Merge branch 'master' into quantize

This commit is contained in:
Ed Addario 2025-08-19 23:39:07 +01:00
commit b33abae231
No known key found for this signature in database
GPG Key ID: E7875815A3230993
154 changed files with 16471 additions and 2765 deletions

View File

@ -1,22 +0,0 @@
node('x86_runner1'){ // Running on x86 runner containing latest vector qemu, latest vector gcc and all the necessary libraries
stage('Cleanup'){
cleanWs() // Cleaning previous CI build in workspace
}
stage('checkout repo'){
retry(5){ // Retry if the cloning fails due to some reason
checkout scm // Clone the repo on Runner
}
}
stage('Compiling llama.cpp'){
sh'''#!/bin/bash
make RISCV=1 RISCV_CROSS_COMPILE=1 # Compiling llama for RISC-V
'''
}
stage('Running llama.cpp'){
sh'''#!/bin/bash
module load gnu-bin2/0.1 # loading latest versions of vector qemu and vector gcc
qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./llama-cli -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64
cat llama_log.txt # Printing results
'''
}
}

View File

@ -4,8 +4,6 @@ FROM ubuntu:$UBUNTU_VERSION AS build
ARG TARGETARCH
ARG GGML_CPU_ARM_ARCH=armv8-a
RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev
@ -13,10 +11,8 @@ WORKDIR /app
COPY . .
RUN if [ "$TARGETARCH" = "amd64" ]; then \
RUN if [ "$TARGETARCH" = "amd64" ] || [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \

View File

@ -61,7 +61,7 @@ RUN apt-get update \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& pip install --break-system-packages -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \

View File

@ -40,7 +40,7 @@ body:
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
multiple: true
validations:
required: true

View File

@ -42,7 +42,7 @@ body:
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
multiple: true
validations:
required: true

5
.github/labeler.yml vendored
View File

@ -22,6 +22,11 @@ Vulkan:
- any-glob-to-any-file:
- ggml/include/ggml-vulkan.h
- ggml/src/ggml-vulkan/**
IBM zDNN:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-zdnn.h
- ggml/src/ggml-zdnn/**
documentation:
- changed-files:
- any-glob-to-any-file:

View File

@ -0,0 +1,43 @@
name: Build on RISCV Linux Machine by Cloud-V
on:
workflow_dispatch:
workflow_call:
jobs:
bianbu-riscv64-native: # Bianbu 2.2
runs-on: self-hosted
steps:
- name: Install prerequisites
run: |
sudo apt-get update || true
sudo apt-get install -y libatomic1
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo apt-get update || true
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
cmake
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

View File

@ -64,7 +64,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-arm64
evict-old-files: 1d
@ -104,7 +104,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-x64
evict-old-files: 1d
@ -144,7 +144,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-arm64-webgpu
evict-old-files: 1d
@ -199,7 +199,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
evict-old-files: 1d
@ -251,7 +251,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-cmake-sanitizer-${{ matrix.sanitizer }}
evict-old-files: 1d
@ -330,7 +330,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-cmake-rpc
evict-old-files: 1d
@ -363,7 +363,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-vulkan
evict-old-files: 1d
@ -400,7 +400,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-webgpu
evict-old-files: 1d
@ -443,7 +443,7 @@ jobs:
ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04
container: rocm/dev-ubuntu-22.04:6.0.2
container: rocm/dev-ubuntu-22.04:6.1.2
steps:
- name: Clone
@ -457,7 +457,7 @@ jobs:
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-hip
evict-old-files: 1d
@ -471,16 +471,6 @@ jobs:
-DGGML_HIP=ON
cmake --build build --config Release -j $(nproc)
- name: Build with legacy HIP support
id: cmake_build_legacy_hip
run: |
cmake -B build2 -S . \
-DCMAKE_C_COMPILER=hipcc \
-DCMAKE_CXX_COMPILER=hipcc \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON
cmake --build build2 --config Release -j $(nproc)
ubuntu-22-cmake-musa:
runs-on: ubuntu-22.04
container: mthreads/musa:rc4.2.0-devel-ubuntu22.04-amd64
@ -497,7 +487,7 @@ jobs:
apt-get install -y build-essential git cmake libcurl4-openssl-dev
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-musa
evict-old-files: 1d
@ -542,7 +532,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-sycl
evict-old-files: 1d
@ -590,7 +580,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-sycl-fp16
evict-old-files: 1d
@ -621,7 +611,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-ios
evict-old-files: 1d
@ -658,7 +648,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-tvos
evict-old-files: 1d
@ -730,7 +720,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: macOS-latest-swift
evict-old-files: 1d
@ -776,7 +766,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-msys2
variant: ccache
@ -844,7 +834,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-${{ matrix.build }}
variant: ccache
@ -958,7 +948,7 @@ jobs:
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-cmake-cuda
evict-old-files: 1d
@ -987,7 +977,7 @@ jobs:
uses: actions/checkout@v4
- name: Install ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-cuda-${{ matrix.cuda }}
variant: ccache
@ -1043,7 +1033,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-sycl
variant: ccache
@ -1080,7 +1070,8 @@ jobs:
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$proc.WaitForExit(600000)
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
@ -1089,7 +1080,7 @@ jobs:
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- name: Install ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ${{ github.job }}
evict-old-files: 1d
@ -1123,6 +1114,11 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Xcode
uses: maxim-lobanov/setup-xcode@v1
with:
xcode-version: latest-stable
- name: Build
id: cmake_build
run: |
@ -1156,7 +1152,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: android-build
evict-old-files: 1d

View File

@ -0,0 +1,53 @@
name: "Copilot Setup Steps"
# Automatically run the setup steps when they are changed to allow for easy validation, and
# allow manual testing through the repository's "Actions" tab
on:
workflow_dispatch:
push:
paths:
- .github/workflows/copilot-setup-steps.yml
pull_request:
paths:
- .github/workflows/copilot-setup-steps.yml
jobs:
# The job MUST be called `copilot-setup-steps` or it will not be picked up by Copilot.
copilot-setup-steps:
runs-on: ubuntu-latest
# Set the permissions to the lowest permissions possible needed for your steps.
# Copilot will be given its own token for its operations.
permissions:
# If you want to clone the repository as part of your setup steps, for example to install dependencies, you'll need the `contents: read` permission. If you don't clone the repository in your setup steps, Copilot will do this for you automatically after the steps complete.
contents: read
# You can define any steps you want, and they will run before the agent starts.
# If you do not check out your code, Copilot will do this for you.
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: copilot-setup-steps
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install Python dependencies
run: |
python3 -m venv .venv
.venv/bin/activate
pip install -r requirements/requirements-all.txt -r tools/server/tests/requirements.txt
pip install flake8 pyright

View File

@ -32,7 +32,7 @@ jobs:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-arm64
evict-old-files: 1d
@ -85,7 +85,7 @@ jobs:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-x64
evict-old-files: 1d
@ -147,7 +147,7 @@ jobs:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
evict-old-files: 1d
@ -198,7 +198,7 @@ jobs:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-vulkan
evict-old-files: 1d
@ -256,7 +256,7 @@ jobs:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-cpu-${{ matrix.arch }}
variant: ccache
@ -328,7 +328,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-${{ matrix.backend }}-${{ matrix.arch }}
variant: ccache
@ -398,7 +398,7 @@ jobs:
uses: actions/checkout@v4
- name: Install ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-cuda-${{ matrix.cuda }}
variant: ccache
@ -471,7 +471,7 @@ jobs:
uses: actions/checkout@v4
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-sycl
variant: ccache
@ -545,7 +545,7 @@ jobs:
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-hip-${{ matrix.name }}-x64
evict-old-files: 1d
@ -557,7 +557,8 @@ jobs:
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$proc.WaitForExit(600000)
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
@ -600,7 +601,7 @@ jobs:
name: llama-bin-win-hip-${{ matrix.name }}-x64.zip
ios-xcode-build:
runs-on: macos-latest
runs-on: macos-15
steps:
- name: Checkout code
@ -608,6 +609,10 @@ jobs:
with:
fetch-depth: 0
- name: Setup Xcode
run: |
sudo xcode-select -s /Applications/Xcode_16.4.app
- name: Build
id: cmake_build
run: |

View File

@ -12,6 +12,8 @@ if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
message("CMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}")
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")

View File

@ -5,8 +5,8 @@
/tools/server/ @ngxson
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/gguf.cpp @JohannesGaessler
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-zdnn/ @taronaeo

View File

@ -17,6 +17,8 @@ LLM inference in C/C++
## Hot topics
- **[guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)**
- **[[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)**
- Support for the `gpt-oss` model with native MXFP4 format has been added | [PR](https://github.com/ggml-org/llama.cpp/pull/15091) | [Collaboration with NVIDIA](https://blogs.nvidia.com/blog/rtx-ai-garage-openai-oss) | [Comment](https://github.com/ggml-org/llama.cpp/discussions/15095)
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
@ -240,7 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
<details>
<summary>Infrastructure</summary>
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
- [Paddler](https://github.com/intentee/paddler) - Open-source LLMOps platform for hosting and scaling AI in your own infrastructure
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server

View File

@ -749,6 +749,39 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
// utils
//
// Helper function to parse tensor buffer override strings
static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
std::map<std::string, ggml_backend_buffer_type_t> buft_list;
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
auto * dev = ggml_backend_dev_get(i);
auto * buft = ggml_backend_dev_buffer_type(dev);
if (buft) {
buft_list[ggml_backend_buft_name(buft)] = buft;
}
}
for (const auto & override : string_split<std::string>(value, ',')) {
std::string::size_type pos = override.find('=');
if (pos == std::string::npos) {
throw std::invalid_argument("invalid value");
}
std::string tensor_name = override.substr(0, pos);
std::string buffer_type = override.substr(pos + 1);
if (buft_list.find(buffer_type) == buft_list.end()) {
printf("Available buffer types:\n");
for (const auto & it : buft_list) {
printf(" %s\n", ggml_backend_buft_name(it.second));
}
throw std::invalid_argument("unknown buffer type");
}
// keep strings alive and avoid leaking memory by storing them in a static vector
static std::list<std::string> buft_overrides;
buft_overrides.push_back(tensor_name);
overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
}
}
struct handle_model_result {
bool found_mmproj = false;
common_params_model mmproj;
@ -993,6 +1026,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
params.tensor_buft_overrides.push_back({nullptr, nullptr});
}
if (!params.speculative.tensor_buft_overrides.empty()) {
params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
}
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
throw std::runtime_error(string_format(
"error: the supplied chat template is not supported: %s%s\n",
@ -1201,6 +1238,7 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
common_params_print_completion(ctx_arg);
exit(0);
}
params.lr.init();
} catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
ctx_arg.params = params_org;
@ -1469,6 +1507,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.swa_full = true;
}
).set_env("LLAMA_ARG_SWA_FULL"));
add_opt(common_arg(
{"--swa-checkpoints"}, "N",
string_format("max number of SWA checkpoints per slot to create (default: %d)\n"
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_swa_checkpoints),
[](common_params & params, int value) {
params.n_swa_checkpoints = value;
}
).set_env("LLAMA_ARG_SWA_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--kv-unified", "-kvu"},
string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
@ -1484,6 +1530,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.ctx_shift = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
add_opt(common_arg(
{"--context-shift"},
string_format("enables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
[](common_params & params) {
params.ctx_shift = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
add_opt(common_arg(
{"--chunks"}, "N",
string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
@ -1777,7 +1830,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
params.sampling.top_n_sigma = std::stof(value);
}
).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
).set_sparam());
add_opt(common_arg(
{"--xtc-probability"}, "N",
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
@ -2349,40 +2402,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
"override tensor buffer type", [](common_params & params, const std::string & value) {
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
if (buft_list.empty()) {
// enumerate all the devices and add their buffer types to the list
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
auto * dev = ggml_backend_dev_get(i);
auto * buft = ggml_backend_dev_buffer_type(dev);
if (buft) {
buft_list[ggml_backend_buft_name(buft)] = buft;
}
}
}
for (const auto & override : string_split<std::string>(value, ',')) {
std::string::size_type pos = override.find('=');
if (pos == std::string::npos) {
throw std::invalid_argument("invalid value");
}
std::string tensor_name = override.substr(0, pos);
std::string buffer_type = override.substr(pos + 1);
if (buft_list.find(buffer_type) == buft_list.end()) {
printf("Available buffer types:\n");
for (const auto & it : buft_list) {
printf(" %s\n", ggml_backend_buft_name(it.second));
}
throw std::invalid_argument("unknown buffer type");
}
// keep strings alive and avoid leaking memory by storing them in a static vector
static std::list<std::string> buft_overrides;
buft_overrides.push_back(tensor_name);
params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
}
parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
}
));
add_opt(common_arg(
{"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...",
"override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--cpu-moe", "-cmoe"},
"keep all Mixture of Experts (MoE) weights in the CPU",
@ -2405,6 +2433,27 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
}
).set_env("LLAMA_ARG_N_CPU_MOE"));
add_opt(common_arg(
{"--cpu-moe-draft", "-cmoed"},
"keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
[](common_params & params) {
params.speculative.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
add_opt(common_arg(
{"--n-cpu-moe-draft", "-ncmoed"}, "N",
"keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
[](common_params & params, int value) {
if (value < 0) {
throw std::invalid_argument("invalid value");
}
for (int i = 0; i < value; ++i) {
static std::list<std::string> buft_overrides_draft;
buft_overrides_draft.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM",
@ -2655,7 +2704,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
params.out_file = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE}));
add_opt(common_arg(
{"-ofreq", "--output-frequency"}, "N",
string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
@ -2949,11 +2998,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
"(default: auto)",
[](common_params & params, const std::string & value) {
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
else if (value == "deepseek-legacy") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY; }
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
else if (value == "auto") { params.reasoning_format = COMMON_REASONING_FORMAT_AUTO; }
else { throw std::invalid_argument("invalid value"); }
params.reasoning_format = common_reasoning_format_from_name(value);
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
add_opt(common_arg(
@ -3134,7 +3179,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-tbd", "--threads-batch-draft"}, "N",
"number of threads to use during batch and prompt processing (default: same as --threads-draft)",
@ -3144,7 +3189,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-Cd", "--cpu-mask-draft"}, "M",
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
@ -3537,5 +3582,51 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(
common_arg({ "-lr", "--learning-rate" }, "ALPHA",
string_format(
"adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)",
(double) params.lr.lr0),
[](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(
common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
string_format(
"(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
(double) params.lr.lr_min),
[](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(
common_arg({ "-decay-epochs", "--learning-rate-decay-epochs" }, "ALPHA",
string_format(
"(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)",
(double) params.lr.decay_epochs),
[](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg(
{ "-wd", "--weight-decay" }, "WD",
string_format(
"adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).",
(double) params.lr.wd),
[](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg({ "-val-split", "--val-split" }, "FRACTION",
string_format("fraction of data to use as validation set for training (default: %.2g).",
(double) params.val_split),
[](common_params & params, const std::string & value) { params.val_split = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg({ "-epochs", "--epochs" }, "N",
string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
[](common_params & params, int epochs) { params.lr.epochs = epochs; })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg({ "-opt", "--optimizer" }, "sgd|adamw", "adamw or sgd",
[](common_params & params, const std::string & name) {
params.optimizer = common_opt_get_optimizer(name.c_str());
if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
}
})
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
return ctx_arg;
}

View File

@ -296,6 +296,7 @@ json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msg
}
if (!msg.reasoning_content.empty()) {
jmsg["reasoning_content"] = msg.reasoning_content;
jmsg["thinking"] = msg.reasoning_content; // gpt-oss
}
if (!msg.tool_name.empty()) {
jmsg["name"] = msg.tool_name;
@ -472,11 +473,12 @@ std::string common_chat_format_single(
return ss.str();
}
std::string common_chat_format_example(const struct common_chat_templates * tmpls, bool use_jinja) {
std::string common_chat_format_example(const struct common_chat_templates * tmpls, bool use_jinja, const std::map<std::string, std::string> & chat_template_kwargs) {
common_chat_templates_inputs inputs;
inputs.use_jinja = use_jinja;
inputs.add_bos = tmpls->add_bos;
inputs.add_eos = tmpls->add_eos;
inputs.chat_template_kwargs = chat_template_kwargs;
auto add_simple_msg = [&](auto role, auto content) {
common_chat_msg msg;
msg.role = role;
@ -552,6 +554,17 @@ common_chat_templates_ptr common_chat_templates_init(
default_template_src = CHATML_TEMPLATE_SRC;
}
}
// TODO @ngxson : this is a temporary hack to prevent chat template from throwing an error
// Ref: https://github.com/ggml-org/llama.cpp/pull/15230#issuecomment-3173959633
if (default_template_src.find("<|channel|>") != std::string::npos
// search for the error message and patch it
&& default_template_src.find("in message.content or") != std::string::npos) {
string_replace_all(default_template_src,
"{%- if \"<|channel|>analysis<|message|>\" in message.content or \"<|channel|>final<|message|>\" in message.content %}",
"{%- if false %}");
}
std::string token_bos = bos_token_override;
std::string token_eos = eos_token_override;
bool add_bos = false;
@ -619,12 +632,24 @@ const char * common_reasoning_format_name(common_reasoning_format format) {
case COMMON_REASONING_FORMAT_AUTO: return "auto";
case COMMON_REASONING_FORMAT_DEEPSEEK: return "deepseek";
case COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY: return "deepseek-legacy";
case COMMON_REASONING_FORMAT_GRANITE: return "granite";
default:
throw std::runtime_error("Unknown reasoning format");
}
}
common_reasoning_format common_reasoning_format_from_name(const std::string & format) {
if (format == "none") {
return COMMON_REASONING_FORMAT_NONE;
} else if (format == "auto") {
return COMMON_REASONING_FORMAT_AUTO;
} else if (format == "deepseek") {
return COMMON_REASONING_FORMAT_DEEPSEEK;
} else if (format == "deepseek-legacy") {
return COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY;
}
throw std::runtime_error("Unknown reasoning format: " + format);
}
static std::string wrap_code_as_arguments(common_chat_msg_parser & builder, const std::string & code) {
std::string arguments;
if (builder.is_partial()) {
@ -1314,16 +1339,164 @@ static common_chat_params common_chat_params_init_gpt_oss(const common_chat_temp
data.prompt = prompt;
data.format = COMMON_CHAT_FORMAT_GPT_OSS;
// TODO: support tool calls in GPT-OSS?
// These special tokens are required to parse properly, so we include them
// even if parse_tool_calls is false.
data.preserved_tokens = {
"<|channel|>",
"<|constrain|>",
"<|message|>",
"<|start|>",
"<|end|>",
};
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
// tool calls can appear in commentary or analysis channels
auto channel = builder.add_rule("channel", "\"<|channel|>\" ( \"commentary\" | \"analysis\" )");
std::vector<std::string> tool_rules_recipient_in_role;
std::vector<std::string> tool_rules_recipient_in_channel;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
tool_rules_recipient_in_role.push_back(
builder.add_rule(name + "-call",
"\"" + name + "\"" + channel + " \" <|constrain|>json\"? \"<|message|>\" " +
builder.add_schema(name + "-args", parameters)
)
);
tool_rules_recipient_in_channel.push_back(
builder.add_rule(name + "-call",
"\"" + name + "\"" + " \" <|constrain|>json\"? \"<|message|>\" " +
builder.add_schema(name + "-args", parameters)
)
);
});
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\"<|start|>assistant\"? \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_role, " | ") + " )"
);
auto recipient_in_channel = builder.add_rule("recipient_in_channel",
channel + " \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_channel, " | ") + " )"
);
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
// Trigger on tool calls that appear in the commentary channel
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
"<\\|channel\\|>(commentary|analysis) to"
});
// Trigger tool calls that appear in the role section, either at the
// start or in the middle.
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
"^ to"
});
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
"<\\|start\\|>assistant to"
});
});
}
return data;
}
static void common_chat_parse_gpt_oss(common_chat_msg_parser & builder) {
// TODO @ngxson : this won't work with --special enabled, we should fix that
builder.try_parse_reasoning("<|channel|>analysis<|message|>", "<|start|>assistant<|channel|>final<|message|>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
static const std::string constraint = "(?: (<\\|constrain\\|>)?([a-zA-Z0-9_-]+))";
static const std::string recipient("(?: to=functions\\.([^<\\s]+))");
static const common_regex start_regex("<\\|start\\|>assistant");
static const common_regex analysis_regex("<\\|channel\\|>analysis");
static const common_regex final_regex("<\\|channel\\|>final" + constraint + "?");
static const common_regex preamble_regex("<\\|channel\\|>commentary");
static const common_regex tool_call1_regex(recipient + "<\\|channel\\|>(analysis|commentary)" + constraint + "?");
static const common_regex tool_call2_regex("<\\|channel\\|>(analysis|commentary)" + recipient + constraint + "?");
auto consume_end = [&](bool include_end = false) {
if (auto res = builder.try_find_literal("<|end|>")) {
return res->prelude + (include_end ? builder.str(res->groups[0]) : "");
}
return builder.consume_rest();
};
auto handle_tool_call = [&](const std::string & name) {
if (auto args = builder.try_consume_json_with_dumped_args({{}})) {
if (builder.syntax().parse_tool_calls) {
if (!builder.add_tool_call(name, "", args->value) || args->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
} else if (args->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
}
};
auto regex_match = [](const common_regex & regex, const std::string & input) -> std::optional<common_regex_match> {
auto match = regex.search(input, 0, true);
if (match.type == COMMON_REGEX_MATCH_TYPE_FULL) {
return match;
}
return std::nullopt;
};
do {
auto header_start_pos = builder.pos();
auto content_start = builder.try_find_literal("<|message|>");
if (!content_start) {
throw common_chat_msg_partial_exception("incomplete header");
}
auto header = content_start->prelude;
if (auto match = regex_match(tool_call1_regex, header)) {
auto group = match->groups[1];
auto name = header.substr(group.begin, group.end - group.begin);
handle_tool_call(name);
continue;
}
if (auto match = regex_match(tool_call2_regex, header)) {
auto group = match->groups[2];
auto name = header.substr(group.begin, group.end - group.begin);
handle_tool_call(name);
continue;
}
if (regex_match(analysis_regex, header)) {
builder.move_to(header_start_pos);
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE || builder.syntax().reasoning_in_content) {
builder.add_content(consume_end(true));
} else {
builder.try_parse_reasoning("<|channel|>analysis<|message|>", "<|end|>");
}
continue;
}
if(regex_match(final_regex, header) || regex_match(preamble_regex, header)) {
builder.add_content(consume_end());
continue;
}
// Possibly a malformed message, attempt to recover by rolling
// back to pick up the next <|start|>
LOG_DBG("%s: unknown header from message: %s\n", __func__, header.c_str());
builder.move_to(header_start_pos);
} while (builder.try_find_regex(start_regex, std::string::npos, false));
auto remaining = builder.consume_rest();
if (!remaining.empty()) {
LOG_DBG("%s: content after last message: %s\n", __func__, remaining.c_str());
}
}
@ -1887,8 +2060,8 @@ static common_chat_params common_chat_templates_apply_jinja(
params.enable_thinking = inputs.enable_thinking;
params.grammar = inputs.grammar;
params.now = inputs.now;
params.add_bos = inputs.add_bos;
params.add_eos = inputs.add_eos;
params.add_bos = tmpls->add_bos;
params.add_eos = tmpls->add_eos;
params.extra_context = json::object();
for (auto el : inputs.chat_template_kwargs) {

