Commit Graph

569 Commits

Author SHA1 Message Date
Ed Addario b0b33b7ccb
Optimise tensor sampling 2025-08-20 20:58:26 +01:00
Ed Addario 3f0118d602
Fix bias lambda bug 2025-08-20 17:26:37 +01:00
Ed Addario 52da4a4f8c
Skip if output.weight or type is COPY 2025-08-20 17:26:05 +01:00
Ed Addario 43caadf783
Add better fallbacks for IQ mixes 2025-08-20 17:24:48 +01:00
Ed Addario 29b2dc3ec0
Do not mix K and IQ quants 2025-08-20 13:27:01 +01:00
Ed Addario 5cd69a6809
Add F16/BF16 type 2025-08-20 09:41:39 +01:00
Ed Addario b33abae231
Merge branch 'master' into quantize 2025-08-19 23:39:07 +01:00
Ed Addario 936294f6af
Increase precision for error calculation 2025-08-19 23:31:22 +01:00
Ed Addario f22b3097eb
Avoid division by zero if truncation occurs 2025-08-19 22:34:01 +01:00
Ed Addario ee05d6bc0b
Update comments 2025-08-19 22:32:53 +01:00
Ed Addario 5aceb9e3ae
Refactor variable names 2025-08-19 22:29:27 +01:00
Georgi Gerganov 9ef6b0b835
model : add gpt-oss type strings (#15424) 2025-08-19 19:58:28 +03:00
Ed Addario 1187f6aa9e
Implement bpw_overrides call 2025-08-19 11:07:03 +01:00
Ed Addario 92f49ab399
Add target_bpw_type() logic 2025-08-19 11:05:01 +01:00
Ed Addario 017945a3b2
Validate if imatrix contains activations 2025-08-19 11:03:52 +01:00
Ed Addario 9adae08789
Add is_iq() 2025-08-19 11:00:50 +01:00
Ed Addario c96b8eef94
Add fallback_type enum 2025-08-19 11:00:05 +01:00
Ed Addario a22a9deeee
Refactor variable and add target_bpw 2025-08-19 10:57:44 +01:00
Georgi Gerganov 9d262f4bad
server : remove swa_full warning (#15399) 2025-08-19 08:45:26 +03:00
Sigbjørn Skjæret baa9255a45
llama : merge conts and reshapes and remove unnecessary cont (#15380)
* remove unnecessary conts and merge reshapes

* restore necessary conts

* merge more conts and reshapes

* merge even more conts and reshapes
2025-08-18 19:30:17 +02:00
Daniel Bevenius 7a0de96045
llama : add 18-layer model type for Gemma 3-270m (#15319)
This commit adds support for the 18-layer model type in the Gemma3
series, which is the size of the Gemma3-270m model.

The motivation for this commit is was the only change required for
Gemma3-270m to be converted to GGUF format and used with llama.cpp.

Once the model has been converted and uploaded to Huggingface it can be
used like this:
```console
$ ./build/bin/llama-cli -hf ggml-org/gemma-3-270m-GGUF:Q8_0
```
2025-08-14 17:56:26 +02:00
Aldehir Rojas b204a5a234
gpt-oss: implement harmony parsing (#15181)
* model : add harmony parser for gpt-oss

* gpt-oss : fix grammar trigger from causing empty stack

* gpt-oss: tweak the grammar trigger again

* gpt-oss : add support for recipient in role header

* gpt-oss : fix ungrouped tool calls in grammar

* gpt-oss : loosen function name matching during parse

* gpt-oss : clean up workarounds

* gpt-oss : add template tests

* gpt-oss : simulate thinking and tool call tags

* gpt-oss : undo think tags when reasoning_format is none

* gpt-oss : set special tokens back to user defined

* gpt-oss : update openai-gpt-oss template

* server : filter out harmony thought messages

* gpt-oss : simplify parsing
2025-08-14 17:23:11 +03:00
Georgi Gerganov d32e03f449
server : add SWA checkpoints (#15293)
* server : add SWA checkpoints

