Commit Graph

1349 Commits

Author SHA1 Message Date
Johannes Gäßler 550cf726e1
CUDA: fix GET_ROWS for large tensors (#15882) 2025-09-09 08:11:01 +02:00
Jeff Bolz e68aa10d8f
vulkan: sort graph to allow more parallel execution (#15850)
* vulkan: sort graph to allow more parallel execution

Add a backend proc to allow the backend to modify the graph. The
vulkan implementation looks at which nodes depend on each other
and greedily reorders them to group together nodes that don't
depend on each other. It only reorders the nodes, doesn't change
the contents of any of them.

With #15489, this reduces the number of synchronizations needed.

* call optimize_graph per-split
2025-09-09 02:10:07 +08:00
Aman Gupta 0a16bf52e6
CUDA: generate_cu_files.py - add missing mxfp4 (#15880) 2025-09-09 01:23:46 +08:00
Georgi Gerganov b0d52998b9
cuda : fix supports_op condition for get_rows when number of blocks is too large (#15868)
* cuda : fix supports_op condition for get_rows when src1->ne2 > 1

ggml-ci

* ggml : add comment about ggml_get_rows

ggml-ci

* cuda : add FIXME [no ci]

* cuda : update support condition

ggml-ci
2025-09-08 13:56:51 +03:00
Georgi Gerganov f28d4f4ac9
metal : refactor + optimize (#15857)
* metal : refactor

ggml-ci

* cont : refactor FA-vec kernel

* cont : print metal library load time

* minor : warn to debug + bettern kernel names

ggml-ci

* metal : optimize mul_mv q8_0

ggml-ci

* metal : simplify FA pipeline creation functions

ggml-ci

* metal : improve naming consistency

* metal : safer function constants offsets

ggml-ci

* metal : comments

ggml-ci
2025-09-08 13:34:56 +03:00
Xuan-Son Nguyen 9fcb29f22f
ggml: allow casting between f32 and i32 (#15783)
* ggml: allow casting between f32 and i32

* fix cuda

* add vulkan

* fix CPU non-cont

* add non-cont test case

* add note

* extend test number range

* correct note

* add cont version for vulkan
2025-09-08 12:33:01 +02:00
Sigbjørn Skjæret 5ef22d281d
CUDA: non-contiguous src0 not supported for PAD (#15869) 2025-09-08 12:55:44 +03:00
Chenguang Li 85ca66a746
CANN: Stream sync between devices for acl_graph (#15809)
* CANN: Switch to stream synchronization

Switch to stream synchronization because events are not effective.

Co-authored-by: hipudding <huafengchun@gmail.com>

* CANN: add Comments

---------

Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-08 10:03:29 +08:00
Jeff Bolz 3976dfbe00
vulkan: support im2col_3d (#15795) 2025-09-07 13:50:26 -05:00
Aaron Teo d36e61c580
ggml-cpu: clean up s390x SIMD (#15855)
* ggml-cpu: clean up s390x simd

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0da4b6aa07)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix hsum data types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-08 02:18:28 +08:00
Jeff Bolz c97b5e5854
vulkan: Support pad_ext (#15794) 2025-09-07 19:00:49 +02:00
Jeff Bolz 267e99867f
vulkan: Use larger loads in scalar/coopmat1 matmul (#15729)
I think glslang will translate an access like x[i][1].z to
OpAccessChain ... x, i, 1, 2
OpLoad float16_t ...

rather than loading all of x[i] in a single OpLoad. Change the
code to explicitly load the vector/matrix.
2025-09-07 18:53:07 +02:00
Daniel Bevenius 3b15924d71
ggml WebGPU: remove userdata from request adapter callback (#15527)
* ggml WebGPU: remove userdata from request adapter callback

This commit removes the `userdata` parameter from the WebGPU request
adapter callback in `ggml-webgpu.cpp`. Instead, the lambda function
captures the `webgpu_context` directly.