View File

@ -187,10 +187,12 @@ std::string common_chat_format_single(
// Returns an example of formatted chat
std::string common_chat_format_example(
const struct common_chat_templates * tmpls,
bool use_jinja);
bool use_jinja,
const std::map<std::string, std::string> & chat_template_kwargs);
const char* common_chat_format_name(common_chat_format format);
const char* common_reasoning_format_name(common_reasoning_format format);
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);

View File

@ -41,6 +41,7 @@
#endif
#include <locale>
#include <windows.h>
#include <string.h>
#include <fcntl.h>
#include <io.h>
#else
@ -1565,3 +1566,56 @@ ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std
return result;
}
ggml_opt_optimizer_params common_opt_lr_pars(void * userdata) {
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr);
const lr_opt & d = *(lr_opt *) userdata;
result.adamw.alpha = result.sgd.alpha = d.get_lr(d.epoch);
result.sgd.wd = result.adamw.wd = d.wd;
return result;
}
// TODO make all command line args case-insensitive
static inline bool eq_case_insensitive(char const* a, char const* b) {
return !
#if defined(_MSC_VER)
_stricmp
#else
strcasecmp
#endif // defined(_MSC_VER)
(a, b);
}
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char * n) {
if (eq_case_insensitive("adamw", n)) {
return GGML_OPT_OPTIMIZER_TYPE_ADAMW;
}
if (eq_case_insensitive("sgd", n)) {
return GGML_OPT_OPTIMIZER_TYPE_SGD;
}
return GGML_OPT_OPTIMIZER_TYPE_COUNT;
}
// TODO simplify to use just log and exp
static float const k_log_2 = std::log(2.f);
void lr_opt::init() {
if (lr_min > 0 && lr_min < lr0) {
float nhalf = std::log(lr0 / lr_min) / k_log_2;
float e = epochs;
if (decay_epochs > 0 && decay_epochs < e) {
e = decay_epochs;
} else {
decay_epochs = e;
}
scale_epoch = nhalf / e;
}
}
float lr_opt::get_lr(float epoch) const {
float r = lr_min <= 0 ? lr0 :
epoch >= decay_epochs ? lr_min :
lr0 * std::pow(0.5f, epoch * scale_epoch);
LOG_INF("epoch %.2g lr=%.2g\n", epoch, r);
return r;
}

View File

@ -2,14 +2,17 @@
#pragma once
#include "llama-cpp.h"
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <vector>
#include <map>
#include <sstream>
#include <cmath>
#include "ggml-opt.h"
#include "llama-cpp.h"
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@ -82,6 +85,7 @@ enum llama_example {
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_DIFFUSION,
LLAMA_EXAMPLE_FINETUNE,
LLAMA_EXAMPLE_COUNT,
};
@ -202,6 +206,7 @@ struct common_params_speculative {
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
@ -234,14 +239,36 @@ struct common_params_diffusion {
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
};
// reasoning API response format (not to be confused as chat template's reasoning format)
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_AUTO,
COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content`
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
COMMON_REASONING_FORMAT_GRANITE, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
// do not extend this enum unless you absolutely have to
// in most cases, use COMMON_REASONING_FORMAT_AUTO
// see: https://github.com/ggml-org/llama.cpp/pull/15408
};
struct lr_opt {
float lr0 = 1e-5; // learning rate at first epoch
float lr_min = -1;
float decay_epochs = -1; // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs
float scale_epoch = 0;
float wd = 0;
unsigned epochs = 2;
unsigned epoch; // set by optimizer outer (epochs) loop
// learning rate decay - constant LR per epoch only for now
float get_lr(float e) const;
float get_lr() const { return get_lr(epoch); }
// must call after arg parse, before get_lr
void init();
};
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
@ -348,7 +375,7 @@ struct common_params {
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = true; // context shift on inifinite text generation
bool ctx_shift = false; // context shift on inifinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache
@ -376,6 +403,11 @@ struct common_params {
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
// finetune
struct lr_opt lr;
enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
float val_split = 0.05f; // fraction of the data used for the validation set
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
@ -384,11 +416,12 @@ struct common_params {
std::string cls_sep = "\t"; // separator of classification sequences
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
int32_t n_swa_checkpoints = 3; // max number of SWA checkpoints per slot
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
@ -703,3 +736,6 @@ const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
//
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
// "adamw" or "sgd" (case insensitive)
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *);

View File

@ -28,6 +28,14 @@ if TYPE_CHECKING:
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
from gguf.vocab import MistralTokenizerType, MistralVocab
from mistral_common.tokens.tokenizers.base import TokenizerVersion
from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
from mistral_common.tokens.tokenizers.tekken import Tekkenizer
from mistral_common.tokens.tokenizers.sentencepiece import (
SentencePieceTokenizer,
)
logger = logging.getLogger("hf-to-gguf")
@ -81,6 +89,8 @@ class ModelBase:
block_count: int
tensor_map: gguf.TensorNameMap
is_mistral_format: bool = False
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
@ -106,16 +116,17 @@ class ModelBase:
logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
self.tensor_names = set(name for name in remote_tensors.keys())
for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
for name, remote_tensor in remote_tensors.items():
yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
self.get_tensors = get_remote_tensors
else:
self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
prefix = "model" if not self.is_mistral_format else "consolidated"
self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
self.tensor_names = None
self.metadata_override = metadata_override
self.model_name = model_name
@ -153,19 +164,23 @@ class ModelBase:
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
tensor_names_from_parts: set[str] = set()
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
index_name += ".index.json"
index_file = self.dir_model / index_name
if not self.is_mistral_format:
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
index_name += ".index.json"
index_file = self.dir_model / index_name
if index_file.is_file():
self.tensor_names = set()
logger.info(f"gguf: loading model weight map from '{index_name}'")
with open(index_file, "r", encoding="utf-8") as f:
index: dict[str, Any] = json.load(f)
weight_map = index.get("weight_map")
if weight_map is None or not isinstance(weight_map, dict):
raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
self.tensor_names.update(weight_map.keys())
if index_file.is_file():
self.tensor_names = set()
logger.info(f"gguf: loading model weight map from '{index_name}'")
with open(index_file, "r", encoding="utf-8") as f:
index: dict[str, Any] = json.load(f)
weight_map = index.get("weight_map")
if weight_map is None or not isinstance(weight_map, dict):
raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
self.tensor_names.update(weight_map.keys())
else:
self.tensor_names = tensor_names_from_parts
weight_map = {}
else:
self.tensor_names = tensor_names_from_parts
weight_map = {}
@ -426,7 +441,12 @@ class ModelBase:
return part_names
@staticmethod
def load_hparams(dir_model: Path):
def load_hparams(dir_model: Path, is_mistral_format: bool):
if is_mistral_format:
with open(dir_model / "params.json", "r", encoding="utf-8") as f:
config = json.load(f)
return config
try:
# for security reason, we don't allow loading remote code by default
# if a model need remote code, we will fallback to config.json
@ -476,7 +496,10 @@ class TextModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
if not self.is_mistral_format:
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
else:
self.hf_arch = ""
if "text_config" in self.hparams:
# move the text_config to the root level
@ -542,14 +565,14 @@ class TextModel(ModelBase):
self.gguf_writer.add_head_count(n_head)
logger.info(f"gguf: head count = {n_head}")
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
self.gguf_writer.add_head_count_kv(n_head_kv)
logger.info(f"gguf: key-value head count = {n_head_kv}")
if (rope_theta := self.hparams.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta)
logger.info(f"gguf: rope theta = {rope_theta}")
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
@ -1210,12 +1233,19 @@ class MmprojModel(ModelBase):
raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
# get n_embd of the text model
if "text_config" not in self.hparams:
self.hparams["text_config"] = {}
if "audio_config" not in self.hparams:
self.hparams["audio_config"] = {}
text_config = {**self.hparams, **self.hparams["text_config"]}
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
if not self.is_mistral_format:
if "text_config" not in self.hparams:
self.hparams["text_config"] = {}
if "audio_config" not in self.hparams:
self.hparams["audio_config"] = {}
text_config = {**self.hparams, **self.hparams["text_config"]}
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
else:
text_config = {
k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
}
self.n_embd_text = text_config.get("hidden_dim", 0)
assert self.n_embd_text > 0, "n_embd not found in hparams"
# move vision config to the top level, while preserving the original hparams in global_config
@ -1236,11 +1266,13 @@ class MmprojModel(ModelBase):
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
# load preprocessor config
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
if not self.is_mistral_format:
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
def get_vision_config(self) -> dict[str, Any] | None:
return self.global_config.get("vision_config")
config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
return self.global_config.get(config_name)
def get_audio_config(self) -> dict[str, Any] | None:
return self.global_config.get("audio_config")
@ -1264,8 +1296,11 @@ class MmprojModel(ModelBase):
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
# preprocessor config
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
self.gguf_writer.add_vision_image_mean(image_mean)
self.gguf_writer.add_vision_image_std(image_std)
if self.has_audio_encoder:
self.gguf_writer.add_clip_has_audio_encoder(True)
@ -1299,6 +1334,12 @@ class MmprojModel(ModelBase):
return None
raise KeyError(f"could not find any of: {keys}")
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd.weight" in new_name:
return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
return False
@ModelBase.register("GPTNeoXForCausalLM")
class GPTNeoXModel(TextModel):
@ -1924,11 +1965,63 @@ class LlamaModel(TextModel):
if self.hf_arch == "VLlama3ForCausalLM":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def _set_vocab_mistral(self):
vocab = MistralVocab(self.dir_model)
logger.info(
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
template_dir = Path(__file__).parent / "models/templates/"
template = MistralModel.get_community_chat_template(vocab, template_dir)
self.gguf_writer.add_chat_template(template)
def set_vocab(self):
if self.is_mistral_format:
return self._set_vocab_mistral()
path_tekken_json = self.dir_model / "tekken.json"
path_tokenizer_json = self.dir_model / "tokenizer.json"
if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
return self.set_vocab_tekken()
self._set_vocab_mistral()
try:
self._set_vocab_sentencepiece()
@ -1962,56 +2055,12 @@ class LlamaModel(TextModel):
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)
def set_vocab_tekken(self):
vocab = gguf.vocab.MistralVocab(self.dir_model)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
script_dir = Path(__file__).parent
template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
with open(template_path, "r", encoding="utf-8") as f:
template = f.read()
self.gguf_writer.add_chat_template(template)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if not self.is_mistral_format:
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
@ -2033,13 +2082,25 @@ class LlamaModel(TextModel):
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
n_head = self.find_hparam(["n_heads", "num_attention_heads"])
n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
vision_prefixes = [
"vision_encoder.",
"vision_language_adapter.",
"patch_merger.",
"pre_mm_projector_norm",
]
is_multimodal_tensor = "vision_tower" in name \
or "vision_model" in name \
or "audio_tower" in name \
or "model.connector" in name \
or "multi_modal_projector" in name
or "multi_modal_projector" in name \
or any(
name.startswith(prefix)
for prefix in vision_prefixes
)
if is_multimodal_tensor:
return [] # skip vision tensors
@ -2155,13 +2216,18 @@ class LlavaVisionModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.hparams["model_type"] == "pixtral":
if self.hparams.get("model_type") == "pixtral":
# layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
logger.info(f"Image break token id: {self.img_break_tok_id}")
elif self.is_mistral_format:
# hparams is already vision config here so norm_eps is only defined in global_config.
self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
else:
raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
logger.info(f"Image break token id: {self.img_break_tok_id}")
def get_token_id(self, token: str) -> int:
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
@ -2175,7 +2241,7 @@ class LlavaVisionModel(MmprojModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if hparams["model_type"] == "pixtral":
if hparams.get("model_type") == "pixtral":
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
@ -2193,18 +2259,30 @@ class LlavaVisionModel(MmprojModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
n_head = self.hparams["num_attention_heads"]
n_head = (
self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
)
n_kv_head = n_head
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
valid_prefixes = (
"multi_modal_projector.",
"vision_tower.",
"vision_encoder.",
"vision_language_adapter.",
"patch_merger.",
"pre_mm_projector_norm",
)
if any(name.startswith(prefix) for prefix in valid_prefixes):
# process vision tensors
if name.endswith(("q_proj.weight", "q_proj.bias")):
if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]
if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
if self.img_break_tok_id > 0 and embed_key in name:
logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
# for pixtral model, we need to extract the [IMG_BREAK] token embedding
img_break_embd = data_torch[self.img_break_tok_id]
@ -2233,10 +2311,9 @@ class SmolVLMModel(MmprojModel):
self.gguf_writer.add_vision_use_gelu(True)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".embeddings." in name:
return gguf.GGMLQuantizationType.F32
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@ -3224,12 +3301,9 @@ class Qwen2VLVisionModel(MmprojModel):
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd." in new_name:
return gguf.GGMLQuantizationType.F16
if ".position_embd." in new_name:
return gguf.GGMLQuantizationType.F32
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@ -3302,10 +3376,9 @@ class Qwen25OmniModel(Qwen2VLVisionModel):
yield ("audio_tower.embed_positions.weight", pos_embd)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F16
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("thinker."):
@ -3351,12 +3424,9 @@ class InternVisionModel(MmprojModel):
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd." in new_name:
return gguf.GGMLQuantizationType.F16
if ".position_embd." in new_name:
return gguf.GGMLQuantizationType.F32
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)
def _mapping_interns1_name(self, name):
names_map = {
@ -3526,7 +3596,7 @@ class Qwen3MoeModel(Qwen2MoeModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
hparams = ModelBase.load_hparams(self.dir_model)
hparams = ModelBase.load_hparams(self.dir_model, False)
self.origin_hf_arch = hparams.get('architectures', [None])[0]
def set_vocab(self):
@ -4683,7 +4753,7 @@ class NomicBertModel(BertModel):
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
hparams = kwargs.pop("hparams", None)
if hparams is None:
hparams = ModelBase.load_hparams(dir_model)
hparams = ModelBase.load_hparams(dir_model, False)
self.is_moe = bool(hparams.get("moe_every_n_layers"))
self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
@ -4990,13 +5060,12 @@ class Gemma3VisionModel(MmprojModel):
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
# related to https://github.com/ggml-org/llama.cpp/issues/13025
if "input_projection" in name:
return gguf.GGMLQuantizationType.F16
if ".embeddings." in name:
return gguf.GGMLQuantizationType.F32
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@ -7655,10 +7724,9 @@ class WhisperEncoderModel(MmprojModel):
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F16
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@ -8179,8 +8247,7 @@ class GptOssModel(TextModel):
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
@ModelBase.register("Lfm2ForCausalLM")
@ModelBase.register("LFM2ForCausalLM")
@ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
class LFM2Model(TextModel):
model_arch = gguf.MODEL_ARCH.LFM2
@ -8215,6 +8282,13 @@ class LFM2Model(TextModel):
self._add_feed_forward_length()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
if is_vision_tensor:
# skip vision tensors
return []
name = name.replace("language_model.", "")
# conv op requires 2d tensor
if 'conv.conv' in name:
data_torch = data_torch.squeeze(1)
@ -8222,6 +8296,41 @@ class LFM2Model(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Lfm2VlForConditionalGeneration")
class LFM2VLModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hparams_vision is not None
# TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
self.hparams_vision["image_size"] = 256
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
self.gguf_writer.add_vision_use_gelu(True)
# python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
if is_vision_tensor:
# remove "model." prefix
name = name.replace("model.vision_tower.", "vision_tower.")
name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
if "patch_embedding.weight" in name:
data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
return [(self.map_tensor_name(name), data_torch)]
return [] # skip other tensors
@ModelBase.register("SmallThinkerForCausalLM")
class SmallThinkerModel(TextModel):
model_arch = gguf.MODEL_ARCH.SMALLTHINKER
@ -8304,6 +8413,77 @@ class SmallThinkerModel(TextModel):
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
class MistralModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_name = "Mistral"
hf_arch = ""
is_mistral_format = True
undo_permute = False
@staticmethod
def get_community_chat_template(vocab: MistralVocab, templates_dir: Path):
assert TokenizerVersion is not None, "mistral_common is not installed"
assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
)
if vocab.tokenizer.version == TokenizerVersion.v1:
return "mistral-v1"
elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
return "mistral-v3"
elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
return "mistral-v3-tekken"
elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
return "mistral-v7"
elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
return "mistral-v7-tekken"
elif vocab.tokenizer.version == TokenizerVersion.v11:
template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
elif vocab.tokenizer.version == TokenizerVersion.v13:
template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
else:
raise ValueError(f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}")
template_path = templates_dir / template_file
if not template_path.exists():
raise FileNotFoundError(f"Template file not found: {template_path}")
with open(template_path, "r", encoding="utf-8") as f:
template = f.read()
return template
class PixtralModel(LlavaVisionModel):
model_name = "Pixtral"
hf_arch = ""
is_mistral_format = True
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
self.gguf_writer.add_vision_attention_layernorm_eps(
self.find_hparam(["norm_eps"])
)
self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
self.gguf_writer.add_vision_use_silu(True)
# spatial_merge_size
if self.find_vparam(["mm_projector_id"]) == "patch_merge":
self.gguf_writer.add_vision_spatial_merge_size(
self.find_vparam(["spatial_merge_size"])
)
def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
if name == "vision_language_adapter.w_in.weight":
return "mm.1.weight"
elif name == "vision_language_adapter.w_out.weight":
return "mm.2.weight"
return super().map_tensor_name(name, try_suffixes)
###### CONVERSION LOGIC ######
@ -8454,6 +8634,10 @@ def parse_args() -> argparse.Namespace:
"--mmproj", action="store_true",
help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
)
parser.add_argument(
"--mistral-format", action="store_true",
help="Whether the model is stored following the Mistral format.",
)
args = parser.parse_args()
if not args.print_supported_models and args.model is None:
@ -8559,17 +8743,25 @@ def main() -> None:
if "mmproj" not in fname_out.name:
fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
is_mistral_format = args.mistral_format
with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
hparams = ModelBase.load_hparams(dir_model)
model_architecture = get_model_architecture(hparams, model_type)
logger.info(f"Model architecture: {model_architecture}")
try:
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
except NotImplementedError:
logger.error(f"Model {model_architecture} is not supported")
sys.exit(1)
hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
if not is_mistral_format:
model_architecture = get_model_architecture(hparams, model_type)
logger.info(f"Model architecture: {model_architecture}")
try:
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
except NotImplementedError:
logger.error(f"Model {model_architecture} is not supported")
sys.exit(1)
elif args.mmproj:
assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
model_class = PixtralModel
else:
model_class = MistralModel
model_instance = model_class(dir_model, output_type, fname_out,
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
@ -8578,7 +8770,8 @@ def main() -> None:
split_max_tensors=args.split_max_tensors,
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split,
remote_hf_model_id=hf_repo_id)
remote_hf_model_id=hf_repo_id,
)
if args.vocab_only:
logger.info("Exporting model vocab...")

View File

@ -340,7 +340,7 @@ if __name__ == '__main__':
sys.exit(1)
else:
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = ModelBase.load_hparams(dir_base_model)
hparams = ModelBase.load_hparams(dir_base_model, False)
with torch.inference_mode():
try:

View File

@ -76,6 +76,23 @@ cmake --build build --config Release -j $(nproc)
cmake --build build --config Release -j $(nproc)
```
## IBM zDNN Accelerator
This provides acceleration using the IBM zAIU co-processor located in the Telum I and Telum II processors. Make sure to have the [IBM zDNN library](https://github.com/IBM/zDNN) installed.
#### Compile from source from IBM
You may find the official build instructions here: [Building and Installing zDNN](https://github.com/IBM/zDNN?tab=readme-ov-file#building-and-installing-zdnn)
### Compilation
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_ZDNN=ON
cmake --build build --config Release -j$(nproc)
```
## Getting GGUF Models
All models need to be converted to Big-Endian. You can achieve this in three cases:
@ -145,15 +162,15 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
### 1. SIMD Acceleration
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
### 2. NNPA Vector Intrinsics Acceleration
Only available in IBM z16 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
### 3. zDNN Accelerator
### 3. zDNN Accelerator (WIP)
_Only available in IBM z16 / LinuxONE 4 or later system. No support currently available._
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
### 4. Spyre Accelerator
@ -229,11 +246,12 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
## Appendix A: Hardware Support Matrix
| | Support | Minimum Compiler Version |
| ------- | ------- | ------------------------ |
| IBM z15 | ✅ | |
| IBM z16 | ✅ | |
| IBM z17 | ✅ | GCC 15.1.0 |
| | Support | Minimum Compiler Version |
| -------- | ------- | ------------------------ |
| IBM z15 | ✅ | |
| IBM z16 | ✅ | |
| IBM z17 | ✅ | GCC 15.1.0 |
| IBM zDNN | ✅ | |
- ✅ - supported and verified to run as intended
- 🚫 - unsupported, we are unlikely able to provide support
@ -242,7 +260,7 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
| ---------- | ----------- | ---- | ---- | ----- |
| FP32 | ✅ | ✅ | | ❓ |
| FP32 | ✅ | ✅ | | ❓ |
| FP16 | ✅ | ✅ | ❓ | ❓ |
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
@ -273,4 +291,4 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
- 🚫 - acceleration unavailable, will still run using scalar implementation
- ❓ - acceleration unknown, please contribute if you can test it yourself
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on July 25, 2025.
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on July 31, 2025.