ggml-ci

* cont : server clean-up

* server : handle state restore fails

* llama : add extended llama_state_seq_ API

* server : do not make checkpoints if --swa-full

ggml-ci

* llama : remove flags value for NONE

* server : configure number of SWA checkpoints with CLI arg

ggml-ci

* args : fix scope of new argument
2025-08-14 14:59:50 +03:00
kallewoof 810b9fc8b9
perplexity : provide a helpful hint for has_cpl case in split_equal error. (#15304)
When attempting to do llama-perplexity on certain tasks which have coupled sequences there is a cryptic error that does not tell you what to do, which is to set the -kvu flag. This adds a hint about that fact.
2025-08-14 14:03:30 +03:00
Jonathan Graehl 5cdb27e091
finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
Georgi Gerganov 228f724d9c
kv-cache : fix seq_rm with seq_id == -1 (#15226)
* kv-cache : fix seq_rm with seq_id == -1

ggml-ci

* cont : iterate over streams

ggml-ci
2025-08-11 13:58:24 +03:00
Daniel Bevenius cd3069dfcb
kv-cache : log (debug) all streams in find_slot (#15176)
This commit updates `llama_kv_cache_unified::find_slot` to log
information for all streams when debug is enabled.

The motivation for this change is that currently if a non-unified
kv-cache is used, then only one stream will be logged because the
code was currently uses `seq_to_stream[1]`.
2025-08-11 11:21:19 +02:00
Xuan-Son Nguyen 50aa938901
convert : support non-mxfp4 HF model (#15153)
* convert : support non-mxfp4 HF model

* rm redundant check

* disable debug check
2025-08-07 23:26:03 +02:00
Sigbjørn Skjæret 65c797c4fa
chat : fix yandex chat template (#15116) 2025-08-06 13:26:49 +02:00
stevenkuang 25726898e8
chat : fix hunyuan auto-detection (#15114)
Signed-off-by: stevenkuang <stevenkuang@tencent.com>
2025-08-06 11:48:30 +02:00
Georgi Gerganov fd1234cb46
llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Juk Armstrong c81de6e107
Fix `glm4moe` bug (#15088) 2025-08-05 13:56:44 +01:00
compilade ee3a9fcf88
context : fix index overflow on huge outputs (#15080)
* context : fix overflow when re-ordering huge outputs

* context : fix logits size overflow for huge batches
2025-08-05 11:27:45 +02:00
Sam ef0144c087
model: support GLM 4.5 family of models (#14939)
* model: Add GLM 4.5 (#14921)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Merge in PR suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: Add GLM 4.5 family of models (#14921)

1. Updated tensor_mapping.py with NextN tensor mappings

- Added proper tensor mappings for all NextN/MTP tensors in /Users/samm/git/llama.cpp/gguf-py/gguf/tensor_mapping.py
- Added mappings for: eh_proj, embed_tokens, enorm, hnorm, shared_head.head, shared_head.norm

2. Added num_nextn_predict_layers configuration

- Added LLM_KV_NUM_NEXTN_PREDICT_LAYERS constant to llama-arch.h and llama-arch.cpp
- Added num_nextn_predict_layers field to llama_hparams struct
- Updated GLM4_MOE parameter loading in llama-model.cpp to read this parameter
- Modified tensor loading logic to conditionally load NextN tensors based on num_nextn_predict_layers
- Added GGUF writer support in gguf_writer.py with add_num_nextn_predict_layers() method
- Updated conversion script to extract and write this parameter from HuggingFace config

3. Added FIM tokens for GLM4_MOE

- Added GLM-4.5's FIM tokens to llama-vocab.cpp:
  - <|code_prefix|> for FIM_PRE
  - <|code_suffix|> for FIM_SUF
  - <|code_middle|> for FIM_MID

4. Removed manual NextN tensor handling

- Removed the special-case handling in convert_hf_to_gguf.py that manually mapped NextN tensors
- NextN tensors are now handled automatically through the proper tensor mapping system

* glm 4.5 update tensors names

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

* Apply suggestions from code review

* patch broken chat template

* typings fix

* add TENSOR_SKIP flag


Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update src/llama-model-loader.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-08-04 20:29:25 +02:00
compilade 11a3811164
memory : handle kv_unified for hybrid models (#15050) 2025-08-03 21:43:07 +02:00
Csaba Kecskemeti 97366dc6ab
vocab : JetBrains Mellum pre-tokenizer (#15045) 2025-08-03 21:38:18 +02:00
Daniel Bevenius 4fdea540bd
kv-cache : skip alignment of n_stream in kv-cache log msg [no ci] (#15040)
This commit removes the right alignment the `n_stream` value in the
log message in the `llama_kv_cache_unified` constructor.