The motivation for this change is to simplify the code and improve
readability.

* inline the callback lambda into the RequestAdapter call

This commit removes the callback lambda variable and inlines it directly
into the RequestAdapter call.
2025-09-07 11:19:45 +03:00
Johannes Gäßler 79bc429262
CUDA: faster tile FA (Pascal/AMD), headsize 256 (#15769) 2025-09-07 00:26:28 +02:00
Charles Xu c4df49a42d
kleidiai: generalize compute_forward_kv_cache to compute_forward_fp16 (#15817) 2025-09-06 22:08:43 +08:00
Johannes Gäßler 01806e7771
ggml-cpu: document use of "free" memory [no ci] (#15834) 2025-09-06 13:28:44 +02:00
Aaron Teo 186415d595
ggml-cpu: drop support for nnpa intrinsics (#15821) 2025-09-06 11:27:28 +08:00
Johannes Gäßler 5143fa895e
CUDA: fastdiv, launch bounds for mmvq + q8_1 quant (#15802)
* CUDA: fastdiv, launch bounds for mmvq + q8_1 quant
2025-09-05 16:07:02 +02:00
Erik Scholz a81283820a
gguf: gguf_writer refactor (#15691)
* gguf: split gguf writer into base and buf impl
* gguf: templated gguf write out
* gguf: file based writer (avoid writing everything to memory first!)
* examples(llama2c): fix log not being the same level and compiler nits
2025-09-05 11:34:28 +02:00
Gabe Goodhart 856ed0947f
metal : Add template specialization for mul_mm_id w/ ne20 == 10 (#15799)
Branch: GGMLMetalNE20

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-09-04 18:53:22 +03:00
Chenguang Li c1c354e44c
CANN: Refactor ND to NZ workspace to be per-device (#15763)
* CANN:Refactor ND to NZ workspace to be per-device in Ascend backend

- Replaced the previous single global ND→NZ workspace with a per-device
  cache using unordered_map keyed by device ID.
- Functions `release_nz_workspace`, `relloc_nz_workspace`, and
  `get_nz_workspace` now manage workspace independently for each device,
  preventing memory conflicts in multi-device / pipeline parallel scenarios.
- This change fixes potential precision issues caused by workspace
  overwrites when multiple devices perform ND→NZ conversions concurrently.

Co-authored-by: hipudding <huafengchun@gmail.com>

* refactor

Signed-off-by: noemotiovon <757486878@qq.com>

* rename

Signed-off-by: noemotiovon <757486878@qq.com>

* fix review comments

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-04 20:20:14 +08:00
leejet 0a1b3982cd
ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-04 10:38:49 +02:00
hipudding 5421f63ab0
CANN: Fix precision issue on 310I DUO multi-devices (#15784) 2025-09-04 15:12:30 +08:00
rmatif 820bc98531
opencl: add hs=40 to FA (#15758) 2025-09-03 23:30:28 -07:00
Chenguang Li 239b60e898
CANN: fix acl_rstd allocation size in ggml_cann_rms_norm (#15760)
Fixes #15330

Adjust the allocation size of acl_rstd. The parameter `dims` is set to 3 according to the CANN documentation.

Co-authored-by: Yuchuan <yuchuan-cao@users.noreply.github.com>
2025-09-04 11:03:02 +08:00
Ruben Ortlam dff7551bfd
vulkan: fix mmv subgroup16 selection (#15775) 2025-09-03 21:55:10 +01:00
Jeff Bolz 0fce7a1248
vulkan: don't use std::string in load_shaders, to improve compile time (#15724)
* vulkan: don't use std::string in load_shaders, to improve compile time

* keep the string version for those calls that use it
2025-09-03 20:33:15 +02:00
Daniel Bevenius 8227695d7a
vulkan : update ggml_vk_instance_validation_ext_available (#15666)
* vulkan : update ggml_vk_instance_validation_ext_available

This commit updates ggml_vk_instance_validation_ext_available() to
check for VK_EXT_validation_features instead of
VK_KHR_portability_enumeration.