View File

@ -13,7 +13,7 @@ If there are differences in usage, please refer to the official build [documenta
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```

View File

@ -12,7 +12,7 @@ If there are differences in usage, please refer to the official build [documenta
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```

View File

@ -12,91 +12,92 @@ Legend:
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|-----------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |

8134
docs/ops/zDNN.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@ -7,6 +7,7 @@
#include <cstdio>
#include <string>
#include <vector>
#include <numeric>
/**
* This the arbitrary data which will be passed to each callback.
@ -77,6 +78,12 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
LOG(" ]\n");
LOG(" sum = %f\n", sum);
}
// TODO: make this abort configurable/optional?
if (std::isnan(sum)) {
LOG_ERR("encountered NaN - aborting\n");
exit(0);
}
}
/**

View File

@ -59,6 +59,8 @@ int main(int argc, char ** argv) {
}
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
params.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
common_init_result llama_init_dft = common_init_from_params(params);
//model_dft = llama_init_dft.model.get();

View File

@ -85,6 +85,8 @@ int main(int argc, char ** argv) {
}
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
params.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
common_init_result llama_init_dft = common_init_from_params(params);
model_dft = llama_init_dft.model.get();

View File

@ -10,20 +10,20 @@
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
int main(int argc, char ** argv) {
common_params params;
params.escape = false;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_FINETUNE)) {
return 1;
}
if (params.use_mmap) {
LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__);
LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n",
__func__);
params.use_mmap = false;
}
if (params.cache_type_k != GGML_TYPE_F32) {
@ -38,11 +38,10 @@ int main(int argc, char ** argv) {
common_init();
llama_backend_init();
llama_numa_init(params.numa);
// load the model and apply lora adapter, if any
common_init_result llama_init = common_init_from_params(params);
llama_model_ptr & model = llama_init.model;
llama_context_ptr & ctx = llama_init.context;
common_init_result llama_init = common_init_from_params(params);
llama_model_ptr & model = llama_init.model;
llama_context_ptr & ctx = llama_init.context;
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
@ -55,31 +54,32 @@ int main(int argc, char ** argv) {
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
constexpr float val_split = 0.05f;
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get()) / 2);
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get())/2);
struct lr_opt & lr = params.lr;
LOG_INF("-optimizer %s -lr0 %.2g -wd %.2g -lr-min %.2g -min-epochs %.2g -epochs %d -period %.2g -val %.2g\n",
ggml_opt_optimizer_name(params.optimizer), (double) lr.lr0, (double) lr.wd, (double) lr.lr_min, (double) lr.decay_epochs,
(unsigned) lr.epochs, (double) params.n_batch / params.n_ubatch, (double) params.val_split);
struct ggml_opt_optimizer_params optimizer_params = ggml_opt_get_default_optimizer_params(nullptr);
optimizer_params.adamw.alpha = 1e-7f; // learning rate
struct llama_opt_params lopt_params {
/*n_ctx_train =*/ 0,
/*param_filter =*/ llama_opt_param_filter_all,
/*param_filter_ud =*/ nullptr,
/*get_opt_pars =*/ ggml_opt_get_constant_optimizer_params,
/*get_opt_pars_ud =*/ &optimizer_params,
struct llama_opt_params lopt_params{
/*n_ctx_train =*/0,
/*param_filter =*/llama_opt_param_filter_all,
/*param_filter_ud =*/nullptr,
/*get_opt_pars =*/common_opt_lr_pars,
/*get_opt_pars_ud =*/&params.lr,
/*optimizer_type =*/params.optimizer,
};
llama_opt_init(ctx.get(), model.get(), lopt_params);
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - val_split);
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - params.val_split);
ggml_opt_result_t result_train = ggml_opt_result_init();
ggml_opt_result_t result_eval = ggml_opt_result_init();
for (int epoch = 0; epoch < 2; ++epoch) {
for (lr.epoch = 0; lr.epoch < lr.epochs; ++lr.epoch) {
llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
fprintf(stderr, "\n");
ggml_opt_result_reset(result_train);
@ -88,7 +88,7 @@ int main(int argc, char ** argv) {
ggml_opt_result_free(result_train);
ggml_opt_result_free(result_eval);
llama_model_save_to_file(model.get(), "finetuned-model.gguf");
llama_model_save_to_file(model.get(), params.out_file.c_str());
llama_backend_free();

View File

@ -36,9 +36,6 @@
# ```
# nixConfig = {
# extra-substituters = [
# # Populated by the CI in ggml-org/llama.cpp
# "https://llama-cpp.cachix.org"
#
# # A development cache for nixpkgs imported with `config.cudaSupport = true`.
# # Populated by https://hercules-ci.com/github/SomeoneSerge/nixpkgs-cuda-ci.
# # This lets one skip building e.g. the CUDA-enabled openmpi.
@ -47,10 +44,8 @@
# ];
#
# # Verify these are the same keys as published on
# # - https://app.cachix.org/cache/llama-cpp
# # - https://app.cachix.org/cache/cuda-maintainers
# extra-trusted-public-keys = [
# "llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc="
# "cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E="
# ];
# };

View File

@ -188,6 +188,7 @@ option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation"
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_ZDNN "ggml: use zDNN" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)

View File

@ -74,16 +74,26 @@ extern "C" {
GGML_OPT_BUILD_TYPE_OPT = 30,
};
enum ggml_opt_optimizer_type {
GGML_OPT_OPTIMIZER_TYPE_ADAMW,
GGML_OPT_OPTIMIZER_TYPE_SGD,
GGML_OPT_OPTIMIZER_TYPE_COUNT
};
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
struct ggml_opt_optimizer_params {
// AdamW optimizer parameters
struct {
float alpha; // learning rate
float beta1;
float beta2;
float beta1; // first AdamW momentum
float beta2; // second AdamW momentum
float eps; // epsilon for numerical stability
float wd; // weight decay for AdamW, use 0.0f to disable
float wd; // weight decay - 0.0f to disable
} adamw;
struct {
float alpha; // learning rate
float wd; // weight decay
} sgd;
};
// callback to calculate optimizer parameters prior to a backward pass
@ -112,8 +122,11 @@ extern "C" {
int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
// only GGML_OPT_OPTIMIZER_TYPE_ADAMW needs m, v momenta per parameter tensor
enum ggml_opt_optimizer_type optimizer;
};
// get parameters for an optimization context with defaults set where possible
@ -142,6 +155,10 @@ extern "C" {
// get the gradient accumulator for a node from the forward graph
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
GGML_API enum ggml_opt_optimizer_type ggml_opt_context_optimizer_type(ggml_opt_context_t); //TODO consistent naming scheme
GGML_API const char * ggml_opt_optimizer_name(enum ggml_opt_optimizer_type);
// ====== Optimization Result ======
GGML_API ggml_opt_result_t ggml_opt_result_init(void);
@ -226,12 +243,14 @@ extern "C" {
struct ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
enum ggml_opt_loss_type loss_type, // loss to minimize
enum ggml_opt_optimizer_type optimizer, // sgd or adamw
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
int64_t nepoch, // how many times the dataset should be iterated over
int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs
float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f)
bool silent); // whether or not info prints to stderr should be suppressed
#ifdef __cplusplus
}
#endif

16
ggml/include/ggml-zdnn.h Normal file
View File

@ -0,0 +1,16 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
GGML_BACKEND_API ggml_backend_t ggml_backend_zdnn_init(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_zdnn_reg(void);
#ifdef __cplusplus
}
#endif

View File

@ -241,6 +241,8 @@
#define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24
#define GGML_MROPE_SECTIONS 4
#define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
@ -540,6 +542,7 @@ extern "C" {
GGML_OP_CROSS_ENTROPY_LOSS,
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
GGML_OP_OPT_STEP_ADAMW,
GGML_OP_OPT_STEP_SGD,
GGML_OP_GLU,
@ -1660,7 +1663,7 @@ extern "C" {
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int sections[4],
int sections[GGML_MROPE_SECTIONS],
int mode,
int n_ctx_orig,
float freq_base,
@ -1686,6 +1689,22 @@ extern "C" {
float beta_fast,
float beta_slow);
GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int sections[GGML_MROPE_SECTIONS],
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -2293,7 +2312,14 @@ extern "C" {
struct ggml_tensor * grad,
struct ggml_tensor * m,
struct ggml_tensor * v,
struct ggml_tensor * adamw_params); // parameters such a the learning rate
struct ggml_tensor * adamw_params); // parameters such as the learning rate
// stochastic gradient descent step (with weight decay)
GGML_API struct ggml_tensor * ggml_opt_step_sgd(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * grad,
struct ggml_tensor * sgd_params); // alpha, weight decay
//
// automatic differentiation

View File

@ -382,6 +382,7 @@ ggml_add_backend(RPC)
ggml_add_backend(SYCL)
ggml_add_backend(Vulkan)
ggml_add_backend(WebGPU)
ggml_add_backend(zDNN)
ggml_add_backend(OpenCL)
foreach (target ggml-base ggml)

View File

@ -49,6 +49,10 @@
#include "ggml-webgpu.h"
#endif
#ifdef GGML_USE_ZDNN
#include "ggml-zdnn.h"
#endif
#ifdef GGML_USE_OPENCL
#include "ggml-opencl.h"
#endif
@ -180,6 +184,9 @@ struct ggml_backend_registry {
#ifdef GGML_USE_WEBGPU
register_backend(ggml_backend_webgpu_reg());
#endif
#ifdef GGML_USE_ZDNN
register_backend(ggml_backend_zdnn_reg());
#endif
#ifdef GGML_USE_OPENCL
register_backend(ggml_backend_opencl_reg());
#endif