The motivation for this change is to enhance the readability of log
message. Currently the output looks like this:
```console
llama_kv_cache_unified: size = 2048.00 MiB (  4096 cells,  32 layers,  1/ 1 seqs), K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
```
Notice that the `n_stream` value is right aligned, which makes it a
little harder to read.

With the change in this commit the output will look like
```console
llama_kv_cache_unified: size = 2048.00 MiB (  4096 cells,  32 layers, 1/1 seqs), K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
```
2025-08-02 17:14:57 +03:00
Georgi Gerganov a4569c41fd
llama : enable LLAMA_SET_ROWS=1 by default (#14959)
ggml-ci
2025-08-02 17:14:21 +03:00
Douglas Hanley 339bd0268c
model : support Qwen3-Embedding (#15023) 2025-08-02 10:44:50 +02:00
stevenkuang 0f5ccd6fd1
model : add hunyuan dense (#14878)
* support hunyuan_v1_dense

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* update hunyuan_moe to hunyuan_v1_moe

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix rope alpha assert and bos token

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* add blank line

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* Revert "update hunyuan_moe to hunyuan_v1_moe"

This reverts commit aa973ca219.

* use hunyuan_dense instead of hunyuan_v1_dense

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix hunyuan_moe chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* remove leftover code

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* update hunyuan dense chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix hunyuan dense vocab and chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

---------

Signed-off-by: stevenkuang <stevenkuang@tencent.com>
2025-08-01 15:31:12 +02:00
Georgi Gerganov ba42794c9e
graph : fix equal_seq() check (#14986)
ggml-ci
2025-08-01 06:38:12 +03:00
Ed Addario daf2dd7880
quantize : skip tensor override when in fallback mode (#14995) 2025-07-31 21:32:18 +02:00
Diego Devesa d6818d06a6
llama : allow other bufts when overriding to CPU, add --no-repack option (#14990) 2025-07-31 18:11:34 +02:00
Dongliang Wei c1dacaa99b
llama : merge build_moe_ffn_from_probs function into build_moe_ffn (#14968) 2025-07-31 14:12:20 +02:00
Aman Gupta 8a4a856277
Add LLaDA 8b Diffusion model (#14771)
* Add support for Llada-8b: diffusion model

* Add README

* Fix README and convert_hf_to_gguf

* convert_hf_to_gguf.py: address review comments

* Make everything in a single example

* Remove model-specific sampling

* Remove unused argmax

* Remove braced initializers, improve README.md a bit

* Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps

* Remove adding the mask token

* Move add_add_bos_token to set_vocab

* use add_bool in gguf_writer.py
2025-07-31 19:49:09 +08:00
compilade 66625a59a5
graph : reduce splits for recurrent and hybrid models (#14825)
* graph : avoid creating redundant s_copy views

* graph : comment the s_copy views
2025-07-31 08:02:46 +03:00
Georgi Gerganov 00131d6eaf
tests : update for LLAMA_SET_ROWS=1 (#14961)
* test-thread-safety : each context uses a single sequence

* embedding : handle --parallel argument

ggml-ci

* save-load : handle -np 1

ggml-ci

* thread-safety : avoid overriding threads, reduce test case arg

ggml-ci
2025-07-30 15:12:02 +03:00
Georgi Gerganov 1e15bfd42c
graph : fix stack-use-after-return (#14960)
ggml-ci
2025-07-30 13:52:11 +03:00
Douglas Hanley a118d80233
embeddings: fix extraction of CLS pooling results (#14927)
* embeddings: fix extraction of CLS pooling results

* merge RANK pooling into CLS case for inputs
2025-07-30 08:25:05 +03:00
Dongliang Wei 6c6e397aff
model : add support for SmallThinker series (#14898)
* support smallthinker

* support 20b softmax, 4b no sliding window

* new build_moe_ffn_from_probs, and can run 4b

* fix 4b rope bug

* fix python type check

* remove is_moe judge

* remove set_dense_start_swa_pattern function and modify set_swa_pattern function

* trim trailing whitespace

* remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* better whitespace

Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* use GGML_ASSERT for expert count validation

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Improve null pointer check for probs

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* use template parameter for SWA attention logic

* better whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* move the creation of inp_out_ids before the layer loop

* remove redundant judge for probs

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-28 13:47:00 +02:00