Based on how the returned boolean is used later in the code (to enable
both the validation layer and the VK_EXT_validation_features extension),
it appears the function may have been intended to check for the
validation layer features extension.

* remove try/catch

This was a left over from a previous iteration where I was explicitly
quering for a specific validation layer first, which would throw.

* update warning message about validation layers
2025-09-03 20:24:50 +02:00
Shin-myoung-serp 0014fb4add
ggml vulkan: add hardsigmoid and hardswish operations (#15762) 2025-09-03 20:22:55 +02:00
Oliver Simons 661ae31c9c
CUDA: Optimize `rms_norm_f32` kernel and its fused variants, giving 1-6% perf E2E (#15715)
* Add fastdiv, use it in modulo and use modulo in rms_norm_f32

Fastdiv is much faster way to do integer division, which was identified
as bottleneck in rms_norm_f32

* Support more `block_size` values in `rms_norm_f32`

This makes us more flexible in selecting the optimal threads w.r.t
paralellizing across a col vs. launch-overheads of threads and mio
throttles

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Replace modulo with fastmodulo in `rms_norm_f32`

* Use `BinPackArguments=true` for formating function calls

Will file a separate PR to adjust .clang-format file

* Update ggml/src/ggml-cuda/common.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Use uint3 for both `fastdiv` and `fastmodulo`

The compiler seems to reliably optimize away the unused .z component in
the fastdiv use-case, see https://godbolt.org/z/rx8KPrKr3

* More constrained type declarations

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Rename fastdiv and fastmodulo variables to shared variable name

As suggest by JohannesGaessler, this increases clarity of the intended
use

* Pack fastdiv/fastmodulo constants into uint2/uint3 objects

By packing constants to be used together into a struct, we are less
likely to make errors.

* Rename function parameter of fastmodulo

`modulo_consts` is more fitting/descriptive

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-09-03 19:59:16 +02:00
hipudding 5eae934883
CANN: Add RoPE contiguous check for 310I DUP device (#15735) 2025-09-03 16:46:01 +08:00
xctan 05c0380f2a
ggml-cpu : optimize RVV kernels (#15720)
* ggml-cpu : optimize rvv ggml_vec_dot_f32

* ggml-cpu : optimize 128-bit rvv ggml_vec_dot_q4_K_q8_K

* ggml-cpu : fix riscv arch flags

* ggml-cpu : add more rvv ops

* ggml-cpu : optimize rvv ggml_vec_dot_q4_K_q8_K

* ggml-cpu : optimize rvv ggml_vec_dot_q6_K_q8_K

* ggml-cpu : minor rvv adjustments

* ggml-cpu : fix riscv include
2025-09-03 16:16:21 +08:00
hipudding f6da8cb86a
CANN: Mask unsupported TRANSPOSE_1D operator (#15733)
CANN currently does not support kernels larger than 255.
This change disables such cases.
2025-09-03 14:08:22 +08:00
Chenguang Li 8a2234ea0c
CANN: Fix type float_t to float (#15736)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-03 10:43:53 +08:00
SnA1lGo 3de008208b
fix: resolve unsigned int initialization warning for n_dims/size in gguf.cpp (#15754) 2025-09-02 21:27:30 +02:00
Ruben Ortlam 0a2a3841e8
vulkan: fix shaders gen when no integer dot is available (#15740) 2025-09-02 16:02:26 +02:00
hipudding 9961d244f2
CANN: Resolve soft_max precision issue (#15730)
Previously, the slope tensor was set to fp16 to improve efficiency.
While this worked correctly in FA, it caused precision issues in soft_max.
This change applies different data types for different operators
to balance both accuracy and performance.
2025-09-02 17:12:37 +08:00
Jeff Bolz 25f1045f07
vulkan: Fix macro parameter order for f32 matmul shaders (#15716) 2025-09-02 14:37:01 +08:00
rmatif 97669e4073
opencl: add attn sinks support for FA kernels (#15706) 2025-09-01 23:26:53 -07:00
Chenguang Li 2f853687b3
CANN: Support eager execution mode under ACL graph compilation (#15712)
* [CANN] Support eager execution mode under ACL graph compilation

Add support for running operators in eager mode while ACL graph
compilation is enabled. This allows bypassing graph execution
and directly submitting ops, which is useful for debugging and
reducing graph build overhead in certain scenarios.