View File

@ -753,69 +753,55 @@ static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src,
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
if (ggml_are_same_shape(src0, dst)) {
aclTensor* acl_src = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
if (dst->type == src0->type) {
cann_copy(ctx, acl_src, acl_dst);
} else {
aclnn_cast(ctx, acl_src, acl_dst, ggml_cann_type_mapping(dst->type));
}
ggml_cann_release_resources(ctx, acl_src, acl_dst);
} else {
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
if (dst->type == src0->type) {
size_t cpy_size = ggml_nbytes(dst);
ggml_cann_async_memcpy(ctx, dst->data, src0->data, cpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE);
return;
} else {
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(),
ggml_nelements(dst) * ggml_type_size(dst->type));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), src0->ne, src_trans_nb,
GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src, src_trans_tensor, ggml_cann_type_mapping(dst->type));
size_t cpy_size = ggml_nbytes(dst);
ggml_cann_async_memcpy(ctx, dst->data, src_trans_buffer, cpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE);
ggml_cann_release_resources(ctx, src_trans_tensor);
return;
}
} else if (ggml_is_contiguous(dst)) {
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(dst) * ggml_type_size(dst->type));
void* src_trans_buffer = src_buffer_allocator.get();
void* src_trans_buffer = src0->data;
ggml_cann_pool_alloc src_buffer_allocator;
if (!ggml_is_contiguous(src0)) {
aclTensor* acl_src = ggml_cann_create_tensor(src0);
src_buffer_allocator.alloc(ctx.pool(),
ggml_nelements(src0) * ggml_type_size(src0->type));
src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = ggml_type_size(dst->type);
src_trans_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), src0->ne, src_trans_nb,
src_trans_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, src_trans_nb,
GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src, src_trans_tensor, ggml_cann_type_mapping(dst->type));
size_t cpy_size = ggml_nbytes(dst);
ggml_cann_async_memcpy(ctx, dst->data, src_trans_buffer, cpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE);
ggml_cann_release_resources(ctx, src_trans_tensor);
return;
} else {
GGML_ABORT("Unsupport dst is not tontiguous.");
cann_copy(ctx, acl_src, src_trans_tensor);
ggml_cann_release_resources(ctx, acl_src, src_trans_tensor);
}
size_t src_reshape_nb[GGML_MAX_DIMS];
src_reshape_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_reshape_nb[i] = src_reshape_nb[i - 1] * dst->ne[i - 1];
}
aclTensor* trans_acl_src = ggml_cann_create_tensor(src_trans_buffer,
ggml_cann_type_mapping(src0->type),ggml_type_size(src0->type),
dst->ne, src_reshape_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
if (dst->type == src0->type) {
cann_copy(ctx, trans_acl_src, acl_dst);
} else {
aclnn_cast(ctx, trans_acl_src, acl_dst, ggml_cann_type_mapping(dst->type));
}
ggml_cann_release_resources(ctx, trans_acl_src, acl_dst);
}
ggml_cann_release_resources(ctx, acl_src, acl_dst);
return;
}
/**
@ -1330,160 +1316,196 @@ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx,
}
/**
* @brief Applies the Alibi (Attention with Linear Biases) mechanism to the
* @details This function implements the Alibi mechanism, which introduces
* learnable biases into the attention scores to simulate relative
* position encoding without the need for explicit positional
* embeddings.
* @brief Generate a range of values and apply a scalar base exponentiation.
*
* @param ctx The backend CANN context for executing operations.
* @param acl_src The source tensor representing the query or key.
* @param acl_position The position tensor containing relative positions.
* @param acl_dst The destination tensor where the result will be stored.
* @param n_head The number of attention heads.
* @param src_ne The dimensions of the source tensor.
* @param src_nb0 The byte size of the first dimension of the source
tensor.
* @param max_bias The maximum bias value used in the Alibi mechanism.
* @param dst The destination tensor object for additional metadata.
* This function creates an evenly spaced sequence from `start` to `stop` (exclusive),
* with step size `step`, stores it in a temporary buffer, and then computes:
*
* The function performs the following steps:
* 1. Calculates the logarithm floor of the number of heads to determine the
base for bias calculation.
* 2. Initializes arrays with arithmetic sequences and fills them with bias
values.
* 3. Computes the bias tensor based on the calculated biases and arithmetic
sequences.
* 4. Reshapes the bias tensor to match the dimensions of the input tensors.
* 5. Multiplies the position tensor by the bias tensor.
* 6. Adds the result of the multiplication to the source tensor to produce the
final output.
* @f[
* slope[i] = m^{\left( start + i \cdot step \right)}, \quad 0 \le i < size
* @f]
*
* The results are written to the provided @p slope_buffer.
*
* @param ctx CANN backend context for memory allocation and operator execution.
* @param slope_buffer Pointer to the output buffer (float array) for the computed slope values.
* @param m Scalar base for the exponentiation.
* @param size Number of elements in the generated sequence.
* @param start Starting exponent offset.
* @param stop Stopping exponent offset (exclusive).
* @param step Step size for the exponent increment.
*/
static void aclnn_alibi(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_position, aclTensor* acl_dst,
const int n_head, int64_t* src_ne, const size_t src_nb0,
float max_bias, ggml_tensor* dst) {
const int64_t ne2_ne3 = src_ne[2] * src_ne[3];
GGML_ASSERT(src_nb0 == sizeof(float));
GGML_ASSERT(n_head == src_ne[2]);
static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_buffer,
float m, int64_t size, float start, float stop, float step){
int64_t ne[] = {size};
size_t nb[] = {sizeof(float)};
const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head));
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * sizeof(float));
void* arange_buffer = arange_allocator.get();
float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
aclTensor* arange_tensor = ggml_cann_create_tensor(
arange_buffer, ACL_FLOAT, sizeof(float), ne, nb, 1);
aclnn_arange(ctx, arange_tensor, start, stop, step, size);
// init arange
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
ne2_ne3 * ggml_type_size(dst->type));
void* tmp_arange_buffer = arange_allocator.get();
aclTensor* slope_tensor = ggml_cann_create_tensor(
slope_buffer, ACL_FLOAT, sizeof(float), ne, nb, 1);
// arange1: [1, ..., n_heads_log2_floor+1)
float start = 1;
float stop = n_heads_log2_floor + 1;
float step = 1;
int64_t n_elements_arange = n_heads_log2_floor;
aclScalar* sc = aclCreateScalar(&m, aclDataType::ACL_FLOAT);
int64_t tmp_arange1_ne[] = {n_heads_log2_floor};
size_t tmp_arange1_nb[] = {sizeof(dst->type)};
aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_arange1_ne, tmp_arange1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange);
aclTensor* tmp_arange2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
// arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1)
start = 1;
stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1;
step = 2;
n_elements_arange = ne2_ne3 - n_heads_log2_floor;
int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_arange2_nb[] = {sizeof(dst->type)};
aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor(
(char*)tmp_arange_buffer +
n_heads_log2_floor * ggml_type_size(dst->type),
ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step,
n_elements_arange);
}
// init mk_base
ggml_cann_pool_alloc mk_base_allocator(ctx.pool(),
ne2_ne3 * ggml_type_size(dst->type));
void* tmp_mk_base_buffer = mk_base_allocator.get();
int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor};
size_t tmp_mk_base1_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base1_ne, tmp_mk_base1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor);
aclTensor* tmp_mk_base2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_mk_base2_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor(
(char*)tmp_mk_base_buffer +
n_heads_log2_floor * ggml_type_size(dst->type),
ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor);
}
// init mk
int64_t tmp_mk_base_ne[] = {ne2_ne3};
size_t tmp_mk_base_nb[] = {sizeof(dst->type)};
aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor);
// reshape mk
int64_t tmp_mk_ne[] = {1, 1, src_ne[2], src_ne[3]};
size_t tmp_mk_nb[GGML_MAX_DIMS];
tmp_mk_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1];
}
aclTensor* tmp_mk_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
// acl_position * mk
int64_t tmp_output_ne[] = {src_ne[0], src_ne[1], src_ne[2], src_ne[3]};
size_t tmp_output_nb[GGML_MAX_DIMS];
tmp_output_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_output_nb[i] = tmp_output_nb[i - 1] * tmp_output_ne[i - 1];
}
ggml_cann_pool_alloc output_allocator(ctx.pool(), ggml_nbytes(dst));
void* tmp_output_buffer = output_allocator.get();
aclTensor* tmp_output_tensor = ggml_cann_create_tensor(
tmp_output_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_output_ne, tmp_output_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
aclnn_mul(ctx, acl_position, tmp_mk_tensor, tmp_output_tensor);
// add
aclnn_add(ctx, tmp_output_tensor, acl_src, acl_dst);
ggml_cann_release_resources(ctx, tmp_arange1_tensor, tmp_arange2_tensor,
tmp_mk_base1_tensor, tmp_mk_base2_tensor, tmp_mk_base_tensor,
tmp_arange_tensor, tmp_mk_tensor, tmp_output_tensor);
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, sc, arange_tensor, slope_tensor);
ggml_cann_release_resources(ctx, sc, arange_tensor, slope_tensor);
}
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
/**
* @brief Compute slope values for multiple attention heads based on ALiBi bias parameters.
*
* This function generates slope values for each attention head according to the ALiBi
* (Attention with Linear Biases) method. It splits the computation into two ranges depending
* on whether the head index is less than @p n_head_log2 or not, and uses different base values
* (`m0` and `m1`) for the exponentiation.
*
* @f[
* slope[h] =
* \begin{cases}
* m_0^{(h + 1)}, & h < n\_head\_log2 \\
* m_1^{\left( 2 \cdot (h - n\_head\_log2) + 1 \right)}, & h \geq n\_head\_log2
* \end{cases}
* \quad , \quad \text{if } max\_bias > 0
* @f]
*
* If @p max_bias <= 0, all slope values are set to 1.0.
*
* @param ctx CANN backend context for memory allocation and operator execution.
* @param n_head Total number of attention heads.
* @param slope_buffer Pointer to the output buffer (float array) for storing slopes.
* @param max_bias Maximum bias value for slope computation.
*
*/
static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
void* slope_buffer, float max_bias) {
const int n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
float m0 = powf(2.0f, -(max_bias) / n_head_log2);
float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
// const float slope = (max_bias > 0.0f) ?
// h < n_head_log2 ?
// powf(m0, h + 1) :
// powf(m1, 2*(h - n_head_log2) + 1) :
// 1.0f;
// arange1
float start = 0 + 1;
float end = (n_head_log2 - 1) + 1;
float step = 1;
float count = n_head_log2;
// end needs to be +1 because aclnn uses a left-closed, right-open interval.
aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step);
if (n_head_log2 < n_head) {
// arange2
start = 2 * (n_head_log2 - n_head_log2) + 1;
end = 2 * ((n_head - 1) - n_head_log2) + 1;
step = 2;
count = n_head - n_head_log2;
aclnn_get_slope_inner(
ctx, (char *) slope_buffer + n_head_log2 * sizeof(float),
m1, count, start, end + 1, step);
}
}
/**
* @brief Add ALiBi (Attention with Linear Biases) positional biases to the attention mask.
*
* This function computes the ALiBi slopes for each attention head (if max_bias > 0),
* multiplies them with the attention mask to produce bias tensors, and adds these biases
* to the destination tensor (@p dst).
*
* The function performs necessary broadcasting of the mask and slope tensors to match
* the shape of the destination tensor, then applies element-wise multiplication and addition
* using CANN operators.
*
* @param ctx CANN backend context for memory management and operator execution.
* @param mask Input attention mask tensor, assumed to be contiguous.
* @param dst Destination tensor to which ALiBi biases will be added.
* @param dst_ptr Pointer to the memory of the destination tensor.
* @param max_bias Maximum bias value controlling the slope scaling.
*
* @note
* - Write data into dst_ptr using only the shape information of the dst tensor.
* - `GGML_MAX_DIMS + 2` is used to extend tensor dimensions for broadcasting.
*/
static void aclnn_add_alibi(ggml_backend_cann_context& ctx, ggml_tensor* mask,
ggml_tensor* dst, void* dst_ptr, float max_bias) {
void* slope_buffer = nullptr;
void* bias_buffer = nullptr;
if (max_bias > 0.0f) {
int64_t n_heads = dst->ne[2];
ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(float));
slope_buffer = slope_allocator.get();
ggml_cann_pool_alloc bias_allocator(
ctx.pool(), ggml_nelements(dst) * ggml_element_size(dst));
bias_buffer = bias_allocator.get();
aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias);
}
// broadcast for mask, slop and dst;
int64_t nr2 = dst->ne[2] / mask->ne[2];
int64_t nr3 = dst->ne[3] / mask->ne[3];
// broadcast the mask across rows
int64_t mask_ne[] = { mask->ne[0], dst->ne[1], mask->ne[2], 1, mask->ne[3], 1 };
size_t mask_nb[] = {
mask_nb[0] = mask->nb[0], mask_nb[1] = mask->nb[1], mask_nb[2] = mask->nb[2],
mask_nb[3] = mask->nb[2], mask_nb[4] = mask->nb[3], mask_nb[5] = mask->nb[3]
};
int64_t dst_ne[] = { dst->ne[0], dst->ne[1], mask->ne[2], nr2, mask->ne[3], nr3 };
size_t dst_nb[] = {
dst_nb[0] = dst->nb[0], dst_nb[1] = dst->nb[1], dst_nb[2] = dst->nb[2],
dst_nb[3] = dst->nb[2], dst_nb[4] = dst->nb[3], dst_nb[5] = dst->nb[3]
};
// slope is a 1 dim tensor, slope.ne2 == dst.ne2
int64_t slope_ne[] = { 1, 1, mask->ne[2], nr2, 1, 1 };
size_t slope_nb[GGML_MAX_DIMS + 2];
slope_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS + 2; i++) {
slope_nb[i] = slope_nb[i - 1] * slope_ne[i - 1];
}
aclTensor* acl_slope = ggml_cann_create_tensor(
slope_buffer, ACL_FLOAT, sizeof(float),
slope_ne, slope_nb, GGML_MAX_DIMS + 2);
aclTensor* acl_mask = ggml_cann_create_tensor(
mask, mask_ne, mask_nb, GGML_MAX_DIMS + 2);
// write data into dst_ptr using only the shape information of the dst tensor.
aclTensor* acl_dst = ggml_cann_create_tensor(
dst_ptr, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), dst_ne, dst_nb,
GGML_MAX_DIMS + 2);
if (max_bias > 0.0f) {
int64_t bias_ne[] = { mask->ne[0], dst->ne[1], mask->ne[2], nr2, mask->ne[3], 1 };
size_t bias_nb[GGML_MAX_DIMS + 2];
bias_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS + 2; i++) {
bias_nb[i] = bias_nb[i - 1] * bias_ne[i - 1];
}
aclTensor* bias_tensor = ggml_cann_create_tensor(
bias_buffer, ACL_FLOAT, sizeof(float),
bias_ne, bias_nb, GGML_MAX_DIMS + 2);
aclnn_mul(ctx, acl_slope, acl_mask, bias_tensor);
aclnn_add(ctx, acl_dst, bias_tensor);
ggml_cann_release_resources(ctx, bias_tensor);
} else {
aclnn_add(ctx, acl_dst, acl_mask);
}
ggml_cann_release_resources(ctx, acl_slope, acl_mask, acl_dst);
}
void ggml_cann_cpy(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_cann_dup(ctx, dst);
}
@ -1501,118 +1523,41 @@ void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
* @param acl_dst The destination tensor where the softmax results will be
* stored.
*/
static void aclnn_softmax(ggml_backend_cann_context& ctx, aclTensor* acl_src,
int64_t dim, aclTensor* acl_dst) {
static void aclnn_softmax(ggml_backend_cann_context & ctx,
aclTensor* acl_src, int64_t dim, aclTensor * acl_dst) {
GGML_CANN_CALL_ACLNN_OP(ctx, Softmax, acl_src, dim, acl_dst);
}
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
void ggml_cann_softmax(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1]; // mask
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float scale = 1.0f;
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float*)dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float*)dst->op_params + 1, sizeof(float));
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
// input mul scale
aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT);
ggml_cann_pool_alloc src_tensor_allocator(ctx.pool(), ggml_nbytes(src0));
void* src_tensor_buffer = src_tensor_allocator.get();
aclTensor* softmax_tensor = ggml_cann_create_tensor(
src_tensor_buffer, ggml_cann_type_mapping(src0->type),
ggml_element_size(src0), src0->ne, src0->nb,GGML_MAX_DIMS);
size_t n_bytes = ggml_nbytes(src0);
ggml_cann_pool_alloc mul_scale_allocator(ctx.pool(), n_bytes);
void* input_mul_scale_buffer = mul_scale_allocator.get();
aclTensor* acl_input_mul_scale_tensor = ggml_cann_create_tensor(
input_mul_scale_buffer, ACL_FLOAT, ggml_type_size(src0->type), src0->ne,
src0->nb, GGML_MAX_DIMS);
bool inplace = false;
aclnn_muls(ctx, acl_src0, scale, acl_input_mul_scale_tensor, inplace);
aclnn_muls(ctx, acl_src0, scale, softmax_tensor, false);
// mask
aclTensor* acl_src1_fp32_tensor = nullptr;
aclTensor* tmp_mask_tensor = nullptr;
ggml_cann_pool_alloc src1_fp32_allocator(ctx.pool());
if (src1) {
const bool use_f16 = src1->type == GGML_TYPE_F16;
if (use_f16) {
// cast to fp32
size_t n_bytes = ggml_nelements(src1) * sizeof(float_t);
size_t src1_fp32_nb[GGML_MAX_DIMS];
src1_fp32_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src1_fp32_nb[i] = src1_fp32_nb[i - 1] * src1->ne[i - 1];
}
src1_fp32_allocator.alloc(n_bytes);
void* src1_fp32_buffer = src1_fp32_allocator.get();
acl_src1_fp32_tensor = ggml_cann_create_tensor(
src1_fp32_buffer, ACL_FLOAT, sizeof(float), src1->ne,
src1_fp32_nb, GGML_MAX_DIMS);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
aclnn_cast(ctx, acl_src1, acl_src1_fp32_tensor, ACL_FLOAT);
ggml_cann_release_resources(ctx, acl_src1);
} else {
acl_src1_fp32_tensor = ggml_cann_create_tensor(src1);
}
// broadcast the mask across rows, only use ne11 of ne01 in mask
if (src1->ne[1] != src0->ne[1]) {
// mask shape: [1,1,ne11,ne10]
int64_t tmp_mask_ne[] = {src0->ne[0], src0->ne[1], 1, 1};
size_t tmp_mask_nb[GGML_MAX_DIMS];
tmp_mask_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mask_nb[i] = tmp_mask_nb[i - 1] * tmp_mask_ne[i - 1];
}
tmp_mask_tensor = ggml_cann_create_tensor(
src1->data, ACL_FLOAT, sizeof(float), tmp_mask_ne, tmp_mask_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
}
// alibi
const int n_head = src0->ne[2];
const size_t src_nb0 = src0->nb[0];
n_bytes = ggml_nbytes(dst);
ggml_cann_pool_alloc output_allocator(ctx.pool(), n_bytes);
void* output_buffer = output_allocator.get();
aclTensor* alibi_output_tensor = ggml_cann_create_tensor(
output_buffer, ACL_FLOAT, ggml_type_size(dst->type), dst->ne,
dst->nb, GGML_MAX_DIMS);
if (max_bias <= 0.0f) {
// slope = 1.0
if (tmp_mask_tensor) {
aclnn_add(ctx, tmp_mask_tensor, acl_input_mul_scale_tensor,
alibi_output_tensor);
} else {
aclnn_add(ctx, acl_src1_fp32_tensor, acl_input_mul_scale_tensor,
alibi_output_tensor);
}
} else {
// slope != 1.0
if (tmp_mask_tensor) {
aclnn_alibi(ctx, acl_input_mul_scale_tensor, tmp_mask_tensor,
alibi_output_tensor, n_head, src0->ne, src_nb0,
max_bias, dst);
} else {
aclnn_alibi(ctx, acl_input_mul_scale_tensor,
acl_src1_fp32_tensor, alibi_output_tensor, n_head,
src0->ne, src_nb0, max_bias, dst);
}
}
// softmax
aclnn_softmax(ctx, alibi_output_tensor, 3, acl_dst);
ggml_cann_release_resources(ctx, alibi_output_tensor);
} else {
aclnn_softmax(ctx, acl_input_mul_scale_tensor, 3, acl_dst);
aclnn_add_alibi(ctx, src1, src0, src_tensor_buffer, max_bias);
}
ggml_cann_release_resources(ctx, acl_src0, acl_src1_fp32_tensor, acl_dst,
acl_scale, acl_input_mul_scale_tensor, tmp_mask_tensor);
// softmax
aclnn_softmax(ctx, softmax_tensor, 3, acl_dst);
ggml_cann_release_resources(ctx, acl_src0, acl_dst, acl_scale, softmax_tensor);
}
/**
@ -2209,86 +2154,129 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
GGML_TENSOR_BINARY_OP_LOCALS
// theta_scale arange, [0,1,...,ne00/2 - 1]
int64_t theta_scale_length = ne00 / 2;
ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(),
theta_scale_length * sizeof(float_t));
void* theta_scale_buffer = theta_scale_allocator.get();
int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1};
size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
theta_scale_length * sizeof(float_t)};
aclTensor* acl_theta_scale_tensor =
ggml_cann_create_tensor(theta_scale_buffer, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
float start = 0;
float step = 1;
float stop = ne00 / 2;
float n_elements = ne00 / 2;
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
// power
aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor,
acl_theta_scale_tensor);
// freq_scale
if (freq_scale != 1) {
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
}
// freq_factors
if (src2) {
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
src2->data, ggml_cann_type_mapping(src2->type),
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
}
// position
GGML_ASSERT(src1->type == GGML_TYPE_I32);
int64_t position_length = src1->ne[0];
int64_t position_ne[] = {1, 1, position_length, 1};
size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t), sizeof(int32_t),
sizeof(int32_t) * position_length};
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
// power * position
int64_t theta_length = theta_scale_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* theta_buffer = theta_allocator.get();
int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1};
size_t theta_nb[GGML_MAX_DIMS];
theta_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
}
aclTensor* acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
acl_theta_tensor);
// sin/cos
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* sin_buffer = sin_allocator.get();
bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0);
bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0);
// used for accuracy testing
bool is_attention = is_q || is_k;
if(ctx.init_ptr == nullptr || !is_attention) {
// theta_scale arange, [0,1,...,ne00/2 - 1]
if(ctx.init_ptr != nullptr){
ACL_CHECK(aclrtFree(ctx.init_ptr));
}
ACL_CHECK(aclrtMalloc(&ctx.init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
aclTensor* acl_theta_scale_tensor =
ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
float start = 0;
float step = 1;
float stop = ne00 / 2;
float n_elements = ne00 / 2;
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
// power
aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor,
acl_theta_scale_tensor);
// freq_scale
if (freq_scale != 1) {
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
}
// freq_factors
if (src2) {
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
src2->data, ggml_cann_type_mapping(src2->type),
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
}
// release
ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale);
}
if(ctx.sin_ptr == nullptr) {
int64_t theta_length = theta_scale_length * ctx.max_prompt_length;
ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
}
if(position_length > ctx.max_prompt_length) {
ctx.max_prompt_length = position_length;
int64_t theta_length = theta_scale_length * ctx.max_prompt_length;
ACL_CHECK(aclrtFree(ctx.sin_ptr));
ACL_CHECK(aclrtFree(ctx.cos_ptr));
ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
}
bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0);
if(is_fisrt_layer || !is_attention) {
aclTensor* acl_theta_scale_tensor =
ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
// position
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
// power * position
int64_t theta_length = theta_scale_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* theta_buffer = theta_allocator.get();
aclTensor* acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
acl_theta_tensor);
// sin/cos
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
// release
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
acl_theta_tensor, acl_sin_tensor, acl_cos_tensor);
}
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
sin_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* cos_buffer = cos_allocator.get();
ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
cos_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
// attn_factor
if (attn_factor != 1) {
@ -2312,8 +2300,7 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
}
// release
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
acl_theta_tensor, acl_sin_tensor, acl_cos_tensor, acl_theta_scale);
ggml_cann_release_resources(ctx, acl_sin_tensor, acl_cos_tensor);
}
#ifdef __cplusplus
@ -3208,104 +3195,24 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
// Compute the slope if needed. Derived from ggml_cann_softmax().
if(maxBias != 0.0f){
// alibi
const int64_t ne2_ne3 = src0->ne[2] * src0->ne[3];
const int64_t n_head = src0->ne[2];
const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head));
float m0 = powf(2.0f, -(maxBias) / n_heads_log2_floor);
float m1 = powf(2.0f, -(maxBias / 2.0f) / n_heads_log2_floor);
// init arange
ggml_cann_pool_alloc arange_allocator(ctx.pool(),
ne2_ne3 * faElemSize);
void* tmp_arange_buffer = arange_allocator.get();
const int64_t n_heads = src0->ne[2];
ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(float));
void* slope_buffer = slope_allocator.get();
aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias);
// arange1: [1, ..., n_heads_log2_floor+1)
float start = 1;
float stop = n_heads_log2_floor + 1;
float step = 1;
int64_t n_elements_arange = n_heads_log2_floor;
int64_t tmp_arange1_ne[] = {n_heads_log2_floor};
size_t tmp_arange1_nb[] = {faElemSize};
aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, faDataType, faElemSize,
tmp_arange1_ne, tmp_arange1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange);
aclTensor* tmp_arange2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
// arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1)
start = 1;
stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1;
step = 2;
n_elements_arange = ne2_ne3 - n_heads_log2_floor;
int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_arange2_nb[] = {faElemSize};
aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor(
(char*)tmp_arange_buffer +
n_heads_log2_floor * faElemSize,
faDataType, faElemSize,
tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step,
n_elements_arange);
int64_t slope_ne[] = {1, 1, n_heads, 1};
size_t slope_nb[GGML_MAX_DIMS];
slope_nb[0] = sizeof(float);
for(int i = 1;i<GGML_MAX_DIMS;i++) {
slope_nb[i] = slope_nb[i-1] * slope_ne[0];
}
// init mk_base
ggml_cann_pool_alloc mk_base_allocator(ctx.pool(),
ne2_ne3 * faElemSize);
void* tmp_mk_base_buffer = mk_base_allocator.get();
int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor};
size_t tmp_mk_base1_nb[] = {faElemSize};
aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, faDataType, faElemSize,
tmp_mk_base1_ne, tmp_mk_base1_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclTensor* slope_tensor = ggml_cann_create_tensor(
slope_buffer, ACL_FLOAT, sizeof(float),
slope_ne, slope_nb, GGML_MAX_DIMS);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, bcast_pse_tensor, slope_tensor);
aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor);
aclTensor* tmp_mk_base2_tensor = nullptr;
if (n_heads_log2_floor < ne2_ne3) {
int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor};
size_t tmp_mk_base2_nb[] = {faElemSize};
aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor(
(char*)tmp_mk_base_buffer +
n_heads_log2_floor * faElemSize,
faDataType, faElemSize,
tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor);
}
// init mk
int64_t tmp_mk_base_ne[] = {ne2_ne3};
size_t tmp_mk_base_nb[] = {faElemSize};
aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, faDataType, faElemSize,
tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
tmp_arange_buffer, faDataType, faElemSize,
tmp_mk_base_ne, tmp_mk_base_nb,
GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor);
// reshape mk
int64_t tmp_mk_ne[] = {1, 1, src0->ne[2], src0->ne[3]};
size_t tmp_mk_nb[GGML_MAX_DIMS];
tmp_mk_nb[0] = faElemSize;
for (int i = 1; i < GGML_MAX_DIMS; i++) {
tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1];
}
aclTensor* tmp_mk_tensor = ggml_cann_create_tensor(
tmp_mk_base_buffer, faDataType, faElemSize,
tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS,
ACL_FORMAT_ND);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, bcast_pse_tensor, tmp_mk_tensor);
ggml_cann_release_resources(ctx, tmp_arange1_tensor, tmp_arange2_tensor,
tmp_mk_base1_tensor, tmp_mk_base2_tensor, tmp_mk_base_tensor,
tmp_arange_tensor, tmp_mk_tensor);
ggml_cann_release_resources(ctx, slope_tensor);
}
}

View File

@ -368,6 +368,10 @@ struct ggml_backend_cann_context {
std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
void* init_ptr = nullptr;
void* sin_ptr = nullptr;
void* cos_ptr = nullptr;
int64_t max_prompt_length = 65536;
#ifdef USE_ACL_GRAPH
/// Cached CANN ACL graph used for executing the current ggml computation graph.
std::unique_ptr<ggml_cann_graph> cann_graph;
@ -414,6 +418,15 @@ struct ggml_backend_cann_context {
ACL_CHECK(aclrtDestroyStream(streams[i]));
}
}
if(init_ptr != nullptr) {
ACL_CHECK(aclrtFree(init_ptr));
}
if(sin_ptr != nullptr) {
ACL_CHECK(aclrtFree(sin_ptr));
}
if(cos_ptr != nullptr) {
ACL_CHECK(aclrtFree(cos_ptr));
}
}
/**

View File

@ -2456,8 +2456,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
// value of paddingW should be at most half of kernelW
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
}
case GGML_OP_SUM:
case GGML_OP_DUP:
case GGML_OP_SUM:
case GGML_OP_IM2COL:
case GGML_OP_CONCAT:
case GGML_OP_REPEAT:
@ -2503,9 +2503,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
if (op->src[2]) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
return true;
case GGML_OP_FLASH_ATTN_EXT:{
// derived from [ggml-cuda.cu]
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
@ -2532,11 +2530,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
// DeepSeek MLA
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
if (op->src[0]->ne[3] != 1) {
return false;
}
float logitSoftcap = 0.0f;
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
if(logitSoftcap != 0.0f) {

View File

@ -460,7 +460,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
# binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15.
message(STATUS "z17 target")
list(APPEND ARCH_FLAGS -march=z17)
list(APPEND ARCH_FLAGS -march=arch15)
else()
message(STATUS "Unknown target")
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")

View File

@ -40,18 +40,22 @@
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
// repack.cpp
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
// repack.cpp
@ -69,7 +73,6 @@
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@ -80,12 +83,14 @@
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#elif defined(__loongarch64)
// quants.c
#define quantize_row_q8_K_generic quantize_row_q8_K
@ -103,12 +108,14 @@
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#elif defined(__riscv)
// quants.c
#define quantize_row_q8_K_generic quantize_row_q8_K
@ -133,11 +140,13 @@
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#elif defined(__s390x__)
// quants.c
#define quantize_row_q8_K_generic quantize_row_q8_K
@ -164,12 +173,14 @@
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#elif defined(__wasm__)
// quants.c
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
@ -195,10 +206,12 @@
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#endif

View File

@ -278,6 +278,72 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
#endif
}
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
assert(n % QK_MXFP4 == 0);
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
const block_mxfp4 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
const int nb = n / QK_MXFP4;
int ib = 0;
float sumf = 0;
#if defined(__POWER9_VECTOR__)
const vector signed char lowMask = vec_splats((signed char)0xF);
const vector unsigned char vshift4 = vec_splats((unsigned char)4);
vector float vsumf0 = vec_splats(0.0f);
vector signed char kv = vec_xl(0, (const signed char *)kvalues_mxfp4);
#pragma GCC unroll 8
for (; ib < nb; ++ib) {
__builtin_prefetch(x[ib].qs, 0, 1);
__builtin_prefetch(y[ib].qs, 0, 1);
vector float vyd = vec_splats(GGML_CPU_FP16_TO_FP32(y[ib].d) *
GGML_E8M0_TO_FP32_HALF(x[ib].e));
vector signed char q8y0 = vec_xl( 0, y[ib].qs);
vector signed char q8y1 = vec_xl(16, y[ib].qs);
vector signed char qxs = (vector signed char)vec_xl(0, x[ib].qs);
vector unsigned char lo_nibbles = (vector unsigned char)vec_and(qxs, lowMask);
vector unsigned char hi_nibbles = (vector unsigned char)vec_sr(qxs, vshift4);
vector signed char q4x0 = vec_perm(kv, kv, lo_nibbles);
vector signed char q4x1 = vec_perm(kv, kv, hi_nibbles);
vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
vector signed int vsumi0 = vec_splats((int32_t)0);
vsumi0 = vec_sum4s(qv0, vsumi0);
vsumi0 = vec_sum4s(qv1, vsumi0);
vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vyd, vsumf0);
}
vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
sumf = vec_extract(vsumf0, 0);
*s = sumf;
#else
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_mxfp4_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;

File diff suppressed because it is too large Load Diff

View File

@ -2022,6 +2022,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
ggml_compute_forward_opt_step_adamw(params, tensor);
}
break;
case GGML_OP_OPT_STEP_SGD:
{
ggml_compute_forward_opt_step_sgd(params, tensor);
}
break;
case GGML_OP_NONE:
{
// nop
@ -2325,6 +2330,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_CROSS_ENTROPY_LOSS:
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
{
n_tasks = n_threads;
} break;

