint output_sts_addr = warp_id * WMITER_TM_OUTMITER * WNITER_TN_OUTNITER * WARPSIZE +
|
|
// (threadRowInWarp * (WSUBN / TN) + threadColInWarp) * WMITER_TM_OUTMITER * WNITER_TN_OUTNITER;
|
|
const uint output_sts_addr = mma_tid_x * BN / WN * TM * TN * WARPSIZE + mma_tid_y * TM * TN * WARPSIZE +
|
|
threadColInWarp * TN * WSUBM + threadRowInWarp * TM;
|
|
const uint m_idx = by * BN + mma_tid_y * WN;
|
|
const uint n_idx = bx * BM + mma_tid_x * WM;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < WMITER; ++i)
|
|
{
|
|
#pragma unroll
|
|
for (int j = 0; j < WNITER; ++j)
|
|
{
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int subi = 0; subi < TM; ++subi)
|
|
{
|
|
#pragma unroll
|
|
for (int subj = 0; subj < TN; ++subj)
|
|
{
|
|
// output sts
|
|
smemoutput[output_sts_addr + subj * WSUBM + subi] =
|
|
output_frag[(i * TM + subi) * (WNITER * TN) + j * TN + subj];
|
|
}
|
|
}
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int subk = 0; subk < TM * TN; ++subk){
|
|
const uint row = m_idx + j * WSUBN + (lane_id + subk * WARPSIZE) / WSUBM;
|
|
const uint gemm_i = n_idx + i * WSUBM + (lane_id + subk * WARPSIZE) % WSUBM;
|
|
const int n = (ksplit > 0) ? gemm_i / PQ : z;
|
|
const int col = (ksplit > 0) ? gemm_i % PQ : gemm_i;
|
|
if (n < param.n && row < param.k && col < param.Oh * param.Ow){
|
|
// int outOffset = z * param.n * param.k * param.Oh * param.Ow + n * param.k * param.Oh * param.Ow + (m_idx + i * 16 + subk) * param.Oh * param.Ow + (n_idx + j * 32);
|
|
// if (n < param.n && (m_idx + i * 16 + subk) < param.k && (n_idx + j * 32) < param.Oh * param.Ow)
|
|
// param.interm[outOffset] = smemoutput[output_lds_addr + subk * 32];
|
|
const uint outOffset = ksplit > 0 ?
|
|
z * param.n * param.k * param.Oh * param.Ow + n * param.k * param.Oh * param.Ow +
|
|
row * param.Oh * param.Ow + col :
|
|
z * param.k * param.Oh * param.Ow + row * param.Oh * param.Ow + col;
|
|
output[outOffset] = smemoutput[output_lds_addr + subk * WARPSIZE];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define NUM_VARIANTS 6
|
|
|
|
/*
|
|
conv_shapes[][0]: ne_input=[384,512,256,1],ne_kernel=[3,3,256,256]
|
|
conv_shapes[][1]: ne_input=[96,128,512,1],ne_kernel=[3,3,512,512]
|
|
conv_shapes[][2]: ne_input=[192,256,512,1git diff],ne_kernel=[3,3,512,512]
|
|
*/
|
|
constexpr static int conv_shapes[][NUM_VARIANTS] = {
|
|
{ 128, 128, 128, 256 }, // BM
|
|
{ 256, 128, 256, 128 }, // BN
|
|
{ 8, 8, 8, 8 }, // BK
|
|
{ 128, 64, 32, 128 }, // WM
|
|
{ 32, 32 , 256, 32 }, // WN
|
|
{ 2, 2, 1, 1 }, // WNITER
|
|
{ 8, 4, 4, 4 }, // TM
|
|
{ 8, 4, 8, 8 }, // TN
|
|
{ 256, 256, 128, 256} // NUM_THREADS
|
|
};
|
|
|
|
template <typename T, unsigned int CONV_SHAPE>
|
|
static void conv2d_implicit_cuda(const float * X_D, const T * K_D, float * Y_D, const param_t P, cudaStream_t st) {
|
|
|
|
const uint BM = conv_shapes[0][CONV_SHAPE];
|
|
const uint BN = conv_shapes[1][CONV_SHAPE];
|
|
const uint BK = conv_shapes[2][CONV_SHAPE];
|
|
const uint WM = conv_shapes[3][CONV_SHAPE];
|
|
const uint WN = conv_shapes[4][CONV_SHAPE];
|
|
const uint WNITER = conv_shapes[5][CONV_SHAPE];
|
|
const uint TM = conv_shapes[6][CONV_SHAPE];
|
|
const uint TN = conv_shapes[7][CONV_SHAPE];
|
|
const uint NUM_THREADS = conv_shapes[8][CONV_SHAPE];
|
|
int blockx = ((P.Oh * P.Ow + BM - 1) / BM); // blockx number
|
|
int blocky = (P.k + BN-1) / BN; // blocky number
|
|
int blockz = P.n; // blockz number
|
|
// int threadx = NUM; // threadx number per block
|
|
int thready = 1; // thready number per block
|
|
int threadz = 1; // threadz number per block
|
|
dim3 thblock(NUM_THREADS, thready, threadz);
|