Signed-off-by: noemotiovon <757486878@qq.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

* rename to acl_graph_mode

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-02 14:07:48 +08:00
hipudding ef2af57ddf
CANN: Support ext_factor in rope (#15710) 2025-09-02 14:05:23 +08:00
Johannes Gäßler 5d804a4938
ggml-backend: raise GGML_MAX_SPLIT_INPUTS (#15722) 2025-09-01 16:14:55 -07:00
Gilad S. d4d8dbe383
vulkan: use memory budget extension to read memory usage (#15545)
* vulkan: use memory budget extension to read memory usage

* fix: formatting and names

* formatting

* fix: detect and cache memory budget extension availability on init

* fix: read `budgetprops.heapBudget` instead of `heap.size` when memory budget extension is available

* style: lints
2025-09-01 21:17:42 +02:00
Jeff Bolz 35a42edac8
vulkan: add missing clamps in new mul_mat_id paths (#15702)
This is a missing interaction between #15546 and #15652
2025-09-01 21:01:10 +02:00
Ruben Ortlam fec7911f8f
vulkan: disable large mmv subgroups on older Nvidia GPUs (#15717) 2025-09-01 20:58:35 +02:00
s-goto-11 078ce23ea7
ggml: SVE support for exponential functions (#15145)
* SVE support for exponential functions

Add const notation to variable pg

* Update ggml/src/ggml-cpu/vec.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Add const

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-01 20:13:49 +02:00
Prashant Vithule a0c2b207c5
ggml: aarch64: Implement SVE F16 kernels for vector functions (#15115)
* Added sve implementation for vec_dot_fp16 Kernel

* removed white spaces

* Added comment

* removed white spaces

* changed GGML_F16x_VEC_FMA for code consistency

* Update vec.h

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
2025-09-01 20:13:16 +02:00
Ruben Ortlam 02c1813517
Vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants (#14903)
* vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants

* vulkan: use subgroup operations for quantize_q8_1 shader

* vulkan: add q8_1_x4 type with 128-bit alignment, use in mul_mat_vecq shader

* vulkan: use q8_1_x4 blocks in mul_mmq shader

* vulkan: do 8 calculations per invocation instead of 32 in mul_mat_vecq, similar to mul_mat_vec

* vulkan: tune mul_mat_vecq performance for Intel

* vulkan: fix quantizing issue when tensor is not divisible by 128

* vulkan: adapt integer dot mmv to mmv small m optimization (#15355)

* vulkan: allow all subgroup modes for mmv and mmvq

* vulkan: use prealloc intermediate reuse for mmvq path

* vulkan: tune mmvq for Intel, AMD GCN and Nvidia RTX 3090

* vulkan: adapt mmv quantize_y path to conditional sync logic

* vulkan: disable q8_0 mmvq on Nvidia

* vulkan: enable q8_0 on Nvidia pre-turing

* fix prealloc sync condition

* fix llvmpipe subgroup 8 issue
2025-09-01 16:19:07 +02:00
Daniel Bevenius 77dee9de97
ggml : WebGPU add TRANSPOSE and RESHAPE to supported ops (#15695)
* ggml : WebGPU add TRANSPOSE and RESHAPE to supported ops

This commit adds support for the TRANSPOSE and RESHAPE operations in the
ggml webgpu backend.

Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-01 14:28:49 +02:00
Akarshan Biswas b66df9d9c9
CUDA: fix build error from ambiguous __half conversions in conv2d (#15690)
* CUDA: fix build error from ambiguous __half conversions in conv2d

Building conv2d with half precision failed because `__half` defines
multiple implicit conversion operators (to float, int, short, etc.),
causing ambiguous overload resolution when multiplying with float.

Introduce a templated `to_float` helper that explicitly converts
`__half` via `__half2float`, while passing through float unchanged.
Use this helper in conv2d accumulation to ensure unambiguous and
correct promotion to float.

Fixes some build errors with half-precision kernels on CUDA.

ggml-ci

* CUDA: Replace custom to_float helper with unified ggml_cuda_cast and add half‑>float conversion

* CUDA: Add missing convert.cuh header

* CUDA: remove unnecessary extension in ggml_cuda_cast

* CUDA: Address review comment, remove second type template argument
2025-09-01 06:55:06 +05:30
hipudding b9382c3877
CANN: Optimize MUL_MAT_ID (#15658) 2025-09-01 08:57:23 +08:00
hipudding 3dc7397a27
CANN: fix RoPE cache issue on multi-device (#15629)
* CANN: fix RoPE cache issue on multi-device

RoPE cache only needs to be computed once per token.
However, in multi-device scenarios, not every device starts
computation from layer 0, which may lead to unallocated memory
issues and precision errors.

This commit records the first layer of each device to avoid
the above issues.

* CANN: Optimize first-layer detection method

* CANN: Remove trailing whitespace

* CANN: Only cache the data that can be determined as unchanged through the parameters.

* CANN: Update function comment
2025-09-01 08:57:00 +08:00
Georgi Gerganov 4efd5a8316
metal : fix checks for available FA kernels (#15700)
* metal : fix checks for available FA kernels

ggml-ci

* cont : fix comment [no ci]
2025-08-31 19:43:30 +03:00
Diego Devesa 9777032dcc
llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
2025-08-31 15:49:03 +02:00
Jeff Bolz bbbf5ecccb
vulkan: handle large sizes for get_rows (#15686) 2025-08-31 10:13:27 +02:00
Jeff Bolz c37052ab4d
vulkan: mul_mat_id coopmat2 optimizations (#15546)
* vulkan: mul_mat_id coopmat2 optimizations

Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.

Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.

* Also add a path for BN/4 - worth a couple more percent
2025-08-31 09:06:43 +02:00
Daniel Bevenius 5c16b9c87d
vulkan : remove unused portability_enumeration_ext variable (#15679)
This commit removes the portability_enumeration_ext variable from the
ggml_vk_instance_portability_enumeration_ext_available function as it
is initialized to false but never modified, making it redundant.
2025-08-31 08:46:42 +02:00
Jeff Bolz b97c9edc59
vulkan: Allow fallback to sysmem memory when vidmem is full (#15649)
* vulkan: Allow fallback to sysmem memory when vidmem is full

* vulkan: Add env var GGML_VK_ALLOW_SYSMEM_FALLBACK
2025-08-31 08:30:54 +02:00
Jeff Bolz 94e82c7ead
vulkan: clamp matmul and FA results to the max finite value (#15652)
* vulkan: clamp matmul and FA results to the max finite value

* only clamp for fp16
2025-08-31 08:27:57 +02:00
Charles Xu 4d74393bcc
ggml: update kleidiai to v1.13.0 (#15663) 2025-08-31 00:03:42 +08:00
Johannes Gäßler e81b8e4b7f
llama: use FA + max. GPU layers by default (#15434)
* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
2025-08-30 16:32:10 +02:00
Johannes Gäßler 38ad381f9f
CUDA: use FP32 arithmetic for conv2d (#15683) 2025-08-30 16:20:32 +02:00
Jeff Bolz 696fccf354
vulkan: Skip syncing for prealloc_y when it is reused (#15544) 2025-08-30 11:11:22 +02:00
Chenguang Li ef476916bb
CANN: FIx compiler warnings (#15661)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-30 10:18:35 +08:00
Aman Gupta 81017865ee
CUDA: fix bug in rms_norm fusion (#15660)
* CUDA: fix bug in rms_norm fusion