View File

@ -259,7 +259,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t m_start = 0;
const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
const int64_t num_threads = KAI_MIN(n / n_step, nth);
int64_t num_threads = KAI_MIN(n / n_step, nth);
if (num_threads <= 0) {
num_threads = 1;
}
if (ith < num_threads) {
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
@ -309,7 +312,8 @@ class tensor_traits : public ggml::cpu::tensor_traits {
GGML_ASSERT(kernel);
const int ith = params->ith;
const int nth = params->nth;
const int nth_raw = params->nth;
const int nth = nth_raw > 0 ? nth_raw : 1;
const size_t k = ne00;
const size_t m = ne11;
@ -327,9 +331,12 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
const size_t n_start = ith * num_n_per_thread;
size_t n_to_process = num_n_per_thread;
if ((n_start + n_to_process) > n) {
n_to_process = n - n_start;
size_t n_to_process = 0;
if (n_start < n) {
n_to_process = num_n_per_thread;
if ((n_start + n_to_process) > n) {
n_to_process = n - n_start;
}
}
// Calculate number of columns to be processed per thread
@ -361,8 +368,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
sizeof(float), -FLT_MAX, FLT_MAX);
if (n_to_process > 0) {
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
sizeof(float), -FLT_MAX, FLT_MAX);
}
return true;
}

View File

@ -10330,6 +10330,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
const int ir1 = MIN(ir0 + dr, nr);
const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
const float alpha = adamw_params_ptr[0];
const float beta1 = adamw_params_ptr[1];
const float beta2 = adamw_params_ptr[2];
@ -10337,7 +10338,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
const float wd = adamw_params_ptr[4];
const float beta1h = adamw_params_ptr[5];
const float beta2h = adamw_params_ptr[6];
const float keep = 1.f - alpha * wd;
for (int ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
@ -10360,7 +10361,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
// The weight decay is applied independently of the Adam momenta m and v.
// This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
// See: https://arxiv.org/pdf/1711.05101v3.pdf
w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
w[i00] = w[i00] * keep - alpha * mh / vh;
}
}
}
@ -10382,3 +10383,63 @@ void ggml_compute_forward_opt_step_adamw(
}
}
}
static void ggml_compute_forward_opt_step_sgd_f32(const ggml_compute_params * params, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src0_grad = dst->src[1];
const ggml_tensor * sgd_params = dst->src[2];
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
GGML_ASSERT(ggml_nelements(sgd_params) == 2);
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
// using adamw param subset we care about - alpha, wd - could have a separate struct
const float * sgd_params_ptr = ggml_get_data_f32(sgd_params);
const float alpha = sgd_params_ptr[0];
const float keep = 1.f - alpha * sgd_params_ptr[1];
for (int ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir / (ne02 * ne01);
const int64_t i02 = (ir - i03 * ne02 * ne01) / ne01;
const int64_t i01 = (ir - i03 * ne02 * ne01 - i02 * ne01);
const size_t offset = i03 * nb03 + i02 * nb02 + i01 * nb01;
float * w = (float *) ((char *) src0->data + offset); // weight
const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
for (int i00 = 0; i00 < ne00; ++i00) {
w[i00] = w[i00] * keep - alpha * g[i00];
}
}
}
void ggml_compute_forward_opt_step_sgd(const ggml_compute_params * params, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_opt_step_sgd_f32(params, dst);
}
break;
default:
{
GGML_ABORT("fatal error - sgd is F32 only");
}
}
}

View File

@ -107,7 +107,7 @@ void ggml_compute_forward_cross_entropy_loss(const struct ggml_compute_params *
void ggml_compute_forward_cross_entropy_loss_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_opt_step_adamw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_opt_step_sgd(const struct ggml_compute_params * params, struct ggml_tensor * dst);
#ifdef __cplusplus
}
#endif

View File

@ -206,8 +206,9 @@ void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
const int ncols_interleaved = 4;
const int blocklen = 4;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
assert(nr == 1);
assert(n % qk == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
@ -307,30 +308,28 @@ void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
UNUSED(ncols_interleaved);
UNUSED(blocklen);
{
float sumf[8];
int sumi;
float sumf[8];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
@ -494,43 +493,73 @@ void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
const int ncols_interleaved = 4;
const int blocklen = 4;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
assert(nr == 1);
assert(n % qk == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
{
float sumf[4];
int sumi;
float sumf[4];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert(nr == 1);
assert(n % qk == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(bs);
UNUSED(nr);
float sumf[8];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
@ -934,6 +963,50 @@ void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
}
}
void ggml_gemm_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
float sumf[4][8];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}
} // extern "C"
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
@ -1285,15 +1358,16 @@ static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_s
static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
//GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
GGML_ASSERT(interleave_block == 4);
block_iq4_nlx4 * dst = (block_iq4_nlx4 *)t->data;
const block_iq4_nl * src = (const block_iq4_nl *)data;
const block_iq4_nl * src = (const block_iq4_nl *)data;
block_iq4_nlx4 * dst = ( block_iq4_nlx4 *)t->data;
block_iq4_nl dst_tmp[4];
int nrow = ggml_nrows(t);
int nrows_interleaved = 4;
int nblocks = t->ne[0] / QK4_0;
int nblocks = t->ne[0] / QK4_NL;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
@ -1315,6 +1389,63 @@ static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_b
GGML_UNUSED(data_size);
}
static block_iq4_nlx8 make_block_iq4_nlx8(block_iq4_nl * in, unsigned int blck_size_interleave) {
block_iq4_nlx8 out;
for (int i = 0; i < 8; i++) {
out.d[i] = in[i].d;
}
const int end = QK4_NL * 4 / blck_size_interleave;
if (blck_size_interleave == 8) {
for (int i = 0; i < end; ++i) {
int src_id = i % 8;
int src_offset = (i / 8) * blck_size_interleave;
int dst_offset = i * blck_size_interleave;
memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t));
}
} else {
GGML_ASSERT(false);
}
return out;
}
static int repack_iq4_nl_to_iq4_nl_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
GGML_ASSERT(interleave_block == 8);
const block_iq4_nl * src = (const block_iq4_nl *)data;
block_iq4_nlx8 * dst = ( block_iq4_nlx8 *)t->data;
block_iq4_nl dst_tmp[8];
int nrow = ggml_nrows(t);
int nrows_interleaved = 8;
int nblocks = t->ne[0] / QK4_NL;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
if (t->ne[1] % nrows_interleaved != 0) {
return -1;
}
for (int b = 0; b < nrow; b += nrows_interleaved) {
for (int64_t x = 0; x < nblocks; x++) {
for (int i = 0; i < nrows_interleaved; i++) {
dst_tmp[i] = src[x + i * nblocks];
}
*dst++ = make_block_iq4_nlx8(dst_tmp, interleave_block);
}
src += nrows_interleaved * nblocks;
}
return 0;
GGML_UNUSED(data_size);
}
namespace ggml::cpu::repack {
// repack
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS>
@ -1350,6 +1481,10 @@ template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void *
// return repack_iq4_nl_to_iq4_nl_4_bl(t, 8, data, data_size);
//}
template <> int repack<block_iq4_nl, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_iq4_nl_to_iq4_nl_8_bl(t, 8, data, data_size);
}
// gemv
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
void gemv(int, float *, size_t, const void *, const void *, int, int);
@ -1378,6 +1513,10 @@ template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size
ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
// gemm
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
void gemm(int, float *, size_t, const void *, const void *, int, int);
@ -1406,6 +1545,10 @@ template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size
ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
class tensor_traits_base : public ggml::cpu::tensor_traits {
public:
virtual int repack(struct ggml_tensor * t, const void * data, size_t data_size) = 0;
@ -1680,6 +1823,7 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
// instance for IQ4
static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0> iq4_nl_8x8_q8_0;
if (cur->type == GGML_TYPE_Q4_0) {
if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
@ -1710,6 +1854,11 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
}
}
} else if (cur->type == GGML_TYPE_IQ4_NL) {
if (ggml_cpu_has_avx2()) {
if (cur->ne[1] % 8 == 0) {
return &iq4_nl_8x8_q8_0;
}
}
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
if (cur->ne[1] % 4 == 0) {
return &iq4_nl_4x4_q8_0;

View File

@ -67,6 +67,13 @@ struct block_iq4_nlx4 {
static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wrong iq4_nlx4 block size/padding");
struct block_iq4_nlx8 {
ggml_half d[8]; // deltas for 8 iq4_nl blocks
uint8_t qs[QK4_NL * 4]; // nibbles / quants for 8 iq4_nl blocks
};
static_assert(sizeof(block_iq4_nlx8) == 8 * sizeof(ggml_half) + QK4_NL * 4, "wrong iq4_nlx8 block size/padding");
#if defined(__cplusplus)
extern "C" {
#endif
@ -80,12 +87,14 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
// Native implementations
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
@ -97,12 +106,14 @@ void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
#if defined(__cplusplus)
} // extern "C"

View File

@ -120,6 +120,10 @@ if (CUDAToolkit_FOUND)
set(CUDA_FLAGS -use_fast_math -extended-lambda)
if (GGML_CUDA_DEBUG)
list(APPEND CUDA_FLAGS -lineinfo)
endif()
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
# Options are:
# - none (not recommended)

View File

@ -78,6 +78,8 @@
#define GGML_CUDA_CC_IS_CDNA3(cc) (cc >= GGML_CUDA_CC_CDNA3 && cc < GGML_CUDA_CC_RDNA1)
// Moore Threads
#define MUSART_HMASK 40300 // MUSA rc4.3, min. ver. for half2 -> uint mask comparisons
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
#define GGML_CUDA_CC_NG (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD
@ -87,6 +89,10 @@
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
# define GGML_CUDA_USE_CUB
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
#ifdef __CUDA_ARCH_LIST__
constexpr bool ggml_cuda_has_arch_impl(int) {
return false;
@ -312,11 +318,11 @@ static bool turing_mma_available(const int cc) {
}
static bool ampere_mma_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
}
static bool cp_async_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
}
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
@ -420,26 +426,6 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
#endif // FP16_AVAILABLE
}
// Row reduction kernel template - compute sum (norm=false) or mean (norm=true)
template<bool norm>
static __global__ void reduce_rows_f32(const float * x, float * dst, const int ncols) {
const int row = blockIdx.x;
const int col = threadIdx.x;
float sum = 0.0f;
for (int i = col; i < ncols; i += blockDim.x) {
sum += x[row * ncols + i];
}
sum = warp_reduce_sum(sum);
if (col != 0) {
return;
}
dst[row] = norm ? sum / ncols : sum;
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_all(int x) {
#ifdef GGML_USE_HIP
@ -480,25 +466,21 @@ static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b
}
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
#if defined(GGML_USE_HIP) && HIP_VERSION >= 50700000
#if defined(GGML_USE_HIP)
return half2(__hmax(a.x, b.x), __hmax(a.y, b.y));
#elif !defined(GGML_USE_HIP) && CUDART_VERSION >= CUDART_HMAX
#elif CUDART_VERSION >= CUDART_HMAX
return __hmax2(a, b);
#elif !defined(GGML_USE_HIP)
#else
half2 ret;
reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
return ret;
#else
GGML_UNUSED(a);
GGML_UNUSED(b);
NO_DEVICE_CODE;
#endif
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || defined(GGML_USE_HIP)
#pragma unroll
for (int offset = width/2; offset > 0; offset >>= 1) {
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, width));
@ -507,16 +489,17 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#else
GGML_UNUSED(x);
NO_DEVICE_CODE;
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || defined(GGML_USE_HIP)
}
#if CUDART_VERSION < CUDART_HMASK
#if (defined(CUDART_VERSION) && CUDART_VERSION < CUDART_HMASK) || defined(GGML_USE_HIP) || \
(defined(MUSART_VERSION) && MUSART_VERSION < MUSART_HMASK)
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
return mask_low | mask_high;
}
#endif // CUDART_VERSION < CUDART_HMASK
#endif // (defined(CUDART_VERSION) && CUDART_VERSION < CUDART_HMASK) || defined(GGML_USE_HIP) || (defined(MUSART_VERSION) && MUSART_VERSION < MUSART_HMASK)
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
#if defined(GGML_USE_HIP)

View File

@ -31,8 +31,8 @@ static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __
dequantize_kernel(vx, ib, iqs, v);
const int64_t iy0 = ((i03*ne02 + i02)*ne01 + i01)*ne00 + iybs + iqs;
y[iy0 + 0] = float(v.x);
y[iy0 + y_offset] = float(v.y);
y[iy0 + 0] = ggml_cuda_cast<dst_t>(v.x);
y[iy0 + y_offset] = ggml_cuda_cast<dst_t>(v.y);
}
template <bool need_check>
@ -630,7 +630,7 @@ static __global__ void convert_unary(
const int64_t ix = i03*s03 + i02*s02 + i01*s01 + i00;
const int64_t iy = ((i03*ne02 + i02)*ne01 + i01)*ne00 + i00;
y[iy] = float(x[ix]);
y[iy] = ggml_cuda_cast<dst_t>(x[ix]);
}
template <typename src_t, typename dst_t>

View File

@ -29,3 +29,16 @@ typedef to_t_nc_cuda_t<nv_bfloat16> to_bf16_nc_cuda_t;
to_fp32_nc_cuda_t ggml_get_to_fp32_nc_cuda(ggml_type type);
to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type);
to_bf16_nc_cuda_t ggml_get_to_bf16_nc_cuda(ggml_type type);
template<typename dst_t, typename src_t>
__host__ __device__ inline dst_t ggml_cuda_cast(src_t x) {
if constexpr (std::is_same_v<dst_t, src_t>) {
return x;
} else if constexpr(std::is_same_v<dst_t, nv_bfloat16>) {
return __float2bfloat16(float(x));
} else if constexpr(std::is_same_v<src_t, nv_bfloat16>) {
return __bfloat162float(x);
} else {
return float(x);
}
}

View File

@ -1,15 +1,7 @@
#pragma once
#include "ggml-common.h"
template<typename src_t, typename dst_t>
static __device__ __forceinline__ void convert_flt(const src_t * src, dst_t * dst) {
if constexpr (std::is_same_v<src_t, dst_t>) {
*dst = *src;
} else {
*dst = float(*src);
}
}
#include "convert.cuh"
static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
@ -221,5 +213,5 @@ static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
template<typename src_t, typename dst_t>
static __device__ void cpy_1_flt(const char * cxi, char * cdsti) {
convert_flt((const src_t *)cxi, (dst_t *)cdsti);
*(dst_t *) cdsti = ggml_cuda_cast<dst_t>(*(const src_t *) cxi);
}

View File

@ -539,11 +539,15 @@ static __global__ void flash_attn_mask_to_KV_max(
all_inf = warp_reduce_all(all_inf);
if (!all_inf) {
KV_max_sj += FATTN_KQ_STRIDE;
break;
}
}
// If the break in the loop was not triggered, KV_max_sj is now -FATTN_KQ_STRIDE.
// If the break was triggered it's the lower edge of the tile with the first non-masked values.
// In either case, walk back the decrementation by FATTN_KQ_STRIDE.
KV_max_sj += FATTN_KQ_STRIDE;
if (threadIdx.x != 0) {
return;
}

View File

@ -15,7 +15,6 @@ namespace wmma = mtmusa::wmma;
namespace wmma = nvcuda::wmma;
#endif // GGML_USE_MUSA
#elif defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)
#undef HIP_ENABLE_WARP_SYNC_BUILTINS // conflicts with rocWMMA headers
#include <rocwmma/rocwmma.hpp>
namespace wmma = rocwmma;
#endif // !defined(GGML_USE_HIP)

View File

@ -1,5 +1,6 @@
#include "getrows.cuh"
#include "dequantize.cuh"
#include "convert.cuh"
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void k_get_rows(
@ -34,8 +35,8 @@ static __global__ void k_get_rows(
dfloat2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = float(v.x);
dst_row[iybs + iqs + y_offset] = float(v.y);
dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
}
template<typename src0_t, typename dst_t>
@ -62,7 +63,7 @@ static __global__ void k_get_rows_float(
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = float(src0_row[i00]);
dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
}
template<typename grad_t, typename dst_t>

View File

@ -28,6 +28,7 @@
#include "ggml-cuda/mmvq.cuh"
#include "ggml-cuda/norm.cuh"
#include "ggml-cuda/opt-step-adamw.cuh"
#include "ggml-cuda/opt-step-sgd.cuh"
#include "ggml-cuda/out-prod.cuh"
#include "ggml-cuda/pad.cuh"
#include "ggml-cuda/pool2d.cuh"
@ -180,30 +181,6 @@ static int ggml_cuda_parse_id(char devName[]) {
#endif // defined(GGML_USE_HIP)
static ggml_cuda_device_info ggml_cuda_init() {
#if defined(GGML_USE_HIP)
// Workaround for a rocBLAS bug when using multiple graphics cards:
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
{
int major_version = 0;
size_t version_length = 0;
if (rocblas_get_version_string_size(&version_length) == rocblas_status_success) {
std::vector<char> version(version_length+1, '\0');
if (rocblas_get_version_string(version.data(), version.size()) == rocblas_status_success) {
version.resize(::strlen(version.data()));
int parsed_value = 0;
if (std::from_chars(version.data(), version.data() + version.size(), parsed_value).ec == std::errc()) {
major_version = parsed_value;
}
}
}
if (major_version < 4) {
GGML_LOG_DEBUG(GGML_CUDA_NAME " calling rocblas_initialize as a workaround for a rocBLAS bug\n");
rocblas_initialize();
CUDA_CHECK(cudaDeviceSynchronize());
}
}
#endif
ggml_cuda_device_info info = {};
cudaError_t err = cudaGetDeviceCount(&info.device_count);
@ -2503,6 +2480,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_OPT_STEP_ADAMW:
ggml_cuda_opt_step_adamw(ctx, dst);
break;
case GGML_OP_OPT_STEP_SGD:
ggml_cuda_opt_step_sgd(ctx, dst);
break;
default:
return false;
}
@ -3560,6 +3540,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CROSS_ENTROPY_LOSS:
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
return true;
default:
return false;

View File

@ -1,4 +1,14 @@
#include "mean.cuh"
#include "reduce_rows.cuh"
#ifdef GGML_CUDA_USE_CUB
#include <cub/cub.cuh>
using namespace cub;
#endif // GGML_CUDA_USE_CUB
template <typename T> __global__ void divide_by_count(T * result, size_t count) {
*result /= static_cast<T>(count);
}
void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
@ -13,7 +23,51 @@ void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const dim3 block_dims(WARP_SIZE, 1, 1);
// Special case for reducing vectors
#ifdef GGML_CUDA_USE_CUB
#ifdef USE_CUDA_GRAPH
cudaStreamCaptureStatus iscapturing;
CUDA_CHECK(cudaStreamIsCapturing(stream, &iscapturing));
#endif // USE_CUDA_GRAPH
if ((nrows == 1) &&
#ifdef USE_CUDA_GRAPH
// CUDA_GRAPHS_DISABLED
((ncols > 65536) &&
((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
ctx.cuda_graph->disable_due_to_failed_graph_capture)) ||
// CUDA_GRAPHS ENABLED
((ncols > 32768) &&
!((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
ctx.cuda_graph->disable_due_to_failed_graph_capture))) {
#else
(ncols > 65536)) {
#endif // USE_CUDA_GRAPH
// Single row - use device-wide reduction
size_t tmp_size = 0;
ggml_cuda_pool & pool = ctx.pool();
DeviceReduce::Sum(nullptr, tmp_size, src0_d, dst_d, ncols, stream);
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
DeviceReduce::Sum(tmp_alloc.ptr, tmp_size, src0_d, dst_d, ncols, stream);
// Divide by ncols
divide_by_count<float><<<1, 1, 0, stream>>>(dst_d, ncols);
return;
}
#endif // GGML_CUDA_USE_CUB
const dim3 block_nums(nrows, 1, 1);
reduce_rows_f32</*norm*/ true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
const int id = ggml_cuda_get_device();
const int nsm = ggml_cuda_info().devices[id].nsm;
if ((nrows / nsm) < 2) {
const dim3 block_dims(512, 1, 1);
reduce_rows_f32</*norm=*/true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
} else {
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
reduce_rows_f32</*norm=*/true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
}
}

View File

@ -1,5 +1,6 @@
#include "ggml.h"
#include "common.cuh"
#include "convert.cuh"
#include "mmvf.cuh"
template <typename T, typename type_acc, int ncols_dst, int block_size>
@ -93,8 +94,8 @@ static __global__ void mul_mat_vec_f(
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
sumf[j] += float(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[0]) * tmpy.x;
sumf[j] += float(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]) * tmpy.y;
sumf[j] += ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[0]) * tmpy.x;
sumf[j] += ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]) * tmpy.y;
}
}
} else {

View File

@ -0,0 +1,49 @@
#include "ggml-impl.h"
#include "opt-step-sgd.cuh"
#include <cstdint>
static __global__ void opt_step_sgd_f32(
float * __restrict__ x, const float * __restrict__ g,
const float * __restrict__ pars, const int64_t k) {
const int64_t i = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
if (i >= k) {
return;
}
x[i] = x[i] * (1.0f - pars[0] * pars[1]) - pars[0] * g[i];
}
static void opt_step_sgd_f32_cuda(
float * x, const float * g, const float * __restrict__ pars, const int64_t k, cudaStream_t stream) {
const dim3 block_dims(CUDA_OPT_STEP_SGD_BLOCK_SIZE, 1, 1);
const dim3 block_nums((k + CUDA_OPT_STEP_SGD_BLOCK_SIZE - 1) / CUDA_OPT_STEP_SGD_BLOCK_SIZE, 1, 1);
opt_step_sgd_f32<<<block_nums, block_dims, 0, stream>>>(x, g, pars, k);
}
void ggml_cuda_opt_step_sgd(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src0_grad = dst->src[1];
const ggml_tensor * params = dst->src[2];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src0_grad->type == GGML_TYPE_F32);
GGML_ASSERT(params->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src0_grad));
GGML_ASSERT(ggml_is_contiguous(params));
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
GGML_ASSERT(ggml_nelements(params) == 2);
float * src0_d = (float *) src0->data;
const float * src0_grad_d = (const float *) src0_grad->data;
const float * params_d = (const float *) params->data;
cudaStream_t stream = ctx.stream();
const int64_t ne = ggml_nelements(src0);
opt_step_sgd_f32_cuda(src0_d, src0_grad_d, params_d, ne, stream);
}