|
dim3 grid(blockx, blocky, blockz);
|
|
// int smem_size = 24 * 1024;
|
|
if(P.c % 4 == 0){
|
|
if(P.layout == 0)
|
|
conv2d_implicit_kernel<T, BM, BN, BK, WM, WN,
|
|
WNITER, TM, TN, NUM_THREADS, 0, true, 0><<<grid, thblock, 0, st>>>(X_D, K_D, Y_D, P);
|
|
else if(P.layout == 1)
|
|
conv2d_implicit_kernel<T, BM, BN, BK, WM, WN,
|
|
WNITER, TM, TN, NUM_THREADS, 1, false, 0><<<grid, thblock, 0, st>>>(X_D, K_D, Y_D, P);
|
|
} else{
|
|
if(P.layout == 0)
|
|
conv2d_implicit_kernel<T, BM, BN, BK, WM, WN,
|
|
WNITER, TM, TN, NUM_THREADS, 0, false, 0><<<grid, thblock, 0, st>>>(X_D, K_D, Y_D, P);
|
|
else if(P.layout == 1)
|
|
conv2d_implicit_kernel<T, BM, BN, BK, WM, WN,
|
|
WNITER, TM, TN, NUM_THREADS, 1, false, 0><<<grid, thblock, 0, st>>>(X_D, K_D, Y_D, P);
|
|
}
|
|
}
|
|
|
|
static void conv2d_implicit_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const param_t P, cudaStream_t st) {
|
|
conv2d_implicit_cuda<half, 1>(X_D, K_D, Y_D, P, st);
|
|
}
|
|
|
|
static void conv2d_implicit_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const param_t P, cudaStream_t st) {
|
|
conv2d_implicit_cuda<float, 1>(X_D, K_D, Y_D, P, st);
|
|
}
|
|
|
|
void ggml_cuda_op_conv2d_implicit(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * kernel = dst->src[0];
|
|
const ggml_tensor * input = dst->src[1];
|
|
float * K_D = (float *) kernel->data;
|
|
const float * X_D = (const float *) input->data;
|
|
float * Y_D = (float *) dst->data;
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(kernel));
|
|
GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
|
|
|
|
|
|
cudaStream_t st = ctx.stream();
|
|
|
|
const int32_t * p = (const int32_t *) dst->op_params;
|
|
const int ST_X = p[0]; // stride_x
|
|
const int ST_Y = p[1]; // stride_y
|
|
const int PD_X = p[2]; // padding_x
|
|
const int PD_Y = p[3]; // padding_y
|
|
const int DL_X = p[4]; // dilation_x
|
|
const int DL_Y = p[5]; // dilation_y
|
|
const int LT = p[6]; // layout
|
|
|
|
GGML_ASSERT(LT == 0 || LT == 1);
|
|
|
|
// same number of input channels
|
|
GGML_ASSERT(LT == 0 ? input->ne[0] == kernel->ne[0] : input->ne[2] == kernel->ne[2]);
|
|
// No cwhn
|
|
GGML_ASSERT(p[7] == false);
|
|
|
|
// const int IW = input->ne[0]; // input_w
|
|
// const int IH = input->ne[1]; // input_h
|
|
// const int OW = dst->ne[0]; // output_w
|
|
// const int OH = dst->ne[1]; // output_h
|
|
// const int KW = kernel->ne[0]; // kernel_w
|
|
// const int KH = kernel->ne[1]; // kernel_h
|
|
// const int IC = input->ne[2]; // input_channels
|
|
const int IW = input->ne[LT == 0 ? 1 : 0]; // input_w
|
|
const int IH = input->ne[LT == 0 ? 2 : 1]; // input_h
|
|
const int OW = dst->ne[0]; // output_w
|
|
const int OH = dst->ne[1]; // output_h
|
|
const int KW = kernel->ne[LT == 0 ? 1 : 0]; // kernel_w
|
|
const int KH = kernel->ne[LT == 0 ? 2 : 1]; // kernel_h
|
|
const int IC = input->ne[LT == 0 ? 0: 2]; // input_channels
|
|
|
|
const int OC = kernel->ne[3]; // ouptut_chanles
|
|
const int B = input->ne[3]; // n_batches
|
|
|
|
const int64_t total = B * OC * OH * OW;
|
|
|
|
param_t params = { B, IC, IH, IW, OC, KH, KW, ST_Y, ST_X, PD_Y, PD_X, DL_Y, DL_X, OH, OW };
|
|
params.SC_fastdiv = init_fastdiv_values(KW*IC);
|
|
params.OW_fastdiv = init_fastdiv_values(OW);
|
|
params.C_fastdiv = init_fastdiv_values(IC);
|
|
params.RS_fastdiv = init_fastdiv_values(KW*KH);
|
|
params.S_fastdiv = init_fastdiv_values(KW);
|
|
params.layout = LT;
|
|
|
|
if (kernel->type == GGML_TYPE_F16) {
|
|
conv2d_implicit_cuda_f16(X_D, (half *) K_D, Y_D, params, st);
|
|
} else {
|
|
conv2d_implicit_cuda_f32(X_D, K_D, Y_D, params, st);
|
|
}
|
|
}
|