* Fix bug for OP_REPEAT

* Fix index for add
2025-08-29 21:30:06 +08:00
Aman Gupta 009b709d6e
CUDA: fuse adds, fuse add with rms norm (#15631)
* CUDA: fused add with rms_norm_mul

* Non-broadcast fuse works

* Add fused adds

* format

* Remove n_fuse from template params

* Address review comments

* Move template inside binbcast
2025-08-29 11:35:58 +08:00
mnehete32 c97dc09391
CUDA: add conv2d (#15635)
* CUDA: add conv2d

* CUDA: conv2d - correct formatting and added const
2025-08-28 20:33:03 +02:00
Aaron Teo 6c442f42ff
ggml-cpu: fix invalid hsum build in debug s390x (#15634)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-08-28 22:39:27 +08:00
compilade 73804145ab
ggml : fix SSM_SCAN for n_groups > 1 (#15625) 2025-08-28 10:11:36 -04:00
Georgi Gerganov 8a4280ce43
kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
matiaslin 5a0e3ef6f0
cuda: Add cublasLt_static linking when GGML_STATIC is enabled (#15622)
Prior to this change, we faced undefined cublasLt references when
attempting to compile 'llama-cli' with GGML_STATIC=ON on Linux.

We add linking with CUDA::cublasLt_static when CUDA version is greater
than 10.1.
2025-08-28 02:32:36 +02:00
uvos 47373271f9
HIP: Enable support for ggml_backend_cuda_register_host_buffer (#15615) 2025-08-27 13:58:54 +02:00
Chenguang Li 1e7489745a
CANN: refactor mask handling and improve performance in FA (#15561)
* CANN(flash-attn): refactor mask handling and improve performance

1. Refactored the mask computation in Flash Attention, unified the logic without separating prefill and decode.
2. Optimized performance in non-alibi scenarios by reducing one repeat operation.
3. Updated operator management to explicitly mark unsupported cases on 310P devices and when dim is not divisible by 16.

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: fix review

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: Optimization FA BNSD to BSND

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-27 17:21:41 +08:00
xctan 1cf123a343
ggml-cpu : add basic RVV support for vector f32 ops (#15057)
* ggml-cpu : add basic RVV support for vector f32 ops

* ggml-cpu : add RVV support for f32 softmax
2025-08-27 16:44:22 +08:00
rmatif 86076f92de
OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add

* fix spacing

* revert rms_norm logic

* fix trailing whitespace
2025-08-26 23:36:05 -07:00
Akarshan Biswas 8b69686136
SYCL: fix rms_norm_mul_add for tensor dim not a multiple of sg_size (#15592)
The original implementation unconditionally returned true for this operation, leading to a failure when the tensor's first dimension (ne[0]) was not a multiple of WARP_SIZE. This caused an GGML_ASSERT(ncols % WARP_SIZE == 0) failure in ggml-sycl/norm.cpp.

This change updates the ggml_backend_sycl_device_supports_op check to correctly return true for GGML_OP_RMS_NORM only when the first dimension of the tensor is a multiple of WARP_SIZE, ensuring the operation can be performed without error.
2025-08-27 00:27:49 +05:30
shalinib-ibm a6a58d6478
llamafile: PowerPC Sgemm Optimization (#15558)
This patch improves GEMM for FP32 Data Type on PowerPC

Implements GEMM on large blocks with configurable block size mc, nc, kc
(default: 256, 256, 256).
Packing Function optimized to access blocks as per memory layout.
GEMM Optimized to work on larger blocks.
Isolated Packing from GEMM Operations for better MMA utilization.

Verified functionality and correctness uing llama-cli and stand alone
test case (performs matmul and compares final mattrix C result with base).