View File

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_OPT_STEP_SGD_BLOCK_SIZE 256
void ggml_cuda_opt_step_sgd(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -0,0 +1,53 @@
#include "common.cuh"
// Row reduction kernel template - compute sum (norm=false) or mean (norm=true)
template <bool norm>
static __global__ void reduce_rows_f32(const float * __restrict__ x, float * __restrict__ dst, const int ncols) {
const int row = blockIdx.x;
const int col = threadIdx.x;
float sum = 0.0f;
const int num_unroll = 8;
float temp[num_unroll];
float sum_temp[num_unroll] = { 0.0f };
for (int i = col; i < ncols;) {
for (int j = 0; j < num_unroll; ++j) {
if (i < ncols) {
temp[j] = x[row * ncols + i];
} else {
temp[j] = 0;
}
i += blockDim.x;
}
for (int j = 0; j < num_unroll; ++j) {
sum_temp[j] += temp[j];
}
}
for (int j = 0; j < num_unroll; ++j) {
sum += sum_temp[j];
}
// sum up partial sums
sum = warp_reduce_sum(sum);
if (blockDim.x > WARP_SIZE) {
assert((blockDim.x <= 1024) && (blockDim.x % WARP_SIZE) == 0);
__shared__ float s_sum[32];
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = sum;
}
__syncthreads();
sum = 0.0f;
if (lane_id < (blockDim.x / WARP_SIZE)) {
sum = s_sum[lane_id];
}
sum = warp_reduce_sum(sum);
}
if (col != 0) {
return;
}
dst[row] = norm ? sum / ncols : sum;
}

View File

@ -3,11 +3,6 @@
typedef void (*set_rows_kernel_t)(const char * src, char * dst);
template<typename src_t, typename dst_t>
__device__ __forceinline__ void set_rows_1(const src_t * src_f, dst_t * dst_f) {
convert_flt(src_f, dst_f);
}
// Generic quantized set_rows kernel template
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
static __global__ void k_set_rows_quant(
@ -117,9 +112,7 @@ static __global__ void k_set_rows(
const src_t * src0_row = src0 + i01*s01 + i02*s02 + i03*s03;
dst_t * dst_row_ptr = dst + dst_row*s1 + i02*s2 + i03*s3;
const src_t* src_elem = src0_row + i00;
dst_t* dst_elem = dst_row_ptr + i00;
set_rows_1(src_elem, dst_elem);
dst_row_ptr[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
GGML_UNUSED(ne10);
GGML_UNUSED(ne13);

View File

@ -1,19 +1,15 @@
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
#define USE_CUB
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
#include "sum.cuh"
#include "sumrows.cuh"
#ifdef USE_CUB
#ifdef GGML_CUDA_USE_CUB
#include <cub/cub.cuh>
using namespace cub;
#endif // USE_CUB
#include "sumrows.cuh"
#include "sum.cuh"
#endif // GGML_CUDA_USE_CUB
#include <cstdint>
void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int64_t ne, cudaStream_t stream) {
#ifdef USE_CUB
#ifdef GGML_CUDA_USE_CUB
size_t tmp_size = 0;
DeviceReduce::Sum(nullptr, tmp_size, x, dst, ne, stream);
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
@ -23,7 +19,7 @@ void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int
// For AMD there is rocPRIM which could be used as a drop-in replacement via hipcub but this would require C++11 -> C++14.
sum_rows_f32_cuda(x, dst, ne, 1, stream);
GGML_UNUSED(pool);
#endif // USE_CUB
#endif // GGML_CUDA_USE_CUB
}
void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@ -1,9 +1,17 @@
#include "reduce_rows.cuh"
#include "sumrows.cuh"
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
const dim3 block_dims(WARP_SIZE, 1, 1);
const int id = ggml_cuda_get_device();
const int nsm = ggml_cuda_info().devices[id].nsm;
const dim3 block_nums(nrows, 1, 1);
reduce_rows_f32</*norm*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
if ((nrows / nsm) < 2) {
const dim3 block_dims(512, 1, 1);
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
} else {
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
}
}
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@ -19,8 +27,17 @@ void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const dim3 block_dims(WARP_SIZE, 1, 1);
const dim3 block_nums(nrows, 1, 1);
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
const int id = ggml_cuda_get_device();
const int nsm = ggml_cuda_info().devices[id].nsm;
if ((nrows / nsm) < 2) {
// Increase num threads to 512 for small nrows to better hide the latency
const dim3 block_dims(512, 1, 1);
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
} else {
// Enough active SMs to hide latency, use smaller blocks to allow better scheduling
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
}
}

View File

@ -1,12 +1,10 @@
#pragma once
#define HIP_ENABLE_WARP_SYNC_BUILTINS 1
#define HIP_DISABLE_WARP_SYNC_BUILTINS 1
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#include <hip/hip_bfloat16.h>
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#include <hip/hip_bf16.h>
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
@ -137,7 +135,7 @@
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
#if HIP_VERSION >= 70000000
#if HIP_VERSION >= 60500000
#define CUBLAS_COMPUTE_16F HIPBLAS_COMPUTE_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_COMPUTE_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_COMPUTE_32F_FAST_16F
@ -149,7 +147,7 @@
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define cublasComputeType_t hipblasDatatype_t
#define cudaDataType_t hipblasDatatype_t
#endif // HIP_VERSION >= 7000000
#endif // HIP_VERSION >= 6050000
#if !defined(__HIP_PLATFORM_AMD__)
#error "The HIP backend supports only AMD targets"
@ -181,8 +179,7 @@
#define RDNA4
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#if defined(__GFX11__)
#define RDNA3
#endif
@ -199,8 +196,8 @@
#define __has_builtin(x) 0
#endif
typedef hip_bfloat16 nv_bfloat16;
typedef short2 nv_bfloat162; // FIXME there is no 2x BF16 type being defined in bfloat16.h, ad-hoc compilation fix
typedef __hip_bfloat16 nv_bfloat16;
typedef __hip_bfloat162 nv_bfloat162;
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
@ -251,17 +248,3 @@ static __device__ __forceinline__ unsigned int __vcmpne4(unsigned int a, unsigne
}
return c;
}
#if HIP_VERSION < 50600000
// __shfl_xor() for half2 was added in ROCm 5.6
static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
typedef union half2_b32 {
half2 val;
int b32;
} half2_b32_t;
half2_b32_t tmp;
tmp.val = var;
tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
return tmp.val;
}
#endif // HIP_VERSION < 50600000

View File

@ -46,8 +46,8 @@ if (GGML_HIP_ROCWMMA_FATTN)
endif()
endif()
if (${hip_VERSION} VERSION_LESS 5.5)
message(FATAL_ERROR "At least ROCM/HIP V5.5 is required")
if (${hip_VERSION} VERSION_LESS 6.1)
message(FATAL_ERROR "At least ROCM/HIP V6.1 is required")
endif()
message(STATUS "HIP and hipBLAS found")

View File

@ -82,7 +82,9 @@ set(GGML_OPENCL_KERNELS
mul_mv_q4_0_f32_1d_8x_flat
mul_mv_q4_0_f32_1d_16x_flat
mul_mv_q6_k
mul_mv_mxfp4_f32
mul_mv_id_q4_0_f32_8x_flat
mul_mv_id_mxfp4_f32
mul_mm_f32_f32_l4_lm
mul_mm_f16_f32_l4_lm
mul
@ -110,6 +112,9 @@ set(GGML_OPENCL_KERNELS
mul_mat_f16_f32
conv2d
conv2d_f16_f32
flash_attn_f32_f16
flash_attn_f16
flash_attn_f32
)
foreach (K ${GGML_OPENCL_KERNELS})

View File

@ -25,6 +25,7 @@
#include <vector>
#include <string>
#include <cmath>
#include <map>
#include <memory>
#include <charconv>
#include <mutex>
@ -332,6 +333,7 @@ struct ggml_backend_opencl_context {
cl_int alignment;
size_t max_alloc_size;
size_t max_workgroup_size;
bool fp16_support;
bool has_vector_subgroup_broadcast;
bool disable_fusion;
@ -365,6 +367,7 @@ struct ggml_backend_opencl_context {
cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
cl_program program_mul_mv_q6_K;
cl_program program_mul_mv_mxfp4_f32;
cl_program program_mul_mv_f16_f16;
cl_program program_mul_mv_f16_f32_1row;
cl_program program_mul_mv_f16_f32_l4;
@ -398,6 +401,7 @@ struct ggml_backend_opencl_context {
cl_program program_conv_2d_f16_f32;
cl_program program_tsembd;
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
cl_program program_mul_mv_id_mxfp4_f32;
cl_program program_mul_mm_f32_f32_l4_lm;
cl_program program_mul_mm_f16_f32_l4_lm;
@ -422,6 +426,14 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
cl_kernel kernel_soft_max, kernel_soft_max_4;
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16;
std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16_q1;
std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32;
std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_q1;
std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16;
std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16_q1;
std::map<std::pair<int, int>, int> kernels_flash_attn_bm;
std::map<std::pair<int, int>, int> kernels_flash_attn_bn;
cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
cl_kernel kernel_set_rows_f32, kernel_set_rows_f16;
cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
@ -439,6 +451,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_convert_block_q4_0_noshuffle;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
cl_kernel kernel_mul_mv_mxfp4_f32;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32;
@ -455,6 +468,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_conv_2d_f16_f32;
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
cl_kernel kernel_mul_mv_id_mxfp4_f32;
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
@ -577,6 +591,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_transpose_32;
cl_kernel kernel_transpose_32_16;
cl_kernel kernel_transpose_16;
cl_kernel kernel_transpose_16_4x1;
cl_mem A_s_d_max; // max scale buffer size for transpose
cl_mem A_q_d_max; // max weight buffer size for transpose
@ -971,6 +986,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mv_mxfp4_f32
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_mxfp4_f32.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
#endif
backend_ctx->program_mul_mv_mxfp4_f32 =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
GGML_LOG_CONT(".");
}
// mul_mv_f16_f16
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -1287,6 +1318,73 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// flash_attn
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_f16 {
#include "flash_attn_f16.cl.h"
};
const std::string kernel_src_f32 {
#include "flash_attn_f32.cl.h"
};
const std::string kernel_src_f32_f16 {
#include "flash_attn_f32_f16.cl.h"
};
#else
const std::string kernel_src_f16 = read_file("flash_attn_f16.cl");
const std::string kernel_src_f32 = read_file("flash_attn_f32.cl");
const std::string kernel_src_f32_f16 = read_file("flash_attn_f32_f16.cl");
#endif
if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
{ 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
{112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
{192, 192, 16, 16}, {256, 256, 16, 16},
};
for (size_t i = 0; i < sizeof(fa_dims)/sizeof(fa_dims[0]); ++i) {
const int dk = fa_dims[i].dk;
const int dv = fa_dims[i].dv;
const int bm = fa_dims[i].bm;
const int bn = fa_dims[i].bn;
std::string OPTS = compile_opts +
" -D DK=" + std::to_string(dk) +
" -D DV=" + std::to_string(dv) +
" -D BLOCK_M=" + std::to_string(bm) +
" -D BLOCK_N=" + std::to_string(bn);
cl_program prog_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16.c_str(), OPTS);
cl_kernel k_f16, k_f16_q1;
CL_CHECK((k_f16 = clCreateKernel(prog_f16, "flash_attn_f16", &err), err));
CL_CHECK((k_f16_q1 = clCreateKernel(prog_f16, "flash_attn_f16_q1", &err), err));
backend_ctx->kernels_flash_attn_f16[{dk, dv}] = k_f16;
backend_ctx->kernels_flash_attn_f16_q1[{dk, dv}] = k_f16_q1;
CL_CHECK(clReleaseProgram(prog_f16));
cl_program prog_f32 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32.c_str(), OPTS);
cl_kernel k_f32, k_f32_q1;
CL_CHECK((k_f32 = clCreateKernel(prog_f32, "flash_attn_f32", &err), err));
CL_CHECK((k_f32_q1 = clCreateKernel(prog_f32, "flash_attn_f32_q1", &err), err));
backend_ctx->kernels_flash_attn_f32[{dk, dv}] = k_f32;
backend_ctx->kernels_flash_attn_f32_q1[{dk, dv}] = k_f32_q1;
CL_CHECK(clReleaseProgram(prog_f32));
cl_program prog_f32_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32_f16.c_str(), OPTS);
cl_kernel k_f32_f16, k_f32_f16_q1;
CL_CHECK((k_f32_f16 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16", &err), err));
CL_CHECK((k_f32_f16_q1 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16_q1", &err), err));
backend_ctx->kernels_flash_attn_f32_f16[{dk, dv}] = k_f32_f16;
backend_ctx->kernels_flash_attn_f32_f16_q1[{dk, dv}] = k_f32_f16_q1;
CL_CHECK(clReleaseProgram(prog_f32_f16));
backend_ctx->kernels_flash_attn_bm[{dk, dv}] = bm;
backend_ctx->kernels_flash_attn_bn[{dk, dv}] = bn;
}
GGML_LOG_CONT(".");
}
}
// argsort
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -1611,6 +1709,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mv_id_mxfp4_f32
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_id_mxfp4_f32.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
#endif
backend_ctx->program_mul_mv_id_mxfp4_f32 =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
GGML_LOG_CONT(".");
}
// Adreno kernels
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// transpose
@ -1628,6 +1742,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
GGML_LOG_CONT(".");
}
@ -2104,6 +2219,9 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &backend_ctx->max_workgroup_size, NULL);
GGML_LOG_INFO("ggml_opencl: device max workgroup size: %lu\n", backend_ctx->max_workgroup_size);
// Check SVM.
cl_device_svm_capabilities svm_caps;
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
@ -2419,7 +2537,8 @@ static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggm
}
static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
GGML_UNUSED(dev);
ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
ggml_backend_opencl_context * backend_ctx = dev_ctx->backend_ctx;
switch (op->op) {
case GGML_OP_NONE:
@ -2481,6 +2600,13 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_OP_SCALE:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_ADD:
if (op->type == GGML_TYPE_F16) {
const bool src0_ok = op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32;
const bool src1_ok = op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32;
if (src0_ok && src1_ok) {
return true;
}
}
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_SUB:
@ -2545,13 +2671,14 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return true;
} else if (op->src[0]->type == GGML_TYPE_F32) {
return op->src[1]->type == GGML_TYPE_F32;
} else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
} else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
op->src[0]->type == GGML_TYPE_Q6_K) {
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
return false;
case GGML_OP_MUL_MAT_ID:
if (op->src[0]->type == GGML_TYPE_Q4_0) {
if (op->src[0]->type == GGML_TYPE_Q4_0 ||
op->src[0]->type == GGML_TYPE_MXFP4) {
if (op->src[1]->type == GGML_TYPE_F32) {
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
@ -2586,10 +2713,58 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
}
case GGML_OP_IM2COL:
return true;
case GGML_OP_ARGSORT:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ARGSORT: {
cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
int cols = 1;
while (cols < op->ne[0]) {
cols *= 2;
}
return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
}
case GGML_OP_SUM_ROWS:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_FLASH_ATTN_EXT:
{
if (op->src[4]) {
return false;
}
const ggml_tensor * q = op->src[0];
const ggml_tensor * k = op->src[1];
const ggml_tensor * v = op->src[2];
const int dk = q->ne[0];
const int dv = v->ne[0];
const struct { int dk; int dv; } supported_dims[] = {
{ 64, 64}, { 80, 80}, { 96, 96},
{112, 112}, {128, 128}, {192, 128},
{192, 192}, {256, 256},
};
bool dims_supported = false;
for (size_t i = 0; i < sizeof(supported_dims)/sizeof(supported_dims[0]); ++i) {
if (supported_dims[i].dk == dk && supported_dims[i].dv == dv) {
dims_supported = true;
break;
}
}
if (!dims_supported) {
return false;
}
const bool is_f32_f32 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F32 &&
v->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
const bool is_f16_f16 = q->type == GGML_TYPE_F16 && k->type == GGML_TYPE_F16 &&
v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16;
const bool is_f32_f16 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16 &&
v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F32;
return is_f32_f32 || is_f16_f16 || is_f32_f16;
}
default:
return false;
}
@ -2937,7 +3112,10 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
// cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
CL_CHECK(err);
// size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
bool K_tile_trans = true;
if ((K / 32) % 4 != 0){
K_tile_trans =false;
}
size_t d_size_bytes = M * (K / 32) * 2;
region.origin = 0;
region.size = d_size_bytes;
@ -2978,10 +3156,15 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
if (K_tile_trans) {
img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
img_desc_1d.image_width = M * K / 32 / 4;
} else {
img_fmt_1d = { CL_R, CL_HALF_FLOAT };
img_desc_1d.image_width = M * K / 32;
}
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
img_desc_1d.image_width = M * K / 32 / 4;
img_desc_1d.buffer = extra->d;
d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
@ -3017,6 +3200,10 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
int width_s = K / 32 / 4;
kernel = backend_ctx->kernel_transpose_16;
if (!K_tile_trans) {
kernel = backend_ctx->kernel_transpose_16_4x1;
width_s = K / 32;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
@ -3717,34 +3904,30 @@ static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
GGML_ASSERT(src0->type == src1->type);
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int ne10 = src1->ne[0];
const int ne11 = src1->ne[1];
const int ne12 = src1->ne[2];
const int ne13 = src1->ne[3]; UNUSED(ne13);
const int ne10 = src1->ne[0];
const int ne11 = src1->ne[1];
const int ne12 = src1->ne[2];
const int ne13 = src1->ne[3];
const cl_ulong nb10 = src1->nb[0];
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb12 = src1->nb[2];
const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
const cl_ulong nb13 = src1->nb[3];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
const int ne2 = dst->ne[2];
const int ne3 = dst->ne[3];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
const int ne2 = dst->ne[2];
const int ne3 = dst->ne[3];
const cl_ulong nb0 = dst->nb[0];
const cl_ulong nb1 = dst->nb[1];
@ -3761,68 +3944,114 @@ static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
bool bcast_row = false;
cl_kernel kernel;
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
const bool bcast_row = ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0;
if (bcast_row) {
GGML_ASSERT(ggml_is_contiguous(src0));
// src1 is a row
GGML_ASSERT(ne11 == 1);
}
bcast_row = true;
int ne = ne00 / 4;
if (src0->type == GGML_TYPE_F32) {
if (dst->type == GGML_TYPE_F32) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
if (bcast_row) {
kernel = backend_ctx->kernel_add_row;
const int ne = ne00 / 4;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
} else {
kernel = backend_ctx->kernel_add_row_f16;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
} else {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_add;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
}
} else if (dst->type == GGML_TYPE_F16) {
GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
const int type_src0 = (src0->type == GGML_TYPE_F32);
const int type_src1 = (src1->type == GGML_TYPE_F32);
if (bcast_row) {
kernel = backend_ctx->kernel_add_row_f16;
const int ne = ne00 / 4;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &type_src0));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &type_src1));
} else {
kernel = backend_ctx->kernel_add_f16;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &type_src0));
CL_CHECK(clSetKernelArg(kernel, 31, sizeof(int), &type_src1));
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
} else {
GGML_ASSERT(false && "unsupported data types for add");
}
if (bcast_row) {
@ -3832,13 +4061,13 @@ static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const
size_t * local_work_size_ptr = local_work_size;
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size_ptr, dst);
} else {
unsigned int nth = MIN(64, ne0);
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {nth, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
@ -5351,6 +5580,133 @@ static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
}
static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
const ggml_tensor * v = dst->src[2];
const ggml_tensor * mask = dst->src[3];
GGML_ASSERT(q->extra);
GGML_ASSERT(k->extra);
GGML_ASSERT(v->extra);
GGML_ASSERT(dst->extra);
if (mask) {
GGML_ASSERT(mask->extra);
}
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
const int n_q = q->ne[1];
const int n_kv = k->ne[1];
const int d_head_q = q->ne[0];
const int d_head_v = v->ne[0];
const int n_head = q->ne[2];
const int n_head_kv = k->ne[2];
const int n_batch = q->ne[3];
cl_kernel kernel = NULL;
const bool is_f16 = q->type == GGML_TYPE_F16;
const bool is_mixed = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16;
const std::pair<int, int> dk_dv = {d_head_q, d_head_v};
if (n_q == 1) {
if (is_mixed) {
kernel = backend_ctx->kernels_flash_attn_f32_f16_q1.at(dk_dv);
} else if (is_f16) {
kernel = backend_ctx->kernels_flash_attn_f16_q1.at(dk_dv);
} else {
kernel = backend_ctx->kernels_flash_attn_f32_q1.at(dk_dv);
}
} else {
if (is_mixed) {
kernel = backend_ctx->kernels_flash_attn_f32_f16.at(dk_dv);
} else if (is_f16) {
kernel = backend_ctx->kernels_flash_attn_f16.at(dk_dv);
} else {
kernel = backend_ctx->kernels_flash_attn_f32.at(dk_dv);
}
}
GGML_ASSERT(kernel != NULL);
ggml_tensor_extra_cl * extra_q = (ggml_tensor_extra_cl *)q->extra;
ggml_tensor_extra_cl * extra_k = (ggml_tensor_extra_cl *)k->extra;
ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
cl_ulong offset_q = extra_q->offset + q->view_offs;
cl_ulong offset_k = extra_k->offset + k->view_offs;
cl_ulong offset_v = extra_v->offset + v->view_offs;
cl_ulong offset_o = extra_o->offset + dst->view_offs;
cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
const cl_ulong v_nb1 = v->nb[1], v_nb2 = v->nb[2], v_nb3 = v->nb[3];
const cl_ulong o_nb1 = dst->nb[1], o_nb2 = dst->nb[2], o_nb3 = dst->nb[3];
const cl_ulong mask_nb1 = mask ? mask->nb[1] : 0;
const cl_ulong mask_nb2 = mask ? mask->nb[2] : 0;
const cl_ulong mask_nb3 = mask ? mask->nb[3] : 0;
const int mask_ne2 = mask ? mask->ne[2] : 0;
const int mask_ne3 = mask ? mask->ne[3] : 0;
float scale, max_bias, logit_softcap;
const float * params = (const float *)dst->op_params;
scale = params[0];
max_bias = params[1];
logit_softcap = params[2];
const int is_causal = (mask == NULL && n_q > 1 && n_q == n_kv);
const int n_head_log2_val = n_head > 0 ? 1u << (int)floorf(log2f((float)n_head)) : 0;
const float n_head_log2_f = n_head_log2_val > 0 ? (float)n_head_log2_val : 1.0f;
const float m0 = powf(2.0f, -(max_bias) / n_head_log2_f);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2_f);
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_q->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset_q));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_k->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset_k));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra_v->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset_v));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extra_o->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offset_o));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(float), &scale));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &n_q));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &n_kv));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &is_causal));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &n_head));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &q_nb1)); CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &q_nb2)); CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &q_nb3));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &k_nb1)); CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &k_nb2)); CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &k_nb3));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &v_nb1)); CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &v_nb2)); CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &v_nb3));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &o_nb1)); CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &o_nb2)); CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &o_nb3));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(float), &max_bias));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(float), &m0));
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &m1));
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(int), &n_head_log2_val));
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &logit_softcap));
CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &n_head_kv));
CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_mem), &mask_buffer));
CL_CHECK(clSetKernelArg(kernel, 32, sizeof(cl_ulong), &offset_mask));
CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_ulong), &mask_nb1));
CL_CHECK(clSetKernelArg(kernel, 34, sizeof(cl_ulong), &mask_nb2));
CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
if (n_q == 1) {
const size_t wg_size = 64;
size_t local_work_size[] = { wg_size, 1 };
size_t global_work_size[] = { wg_size, (size_t)(n_head * n_batch) };
backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
} else {
const int block_m = backend_ctx->kernels_flash_attn_bm.at(dk_dv);
const size_t wg_size = block_m;
size_t local_work_size[] = { wg_size, 1 };
size_t global_work_size[] = { (size_t)((n_q + block_m - 1) / block_m) * wg_size, (size_t)(n_head * n_batch) };
backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
}
}
static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
@ -6205,11 +6561,47 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
break;
case GGML_TYPE_MXFP4: {
kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
if (backend_ctx->gpu_family == INTEL) {
nth0 = 16;
nth1 = 2;
ndst = nth1*2;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 2;
ndst = nth1*2;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
break;
}
default:
GGML_ASSERT(false && "not implemented");
}
if (src0t == GGML_TYPE_Q4_0 ||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) {
@ -6258,10 +6650,12 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offset2 = extra2->offset + src2->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
@ -6276,7 +6670,9 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int ne10 = src1->ne[0];
const int ne11 = src1->ne[1];
@ -6285,6 +6681,7 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb12 = src1->nb[2];
const cl_ulong nb13 = src1->nb[3];
const int ne20 = src2->ne[0];
const int ne21 = src2->ne[1];
@ -6352,6 +6749,49 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
break;
}
case GGML_TYPE_MXFP4: {
kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
if (backend_ctx->gpu_family == INTEL) {
sgs = 16;
nsg = 2;
ndst = 2;
} else if (backend_ctx->gpu_family == ADRENO) {
sgs = 64;
nsg = 2;
ndst = 2;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
break;
}
default:
GGML_ASSERT(false && "not implemented");;
}
@ -7423,6 +7863,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_sum_rows;
break;
case GGML_OP_FLASH_ATTN_EXT:
if (!any_on_device) {
return false;
}
ggml_cl_flash_attn(backend, tensor->src[0], tensor->src[1], tensor);
return true;
default:
return false;
}