Minor code refactoring changes:
Replace macro with inline function
Code Indent made consistent with 4 spaces

Performance Testing:

Observed 50% ~ 70% improvement in Prompt Processing Speed mesured using
llama-bench with Meta-Llama3-8B FP32 Model.  Similar gains observed with
Mistral-7b-Instruct-v0.3 Model.

model                   Size                Params     Backend       Threads   Test    Patch   Base
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp512   98.58   60.3
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp1024  95.88   57.36
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp2048  85.46   53.26
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp4096  68.66   45.78
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp6144  57.35   40.44

25 ~ 30% improvement in llama-batched-bench with Metla-Llama3-8B in
Prompt Processing Speed for large prompts (256, 512, 1024, 2048, 4096)tokens with various batch
sizes ( 1, 2, 4, 8, 16)

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-08-26 23:35:25 +08:00
Johannes Gäßler 8f5afa94c4
CUDA: return -1 for nonexistent compiled arch (#15587) 2025-08-26 16:01:20 +02:00
Georgi Gerganov b3964c1e89
metal : optimize FA vec for large sequences and BS <= 8 (#15566)
* metal : optmize FA vec for large heads and sequences

* metal : adjust small-batch mul mv kernels

ggml-ci

* batched-bench : fix total speed computation

ggml-ci

* cont : add comments

ggml-ci
2025-08-26 14:22:14 +03:00
Georgi Gerganov 1d8d83deaa
metal : improve `MUL_MAT_ID` (#15541)
* metal : mul_mm_id remove hdst

* metal : remove mul_mm_id hsrc1

* metal : mul_mm_id simplify + add test

* metal : opt mul_mm_id map0

* metal : optimize mul_mm_id id gathering

* metal : mul/div opt

* metal : optimize mul_mm_id_map0

ggml-ci
2025-08-26 12:46:15 +03:00
Sigbjørn Skjæret 0fd90db585
metal : remove contiguous assertion for src0 in IM2COL (#15577)
* remove contiguous assertion for src0 in IM2COL

* add contiguous check in supports_op
2025-08-26 09:51:43 +03:00
Yoshi_likes_e4 4c37636b3e
Add a warning for special devices (#15563)
* Add warning

* Print the devices names

* Add newlines

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Fix vector names

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-26 08:15:33 +02:00
Jeff Bolz 34bdbbd7c2
vulkan: Remove splitting for mul_mat_id (#15568)
row_ids only needs to hold the BN rows for the current tile.
2025-08-26 06:42:44 +02:00
Qeeweew 74f52f77f2
CUDA: Accelerate MXFP4 table lookup using `__byte_perm` (#15451)
* CUDA: optimize get_int_from_table_16

* CUDA: use v_perm_b32 to replace byte_perm on AMD GPUs

* revise documentation

---------

Co-authored-by: xix <xiapc@outlook.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-25 23:21:22 +02:00
lhez f7207b0415
opencl: fix support ops condition for `rms_norm` (#15560) 2025-08-25 14:18:09 -07:00
Ruben Ortlam 4d917cd4f6
vulkan: fix min subgroup 16 condition for mmid subgroup optimization (#15565) 2025-08-25 17:56:59 +02:00
Ihar Hrachyshka 111f8d06f0
metal: fix regression when no metal devices are present (#15531) 2025-08-25 18:27:34 +03:00
Johannes Gäßler 5eff6ec9b1
CUDA: MoE helper in device code, better tile sizes (#15525)
* CUDA: MoE helper in device code, better tile sizes

* reduce superfluous CUDA blocks
2025-08-25 17:23:40 +02:00
Georgi Gerganov b0ba31f525
metal : add FA kernels for HS=40 (#15559)
ggml-ci
2025-08-25 10:14:48 +03:00
Chenguang Li c247d06f38
CANN: ROPE cache sin/cos repeat (#15501)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-25 10:32:21 +08:00
Ruben Ortlam 043fb27d38
vulkan: apply MUL_MAT_ID subgroup optimization to non-coopmat devices (#15524)
* vulkan: use subgroup function for mul_mat_id shader even without coopmat

* vulkan: fix compile warnings

* vulkan: properly check for subgroup size control and require full subgroups for subgroup mul_mat_id

* vulkan: disable subgroup mul_mat_id on devices with subgroups < 16
2025-08-24 19:36:36 +02:00
Jeff Bolz c9a24fb932
vulkan: Support FA with any multiple of 8 head sizes (#15537)
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.

Store the FA pipelines in a map, indexed by the pipeline state.
2025-08-24 11:24:25 +02:00
Ruben Ortlam a9c6ffcbfa
vulkan: enable Conv2D for Apple after MoltenVK fixed the bug (#15526) 2025-08-24 10:48:53 +02:00
Jeff Bolz e78cf0d4b1
vulkan: workaround MoltenVK compile failure in multi_add (#15506)
* vulkan: workaround MoltenVK compile failure in multi_add

* Update ggml/src/ggml-vulkan/vulkan-shaders/multi_add.comp

Co-authored-by: 0cc4m <picard12@live.de>
2025-08-24 10:48:21 +02:00
Johannes Gäßler 710dfc465a
CUDA: fix half2 -> half conversion for HIP (#15529) 2025-08-23 21:37:06 +02:00
Jeff Bolz 611f419cff
vulkan: optimize rms_norm, and allow the work to spread across multiple SMs (#15281)
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs

There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.

The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.

* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.

* complete rebase against fused adds - multi_add shader can also compute partial sums

* fix validation errors

* disable add_rms_fusion for Intel due to possible driver bug

* resolve against #15489, sync after clearing partial sums
2025-08-23 13:16:17 -05:00
Jeff Bolz 289bf4113e
vulkan: Rewrite synchronization to allow some overlap between nodes (#15489)
Track a list of nodes that need synchronization, and only sync if the new node
depends on them (or overwrites them). This allows some overlap which can
improve performance, and centralizes a big chunk of the synchronization logic.

The remaining synchronization logic involves writes to memory other than the
nodes, e.g. for dequantization or split_k. Each of these allocations has a bool
indicating whether they were in use and need to be synced. This should be
checked before they are written to, and set to true after they are done being
consumed.
2025-08-23 09:33:36 +02:00
Acly 0a9b43e507
vulkan : support ggml_mean (#15393)
* vulkan : support ggml_mean

* vulkan : support sum, sum_rows and mean with non-contiguous tensors

* vulkan : fix subbuffer size not accounting for misalign offset

* tests : add backend-op tests for non-contiguous sum_rows

* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support

* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
2025-08-23 08:35:21 +02:00
Jeff Bolz 330c3d2d21
vulkan: optimize mul_mat_id loading row ids into shared memory (#15427)
- Spread the work across the whole workgroup. Using more threads seems to
far outweigh the synchronization overhead.
- Specialize the code for when the division is by a power of two.
2025-08-23 08:31:54 +02:00
Reese Levine 45363632cb
ggml WebGPU: add support for quantization types (#15440)
* Begin work on set_rows

* Work on set rows

* Add error buffers for reporting unsupported SET_ROWS indices

* Remove extra comments

* Work on templating for different types in shaders

* Work on shader type generation

* Working q4_0 mul_mat and some templating for different types

* Add q4_0_f16 matmul and fix device init

* Add matmul support for basic quantization types

* Add q2_k and q3_k quantization

* Add rest of k-quants

* Get firt i-quant working

* Closer to supporting all i-quants

* Support rest of i-quants

* Cleanup code

* Fix python formatting

* debug

* Bugfix for memset

* Add padding to end of buffers on creation

* Simplify bit-shifting

* Update usage of StringView
2025-08-22 11:28:03 -07:00