View File

@ -112,7 +112,9 @@ kernel void kernel_add_f16(
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
ulong nb3,
int type_src0,
int type_src1
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
@ -132,25 +134,57 @@ kernel void kernel_add_f16(
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i10 = i0 % ne10;
*((global half *)(dst_ptr + i0*nb0)) = *((global half *)(src0_ptr + i0*nb00)) + *((global half *)(src1_ptr + i10*nb10));
half v0, v1;
if (type_src0 == 1) {
v0 = convert_half(*((global float *)(src0_ptr + i0*nb00)));
} else {
v0 = *((global half *)(src0_ptr + i0*nb00));
}
if (type_src1 == 1) {
v1 = convert_half(*((global float *)(src1_ptr + i10*nb10)));
} else {
v1 = *((global half *)(src1_ptr + i10*nb10));
}
*((global half *)(dst_ptr + i0*nb0)) = v0 + v1;
}
}
kernel void kernel_add_row_f16(
global half4 * src0,
global char * src0,
ulong offset0,
global half4 * src1,
global char * src1,
ulong offset1,
global half4 * dst,
ulong offsetd,
int ne
int ne,
int type_src0,
int type_src1
) {
src0 = (global half4*)((global char*)src0 + offset0);
src1 = (global half4*)((global char*)src1 + offset1);
dst = (global half4*)((global char*)dst + offsetd);
// This performs better than using %.
uint gid = get_global_id(0);
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] + src1[idx1];
half4 v0, v1;
if (type_src0 == 1) {
global float4* src0_f32 = (global float4*)((global char*)src0 + offset0);
v0 = convert_half4(src0_f32[gid]);
} else {
global half4* src0_f16 = (global half4*)((global char*)src0 + offset0);
v0 = src0_f16[gid];
}
if (type_src1 == 1) {
global float4* src1_f32 = (global float4*)((global char*)src1 + offset1);
v1 = convert_half4(src1_f32[idx1]);
} else {
global half4* src1_f16 = (global half4*)((global char*)src1 + offset1);
v1 = src1_f16[idx1];
}
dst[gid] = v0 + v1;
}

View File

@ -0,0 +1,343 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define ACC_TYPE float
#define ACC_TYPE4 float4
#define DATA_TYPE half
#define DATA_TYPE4 half4
#define CONVERT_ACC4(x) convert_float4(x)
#define CONVERT_DATA4(x) convert_half4(x)
#define DK_VEC (DK/4)
#define DV_VEC (DV/4)
#define WG_SIZE (BLOCK_M)
#define Q1_WG_SIZE 64
inline float get_alibi_slope(
const float max_bias, const uint h, const uint n_head_log2, const float m0, const float m1
) {
if (max_bias <= 0.0f) {
return 1.0f;
}
const float base = h < n_head_log2 ? m0 : m1;
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
return pow(base, exph);
}
__kernel void flash_attn_f16(
const global void * q_void, ulong q_offset,
const global void * k_void, ulong k_offset,
const global void * v_void, ulong v_offset,
global void * o_void, ulong o_offset,
const float scale,
const int n_q,
const int n_kv,
const int is_causal,
const int n_head,
const ulong q_nb1, const ulong q_nb2, const ulong q_nb3,
const ulong k_nb1, const ulong k_nb2, const ulong k_nb3,
const ulong v_nb1, const ulong v_nb2, const ulong v_nb3,
const ulong o_nb1, const ulong o_nb2, const ulong o_nb3,
const float max_bias,
const float m0,
const float m1,
const int n_head_log2,
const float logit_softcap,
const int n_head_kv,
const global void* mask_void,
const ulong mask_offset,
const ulong mask_nb1,
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3
) {
const int tid = get_local_id(0);
const int block_q_idx = get_group_id(0);
const int head_batch_idx = get_global_id(1);
const int my_query_row = block_q_idx * BLOCK_M + tid;
const int batch_idx = head_batch_idx / n_head;
const int head_idx = head_batch_idx % n_head;
const int gqa_ratio = n_head / n_head_kv;
const int head_kv_idx = head_idx / gqa_ratio;
const global char* q_base = (const global char*)q_void + q_offset;
const global char* k_base = (const global char*)k_void + k_offset;
const global char* v_base = (const global char*)v_void + v_offset;
global char* o_base = (global char*)o_void + o_offset;
const global char* mask_base = NULL;
if (mask_void != NULL) {
const int mask_head_idx = head_idx % mask_ne2;
const int mask_batch_idx = batch_idx % mask_ne3;
mask_base = (const global char*)mask_void + mask_offset + mask_batch_idx * mask_nb3 + mask_head_idx * mask_nb2;
}
ACC_TYPE4 q_priv[DK_VEC];
if (my_query_row < n_q) {
const ulong q_row_offset = batch_idx * q_nb3 + head_idx * q_nb2 + my_query_row * q_nb1;
const global DATA_TYPE4* q_ptr = (const global DATA_TYPE4*)(q_base + q_row_offset);
#pragma unroll
for (int i = 0; i < DK_VEC; ++i) {
q_priv[i] = CONVERT_ACC4(q_ptr[i]);
}
}
ACC_TYPE4 o_acc[DV_VEC];
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] = (ACC_TYPE4)(0.0f);
}
ACC_TYPE m_i = -INFINITY;
ACC_TYPE l_i = 0.0f;
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
__local DATA_TYPE4 l_k[BLOCK_N][DK_VEC];
__local DATA_TYPE4 l_v[BLOCK_N][DV_VEC];
for (int k_start = 0; k_start < n_kv; k_start += BLOCK_N) {
for (int i = tid; i < BLOCK_N * DK_VEC; i += WG_SIZE) {
const int row = i / DK_VEC;
const int col = i % DK_VEC;
const int k_row_idx = k_start + row;
if (k_row_idx < n_kv) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_row_idx * k_nb1;
l_k[row][col] = ((__global DATA_TYPE4*)(k_base + k_row_offset))[col];
}
}
for (int i = tid; i < BLOCK_N * DV_VEC; i += WG_SIZE) {
const int row = i / DV_VEC;
const int col = i % DV_VEC;
const int v_row_idx = k_start + row;
if (v_row_idx < n_kv) {
const ulong v_row_offset = batch_idx * v_nb3 + head_kv_idx * v_nb2 + v_row_idx * v_nb1;
l_v[row][col] = ((__global DATA_TYPE4*)(v_base + v_row_offset))[col];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (my_query_row >= n_q) {
continue;
}
for (int j = 0; j < BLOCK_N; j += 2) {
const int k_row0 = k_start + j;
const int k_row1 = k_start + j + 1;
ACC_TYPE4 dot_acc0 = (ACC_TYPE4)(0.0f);
ACC_TYPE4 dot_acc1 = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc0 = mad(q_priv[k], CONVERT_ACC4(l_k[j][k]), dot_acc0);
dot_acc1 = mad(q_priv[k], CONVERT_ACC4(l_k[j+1][k]), dot_acc1);
}
ACC_TYPE score0 = (dot_acc0.s0 + dot_acc0.s1 + dot_acc0.s2 + dot_acc0.s3) * scale;
ACC_TYPE score1 = (dot_acc1.s0 + dot_acc1.s1 + dot_acc1.s2 + dot_acc1.s3) * scale;
if (is_causal) {
if (k_row0 > (n_kv - n_q + my_query_row)) score0 = -INFINITY;
if (k_row1 > (n_kv - n_q + my_query_row)) score1 = -INFINITY;
}
if (k_row0 >= n_kv) score0 = -INFINITY;
if (k_row1 >= n_kv) score1 = -INFINITY;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base + my_query_row * mask_nb1);
if (k_row0 < n_kv) score0 += slope * (ACC_TYPE)mask_ptr[k_row0];
if (k_row1 < n_kv) score1 += slope * (ACC_TYPE)mask_ptr[k_row1];
}
if (logit_softcap > 0.0f) {
score0 = logit_softcap * tanh(score0 / logit_softcap);
score1 = logit_softcap * tanh(score1 / logit_softcap);
}
const ACC_TYPE m_new = max(m_i, max(score0, score1));
const ACC_TYPE p0 = exp(score0 - m_new);
const ACC_TYPE p1 = exp(score1 - m_new);
const ACC_TYPE scale_prev = exp(m_i - m_new);
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] = o_acc[i] * scale_prev + p0 * CONVERT_ACC4(l_v[j][i]) + p1 * CONVERT_ACC4(l_v[j+1][i]);
}
l_i = l_i * scale_prev + p0 + p1;
m_i = m_new;
}
}
if (my_query_row < n_q) {
const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1;
global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset);
if (l_i > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_i;
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_row[i] = CONVERT_DATA4(o_acc[i] * l_inv);
}
} else {
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_row[i] = (DATA_TYPE4)(0.0f);
}
}
}
}
__kernel void flash_attn_f16_q1(
const global void * q_void, ulong q_offset,
const global void * k_void, ulong k_offset,
const global void * v_void, ulong v_offset,
global void * o_void, ulong o_offset,
const float scale,
const int n_q,
const int n_kv,
const int is_causal,
const int n_head,
const ulong q_nb1, const ulong q_nb2, const ulong q_nb3,
const ulong k_nb1, const ulong k_nb2, const ulong k_nb3,
const ulong v_nb1, const ulong v_nb2, const ulong v_nb3,
const ulong o_nb1, const ulong o_nb2, const ulong o_nb3,
const float max_bias,
const float m0,
const float m1,
const int n_head_log2,
const float logit_softcap,
const int n_head_kv,
const global void* mask_void,
const ulong mask_offset,
const ulong mask_nb1,
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3
) {
const int tid = get_local_id(0);
const int head_batch_idx = get_global_id(1);
const int batch_idx = head_batch_idx / n_head;
const int head_idx = head_batch_idx % n_head;
const int gqa_ratio = n_head / n_head_kv;
const int head_kv_idx = head_idx / gqa_ratio;
const global char* q_base = (const global char*)q_void + q_offset;
const global char* k_base = (const global char*)k_void + k_offset;
const global char* v_base = (const global char*)v_void + v_offset;
global char* o_base = (global char*)o_void + o_offset;
const global char* mask_base = NULL;
if (mask_void != NULL) {
const int mask_head_idx = head_idx % mask_ne2;
const int mask_batch_idx = batch_idx % mask_ne3;
mask_base = (const global char*)mask_void + mask_offset + mask_batch_idx * mask_nb3 + mask_head_idx * mask_nb2;
}
ACC_TYPE4 q_priv[DK_VEC];
const ulong q_row_offset = batch_idx * q_nb3 + head_idx * q_nb2;
const global DATA_TYPE4* q_ptr = (const global DATA_TYPE4*)(q_base + q_row_offset);
#pragma unroll
for (int i = 0; i < DK_VEC; ++i) {
q_priv[i] = CONVERT_ACC4(q_ptr[i]);
}
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
ACC_TYPE m_i = -INFINITY;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset);
ACC_TYPE4 dot_acc = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc = mad(q_priv[k], CONVERT_ACC4(k_ptr[k]), dot_acc);
}
ACC_TYPE score = (dot_acc.s0 + dot_acc.s1 + dot_acc.s2 + dot_acc.s3) * scale;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base);
score += slope * (ACC_TYPE)mask_ptr[k_idx];
}
if (logit_softcap > 0.0f) {
score = logit_softcap * tanh(score / logit_softcap);
}
m_i = max(m_i, score);
}
__local ACC_TYPE local_m[Q1_WG_SIZE];
local_m[tid] = m_i;
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_m[tid] = max(local_m[tid], local_m[tid + s]);
barrier(CLK_LOCAL_MEM_FENCE);
}
const ACC_TYPE m_final = local_m[0];
ACC_TYPE4 o_acc[DV_VEC];
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) o_acc[i] = (ACC_TYPE4)(0.0f);
ACC_TYPE l_i = 0.0f;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const ulong v_row_offset = batch_idx * v_nb3 + head_kv_idx * v_nb2 + k_idx * v_nb1;
const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset);
const global DATA_TYPE4* v_ptr = (const global DATA_TYPE4*)(v_base + v_row_offset);
ACC_TYPE4 dot_acc = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc = mad(q_priv[k], CONVERT_ACC4(k_ptr[k]), dot_acc);
}
ACC_TYPE score = (dot_acc.s0 + dot_acc.s1 + dot_acc.s2 + dot_acc.s3) * scale;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base);
score += slope * (ACC_TYPE)mask_ptr[k_idx];
}
if (logit_softcap > 0.0f) {
score = logit_softcap * tanh(score / logit_softcap);
}
const ACC_TYPE p = exp(score - m_final);
l_i += p;
#pragma unroll
for (int i = 0; i < DV_VEC; i++) {
o_acc[i] = mad(p, CONVERT_ACC4(v_ptr[i]), o_acc[i]);
}
}
__local ACC_TYPE local_l[Q1_WG_SIZE];
__local ACC_TYPE4 local_o_comp[Q1_WG_SIZE];
local_l[tid] = l_i;
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_l[tid] += local_l[tid + s];
barrier(CLK_LOCAL_MEM_FENCE);
}
const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1;
global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset);
const ACC_TYPE l_final = local_l[0];
if (l_final > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_final;
for (int i = 0; i < DV_VEC; i++) {
local_o_comp[tid] = o_acc[i];
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_o_comp[tid] += local_o_comp[tid + s];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0) {
o_row[i] = CONVERT_DATA4(local_o_comp[0] * l_inv);
}
}
} else if (tid == 0) {
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) o_row[i] = (DATA_TYPE4)(0.0f);
}
}

View File

@ -0,0 +1,343 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define ACC_TYPE float
#define ACC_TYPE4 float4
#define DATA_TYPE float
#define DATA_TYPE4 float4
#define CONVERT_ACC4(x) (x)
#define CONVERT_DATA4(x) (x)
#define DK_VEC (DK/4)
#define DV_VEC (DV/4)
#define WG_SIZE (BLOCK_M)
#define Q1_WG_SIZE 64
inline float get_alibi_slope(
const float max_bias, const uint h, const uint n_head_log2, const float m0, const float m1
) {
if (max_bias <= 0.0f) {
return 1.0f;
}
const float base = h < n_head_log2 ? m0 : m1;
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
return pow(base, exph);
}
__kernel void flash_attn_f32(
const global void * q_void, ulong q_offset,
const global void * k_void, ulong k_offset,
const global void * v_void, ulong v_offset,
global void * o_void, ulong o_offset,
const float scale,
const int n_q,
const int n_kv,
const int is_causal,
const int n_head,
const ulong q_nb1, const ulong q_nb2, const ulong q_nb3,
const ulong k_nb1, const ulong k_nb2, const ulong k_nb3,
const ulong v_nb1, const ulong v_nb2, const ulong v_nb3,
const ulong o_nb1, const ulong o_nb2, const ulong o_nb3,
const float max_bias,
const float m0,
const float m1,
const int n_head_log2,
const float logit_softcap,
const int n_head_kv,
const global void* mask_void,
const ulong mask_offset,
const ulong mask_nb1,
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3
) {
const int tid = get_local_id(0);
const int block_q_idx = get_group_id(0);
const int head_batch_idx = get_global_id(1);
const int my_query_row = block_q_idx * BLOCK_M + tid;
const int batch_idx = head_batch_idx / n_head;
const int head_idx = head_batch_idx % n_head;
const int gqa_ratio = n_head / n_head_kv;
const int head_kv_idx = head_idx / gqa_ratio;
const global char* q_base = (const global char*)q_void + q_offset;
const global char* k_base = (const global char*)k_void + k_offset;
const global char* v_base = (const global char*)v_void + v_offset;
global char* o_base = (global char*)o_void + o_offset;
const global char* mask_base = NULL;
if (mask_void != NULL) {
const int mask_head_idx = head_idx % mask_ne2;
const int mask_batch_idx = batch_idx % mask_ne3;
mask_base = (const global char*)mask_void + mask_offset + mask_batch_idx * mask_nb3 + mask_head_idx * mask_nb2;
}
ACC_TYPE4 q_priv[DK_VEC];
if (my_query_row < n_q) {
const ulong q_row_offset = batch_idx * q_nb3 + head_idx * q_nb2 + my_query_row * q_nb1;
const global DATA_TYPE4* q_ptr = (const global DATA_TYPE4*)(q_base + q_row_offset);
#pragma unroll
for (int i = 0; i < DK_VEC; ++i) {
q_priv[i] = CONVERT_ACC4(q_ptr[i]);
}
}
ACC_TYPE4 o_acc[DV_VEC];
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] = (ACC_TYPE4)(0.0f);
}
ACC_TYPE m_i = -INFINITY;
ACC_TYPE l_i = 0.0f;
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
__local DATA_TYPE4 l_k[BLOCK_N][DK_VEC];
__local DATA_TYPE4 l_v[BLOCK_N][DV_VEC];
for (int k_start = 0; k_start < n_kv; k_start += BLOCK_N) {
for (int i = tid; i < BLOCK_N * DK_VEC; i += WG_SIZE) {
const int row = i / DK_VEC;
const int col = i % DK_VEC;
const int k_row_idx = k_start + row;
if (k_row_idx < n_kv) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_row_idx * k_nb1;
l_k[row][col] = ((__global DATA_TYPE4*)(k_base + k_row_offset))[col];
}
}
for (int i = tid; i < BLOCK_N * DV_VEC; i += WG_SIZE) {
const int row = i / DV_VEC;
const int col = i % DV_VEC;
const int v_row_idx = k_start + row;
if (v_row_idx < n_kv) {
const ulong v_row_offset = batch_idx * v_nb3 + head_kv_idx * v_nb2 + v_row_idx * v_nb1;
l_v[row][col] = ((__global DATA_TYPE4*)(v_base + v_row_offset))[col];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (my_query_row >= n_q) {
continue;
}
for (int j = 0; j < BLOCK_N; j += 2) {
const int k_row0 = k_start + j;
const int k_row1 = k_start + j + 1;
ACC_TYPE4 dot_acc0 = (ACC_TYPE4)(0.0f);
ACC_TYPE4 dot_acc1 = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc0 = mad(q_priv[k], CONVERT_ACC4(l_k[j][k]), dot_acc0);
dot_acc1 = mad(q_priv[k], CONVERT_ACC4(l_k[j+1][k]), dot_acc1);
}
ACC_TYPE score0 = (dot_acc0.s0 + dot_acc0.s1 + dot_acc0.s2 + dot_acc0.s3) * scale;
ACC_TYPE score1 = (dot_acc1.s0 + dot_acc1.s1 + dot_acc1.s2 + dot_acc1.s3) * scale;
if (is_causal) {
if (k_row0 > (n_kv - n_q + my_query_row)) score0 = -INFINITY;
if (k_row1 > (n_kv - n_q + my_query_row)) score1 = -INFINITY;
}
if (k_row0 >= n_kv) score0 = -INFINITY;
if (k_row1 >= n_kv) score1 = -INFINITY;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base + my_query_row * mask_nb1);
if (k_row0 < n_kv) score0 += slope * (ACC_TYPE)mask_ptr[k_row0];
if (k_row1 < n_kv) score1 += slope * (ACC_TYPE)mask_ptr[k_row1];
}
if (logit_softcap > 0.0f) {
score0 = logit_softcap * tanh(score0 / logit_softcap);
score1 = logit_softcap * tanh(score1 / logit_softcap);
}
const ACC_TYPE m_new = max(m_i, max(score0, score1));
const ACC_TYPE p0 = exp(score0 - m_new);
const ACC_TYPE p1 = exp(score1 - m_new);
const ACC_TYPE scale_prev = exp(m_i - m_new);
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] = o_acc[i] * scale_prev + p0 * CONVERT_ACC4(l_v[j][i]) + p1 * CONVERT_ACC4(l_v[j+1][i]);
}
l_i = l_i * scale_prev + p0 + p1;
m_i = m_new;
}
}
if (my_query_row < n_q) {
const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1;
global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset);
if (l_i > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_i;
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_row[i] = CONVERT_DATA4(o_acc[i] * l_inv);
}
} else {
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_row[i] = (DATA_TYPE4)(0.0f);
}
}
}
}
__kernel void flash_attn_f32_q1(
const global void * q_void, ulong q_offset,
const global void * k_void, ulong k_offset,
const global void * v_void, ulong v_offset,
global void * o_void, ulong o_offset,
const float scale,
const int n_q,
const int n_kv,
const int is_causal,
const int n_head,
const ulong q_nb1, const ulong q_nb2, const ulong q_nb3,
const ulong k_nb1, const ulong k_nb2, const ulong k_nb3,
const ulong v_nb1, const ulong v_nb2, const ulong v_nb3,
const ulong o_nb1, const ulong o_nb2, const ulong o_nb3,
const float max_bias,
const float m0,
const float m1,
const int n_head_log2,
const float logit_softcap,
const int n_head_kv,
const global void* mask_void,
const ulong mask_offset,
const ulong mask_nb1,
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3
) {
const int tid = get_local_id(0);
const int head_batch_idx = get_global_id(1);
const int batch_idx = head_batch_idx / n_head;
const int head_idx = head_batch_idx % n_head;
const int gqa_ratio = n_head / n_head_kv;
const int head_kv_idx = head_idx / gqa_ratio;
const global char* q_base = (const global char*)q_void + q_offset;
const global char* k_base = (const global char*)k_void + k_offset;
const global char* v_base = (const global char*)v_void + v_offset;
global char* o_base = (global char*)o_void + o_offset;
const global char* mask_base = NULL;
if (mask_void != NULL) {
const int mask_head_idx = head_idx % mask_ne2;
const int mask_batch_idx = batch_idx % mask_ne3;
mask_base = (const global char*)mask_void + mask_offset + mask_batch_idx * mask_nb3 + mask_head_idx * mask_nb2;
}
ACC_TYPE4 q_priv[DK_VEC];
const ulong q_row_offset = batch_idx * q_nb3 + head_idx * q_nb2;
const global DATA_TYPE4* q_ptr = (const global DATA_TYPE4*)(q_base + q_row_offset);
#pragma unroll
for (int i = 0; i < DK_VEC; ++i) {
q_priv[i] = CONVERT_ACC4(q_ptr[i]);
}
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
ACC_TYPE m_i = -INFINITY;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset);
ACC_TYPE4 dot_acc = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc = mad(q_priv[k], CONVERT_ACC4(k_ptr[k]), dot_acc);
}
ACC_TYPE score = (dot_acc.s0 + dot_acc.s1 + dot_acc.s2 + dot_acc.s3) * scale;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base);
score += slope * (ACC_TYPE)mask_ptr[k_idx];
}
if (logit_softcap > 0.0f) {
score = logit_softcap * tanh(score / logit_softcap);
}
m_i = max(m_i, score);
}
__local ACC_TYPE local_m[Q1_WG_SIZE];
local_m[tid] = m_i;
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_m[tid] = max(local_m[tid], local_m[tid + s]);
barrier(CLK_LOCAL_MEM_FENCE);
}
const ACC_TYPE m_final = local_m[0];
ACC_TYPE4 o_acc[DV_VEC];
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) o_acc[i] = (ACC_TYPE4)(0.0f);
ACC_TYPE l_i = 0.0f;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const ulong v_row_offset = batch_idx * v_nb3 + head_kv_idx * v_nb2 + k_idx * v_nb1;
const global DATA_TYPE4* k_ptr = (const global DATA_TYPE4*)(k_base + k_row_offset);
const global DATA_TYPE4* v_ptr = (const global DATA_TYPE4*)(v_base + v_row_offset);
ACC_TYPE4 dot_acc = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc = mad(q_priv[k], CONVERT_ACC4(k_ptr[k]), dot_acc);
}
ACC_TYPE score = (dot_acc.s0 + dot_acc.s1 + dot_acc.s2 + dot_acc.s3) * scale;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base);
score += slope * (ACC_TYPE)mask_ptr[k_idx];
}
if (logit_softcap > 0.0f) {
score = logit_softcap * tanh(score / logit_softcap);
}
const ACC_TYPE p = exp(score - m_final);
l_i += p;
#pragma unroll
for (int i = 0; i < DV_VEC; i++) {
o_acc[i] = mad(p, CONVERT_ACC4(v_ptr[i]), o_acc[i]);
}
}
__local ACC_TYPE local_l[Q1_WG_SIZE];
__local ACC_TYPE4 local_o_comp[Q1_WG_SIZE];
local_l[tid] = l_i;
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_l[tid] += local_l[tid + s];
barrier(CLK_LOCAL_MEM_FENCE);
}
const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1;
global DATA_TYPE4 *o_row = (global DATA_TYPE4 *)(o_base + o_row_offset);
const ACC_TYPE l_final = local_l[0];
if (l_final > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_final;
for (int i = 0; i < DV_VEC; i++) {
local_o_comp[tid] = o_acc[i];
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_o_comp[tid] += local_o_comp[tid + s];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0) {
o_row[i] = CONVERT_DATA4(local_o_comp[0] * l_inv);
}
}
} else if (tid == 0) {
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) o_row[i] = (DATA_TYPE4)(0.0f);
}
}

View File

@ -0,0 +1,346 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define ACC_TYPE float
#define ACC_TYPE4 float4
#define Q_DATA_TYPE4 float4
#define KV_DATA_TYPE4 half4
#define O_DATA_TYPE4 float4
#define MASK_DATA_TYPE half
#define CONVERT_Q_ACC4(x) (x)
#define CONVERT_KV_ACC4(x) convert_float4(x)
#define CONVERT_O_DATA4(x) (x)
#define DK_VEC (DK/4)
#define DV_VEC (DV/4)
#define WG_SIZE (BLOCK_M)
#define Q1_WG_SIZE 64
inline float get_alibi_slope(
const float max_bias, const uint h, const uint n_head_log2, const float m0, const float m1
) {
if (max_bias <= 0.0f) {
return 1.0f;
}
const float base = h < n_head_log2 ? m0 : m1;
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
return pow(base, exph);
}
__kernel void flash_attn_f32_f16(
const global void * q_void, ulong q_offset,
const global void * k_void, ulong k_offset,
const global void * v_void, ulong v_offset,
global void * o_void, ulong o_offset,
const float scale,
const int n_q,
const int n_kv,
const int is_causal,
const int n_head,
const ulong q_nb1, const ulong q_nb2, const ulong q_nb3,
const ulong k_nb1, const ulong k_nb2, const ulong k_nb3,
const ulong v_nb1, const ulong v_nb2, const ulong v_nb3,
const ulong o_nb1, const ulong o_nb2, const ulong o_nb3,
const float max_bias,
const float m0,
const float m1,
const int n_head_log2,
const float logit_softcap,
const int n_head_kv,
const global void* mask_void,
const ulong mask_offset,
const ulong mask_nb1,
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3
) {
const int tid = get_local_id(0);
const int block_q_idx = get_group_id(0);
const int head_batch_idx = get_global_id(1);
const int my_query_row = block_q_idx * BLOCK_M + tid;
const int batch_idx = head_batch_idx / n_head;
const int head_idx = head_batch_idx % n_head;
const int gqa_ratio = n_head / n_head_kv;
const int head_kv_idx = head_idx / gqa_ratio;
const global char* q_base = (const global char*)q_void + q_offset;
const global char* k_base = (const global char*)k_void + k_offset;
const global char* v_base = (const global char*)v_void + v_offset;
global char* o_base = (global char*)o_void + o_offset;
const global char* mask_base = NULL;
if (mask_void != NULL) {
const int mask_head_idx = head_idx % mask_ne2;
const int mask_batch_idx = batch_idx % mask_ne3;
mask_base = (const global char*)mask_void + mask_offset + mask_batch_idx * mask_nb3 + mask_head_idx * mask_nb2;
}
ACC_TYPE4 q_priv[DK_VEC];
if (my_query_row < n_q) {
const ulong q_row_offset = batch_idx * q_nb3 + head_idx * q_nb2 + my_query_row * q_nb1;
const global Q_DATA_TYPE4* q_ptr = (const global Q_DATA_TYPE4*)(q_base + q_row_offset);
#pragma unroll
for (int i = 0; i < DK_VEC; ++i) {
q_priv[i] = CONVERT_Q_ACC4(q_ptr[i]);
}
}
ACC_TYPE4 o_acc[DV_VEC];
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] = (ACC_TYPE4)(0.0f);
}
ACC_TYPE m_i = -INFINITY;
ACC_TYPE l_i = 0.0f;
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
__local KV_DATA_TYPE4 l_k[BLOCK_N][DK_VEC];
__local KV_DATA_TYPE4 l_v[BLOCK_N][DV_VEC];
for (int k_start = 0; k_start < n_kv; k_start += BLOCK_N) {
for (int i = tid; i < BLOCK_N * DK_VEC; i += WG_SIZE) {
const int row = i / DK_VEC;
const int col = i % DK_VEC;
const int k_row_idx = k_start + row;
if (k_row_idx < n_kv) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_row_idx * k_nb1;
l_k[row][col] = ((__global KV_DATA_TYPE4*)(k_base + k_row_offset))[col];
}
}
for (int i = tid; i < BLOCK_N * DV_VEC; i += WG_SIZE) {
const int row = i / DV_VEC;
const int col = i % DV_VEC;
const int v_row_idx = k_start + row;
if (v_row_idx < n_kv) {
const ulong v_row_offset = batch_idx * v_nb3 + head_kv_idx * v_nb2 + v_row_idx * v_nb1;
l_v[row][col] = ((__global KV_DATA_TYPE4*)(v_base + v_row_offset))[col];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (my_query_row >= n_q) {
continue;
}
for (int j = 0; j < BLOCK_N; j += 2) {
const int k_row0 = k_start + j;
const int k_row1 = k_start + j + 1;
ACC_TYPE4 dot_acc0 = (ACC_TYPE4)(0.0f);
ACC_TYPE4 dot_acc1 = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc0 = mad(q_priv[k], CONVERT_KV_ACC4(l_k[j][k]), dot_acc0);
dot_acc1 = mad(q_priv[k], CONVERT_KV_ACC4(l_k[j+1][k]), dot_acc1);
}
ACC_TYPE score0 = (dot_acc0.s0 + dot_acc0.s1 + dot_acc0.s2 + dot_acc0.s3) * scale;
ACC_TYPE score1 = (dot_acc1.s0 + dot_acc1.s1 + dot_acc1.s2 + dot_acc1.s3) * scale;
if (is_causal) {
if (k_row0 > (n_kv - n_q + my_query_row)) score0 = -INFINITY;
if (k_row1 > (n_kv - n_q + my_query_row)) score1 = -INFINITY;
}
if (k_row0 >= n_kv) score0 = -INFINITY;
if (k_row1 >= n_kv) score1 = -INFINITY;
if (mask_base != NULL) {
const global MASK_DATA_TYPE* mask_ptr = (const global MASK_DATA_TYPE*)(mask_base + my_query_row * mask_nb1);
if (k_row0 < n_kv) score0 += slope * (ACC_TYPE)mask_ptr[k_row0];
if (k_row1 < n_kv) score1 += slope * (ACC_TYPE)mask_ptr[k_row1];
}
if (logit_softcap > 0.0f) {
score0 = logit_softcap * tanh(score0 / logit_softcap);
score1 = logit_softcap * tanh(score1 / logit_softcap);
}
const ACC_TYPE m_new = max(m_i, max(score0, score1));
const ACC_TYPE p0 = exp(score0 - m_new);
const ACC_TYPE p1 = exp(score1 - m_new);
const ACC_TYPE scale_prev = exp(m_i - m_new);
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_acc[i] = o_acc[i] * scale_prev + p0 * CONVERT_KV_ACC4(l_v[j][i]) + p1 * CONVERT_KV_ACC4(l_v[j+1][i]);
}
l_i = l_i * scale_prev + p0 + p1;
m_i = m_new;
}
}
if (my_query_row < n_q) {
const ulong o_row_offset = batch_idx * o_nb3 + my_query_row * o_nb2 + head_idx * o_nb1;
global O_DATA_TYPE4 *o_row = (global O_DATA_TYPE4 *)(o_base + o_row_offset);
if (l_i > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_i;
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_row[i] = CONVERT_O_DATA4(o_acc[i] * l_inv);
}
} else {
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) {
o_row[i] = (O_DATA_TYPE4)(0.0f);
}
}
}
}
__kernel void flash_attn_f32_f16_q1(
const global void * q_void, ulong q_offset,
const global void * k_void, ulong k_offset,
const global void * v_void, ulong v_offset,
global void * o_void, ulong o_offset,
const float scale,
const int n_q,
const int n_kv,
const int is_causal,
const int n_head,
const ulong q_nb1, const ulong q_nb2, const ulong q_nb3,
const ulong k_nb1, const ulong k_nb2, const ulong k_nb3,
const ulong v_nb1, const ulong v_nb2, const ulong v_nb3,
const ulong o_nb1, const ulong o_nb2, const ulong o_nb3,
const float max_bias,
const float m0,
const float m1,
const int n_head_log2,
const float logit_softcap,
const int n_head_kv,
const global void* mask_void,
const ulong mask_offset,
const ulong mask_nb1,
const ulong mask_nb2,
const ulong mask_nb3,
const int mask_ne2,
const int mask_ne3
) {
const int tid = get_local_id(0);
const int head_batch_idx = get_global_id(1);
const int batch_idx = head_batch_idx / n_head;
const int head_idx = head_batch_idx % n_head;
const int gqa_ratio = n_head / n_head_kv;
const int head_kv_idx = head_idx / gqa_ratio;
const global char* q_base = (const global char*)q_void + q_offset;
const global char* k_base = (const global char*)k_void + k_offset;
const global char* v_base = (const global char*)v_void + v_offset;
global char* o_base = (global char*)o_void + o_offset;
const global char* mask_base = NULL;
if (mask_void != NULL) {
const int mask_head_idx = head_idx % mask_ne2;
const int mask_batch_idx = batch_idx % mask_ne3;
mask_base = (const global char*)mask_void + mask_offset + mask_batch_idx * mask_nb3 + mask_head_idx * mask_nb2;
}
ACC_TYPE4 q_priv[DK_VEC];
const ulong q_row_offset = batch_idx * q_nb3 + head_idx * q_nb2;
const global Q_DATA_TYPE4* q_ptr = (const global Q_DATA_TYPE4*)(q_base + q_row_offset);
#pragma unroll
for (int i = 0; i < DK_VEC; ++i) {
q_priv[i] = CONVERT_Q_ACC4(q_ptr[i]);
}
float slope = get_alibi_slope(max_bias, head_idx, n_head_log2, m0, m1);
ACC_TYPE m_i = -INFINITY;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const global KV_DATA_TYPE4* k_ptr = (const global KV_DATA_TYPE4*)(k_base + k_row_offset);
ACC_TYPE4 dot_acc = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc = mad(q_priv[k], CONVERT_KV_ACC4(k_ptr[k]), dot_acc);
}
ACC_TYPE score = (dot_acc.s0 + dot_acc.s1 + dot_acc.s2 + dot_acc.s3) * scale;
if (mask_base != NULL) {
const global MASK_DATA_TYPE* mask_ptr = (const global MASK_DATA_TYPE*)(mask_base);
score += slope * (ACC_TYPE)mask_ptr[k_idx];
}
if (logit_softcap > 0.0f) {
score = logit_softcap * tanh(score / logit_softcap);
}
m_i = max(m_i, score);
}
__local ACC_TYPE local_m[Q1_WG_SIZE];
local_m[tid] = m_i;
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_m[tid] = max(local_m[tid], local_m[tid + s]);
barrier(CLK_LOCAL_MEM_FENCE);
}
const ACC_TYPE m_final = local_m[0];
ACC_TYPE4 o_acc[DV_VEC];
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) o_acc[i] = (ACC_TYPE4)(0.0f);
ACC_TYPE l_i = 0.0f;
for (int k_idx = tid; k_idx < n_kv; k_idx += Q1_WG_SIZE) {
const ulong k_row_offset = batch_idx * k_nb3 + head_kv_idx * k_nb2 + k_idx * k_nb1;
const ulong v_row_offset = batch_idx * v_nb3 + head_kv_idx * v_nb2 + k_idx * v_nb1;
const global KV_DATA_TYPE4* k_ptr = (const global KV_DATA_TYPE4*)(k_base + k_row_offset);
const global KV_DATA_TYPE4* v_ptr = (const global KV_DATA_TYPE4*)(v_base + v_row_offset);
ACC_TYPE4 dot_acc = (ACC_TYPE4)(0.0f);
#pragma unroll
for (int k = 0; k < DK_VEC; k++) {
dot_acc = mad(q_priv[k], CONVERT_KV_ACC4(k_ptr[k]), dot_acc);
}
ACC_TYPE score = (dot_acc.s0 + dot_acc.s1 + dot_acc.s2 + dot_acc.s3) * scale;
if (mask_base != NULL) {
const global MASK_DATA_TYPE* mask_ptr = (const global MASK_DATA_TYPE*)(mask_base);
score += slope * (ACC_TYPE)mask_ptr[k_idx];
}
if (logit_softcap > 0.0f) {
score = logit_softcap * tanh(score / logit_softcap);
}
const ACC_TYPE p = exp(score - m_final);
l_i += p;
#pragma unroll
for (int i = 0; i < DV_VEC; i++) {
o_acc[i] = mad(p, CONVERT_KV_ACC4(v_ptr[i]), o_acc[i]);
}
}
__local ACC_TYPE local_l[Q1_WG_SIZE];
__local ACC_TYPE4 local_o_comp[Q1_WG_SIZE];
local_l[tid] = l_i;
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_l[tid] += local_l[tid + s];
barrier(CLK_LOCAL_MEM_FENCE);
}
const ulong o_row_offset = batch_idx * o_nb3 + head_idx * o_nb1;
global O_DATA_TYPE4 *o_row = (global O_DATA_TYPE4 *)(o_base + o_row_offset);
const ACC_TYPE l_final = local_l[0];
if (l_final > 0.0f) {
const ACC_TYPE l_inv = 1.0f / l_final;
for (int i = 0; i < DV_VEC; i++) {
local_o_comp[tid] = o_acc[i];
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int s = Q1_WG_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) local_o_comp[tid] += local_o_comp[tid + s];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0) {
o_row[i] = CONVERT_O_DATA4(local_o_comp[0] * l_inv);
}
}
} else if (tid == 0) {
#pragma unroll
for (int i = 0; i < DV_VEC; ++i) o_row[i] = (O_DATA_TYPE4)(0.0f);
}
}

View File

@ -0,0 +1,189 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK_MXFP4 32
typedef struct {
uchar e; // E8M0
uchar qs[QK_MXFP4/2];
} block_mxfp4;
constant static float kvalues_mxfp4_f[16] = {
0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
};
static inline float e8m0_to_fp32(uchar x) {
int bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint) x << 23;
}
return as_float(bits);
}
#ifdef INTEL_GPU
#define N_R0_MXFP4 2 // number of rows each subgroup works on
#define N_SG_MXFP4 2 // number of subgroups in a work group
#define N_SIMDWIDTH 16 // subgroup size
#elif defined (ADRENO_GPU)
#define N_R0_MXFP4 2
#define N_SG_MXFP4 2
#define N_SIMDWIDTH 64
#endif
inline void mul_mv_mxfp4_f32(
global char * src0,
global char * src1,
global char * dst,
int ne00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne12,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
int ne1,
int r2,
int r3,
local char * shmem
) {
local float * shmem_f32 = (local float *) shmem;
int nb = ne00/QK_MXFP4;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = 0;
int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
uint i12 = im%ne12;
uint i13 = im/ne12;
ulong offset_src0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
global block_mxfp4 * x = (global block_mxfp4 *) (src0 + offset_src0);
global float * y = (global float *) (src1 + offset_src1);
const short ix = get_sub_group_local_id()/2; // 0...15
const short it = get_sub_group_local_id()%2; // 0 or 1
shmem_f32[get_sub_group_local_id()] = kvalues_mxfp4_f[get_sub_group_local_id()%16];
barrier(CLK_LOCAL_MEM_FENCE);
float4 yl[4];
float sumf[N_R0_MXFP4] = {0.f};
global float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
global float4 * y4 = (global float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
for (short row = 0; row < N_R0_MXFP4; row++) {
global block_mxfp4 * xb = x + row*nb + ib;
global uchar * q2 = (global uchar *)(xb->qs + 8*it);
float4 acc1 = yl[0]*(float4)(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
float4 acc2 = yl[1]*(float4)(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
float4 acc3 = yl[2]*(float4)(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
float4 acc4 = yl[3]*(float4)(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
acc1 = (acc1 + acc3) + (acc2 + acc4);
sumf[row] += e8m0_to_fp32(xb->e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
}
yb += (N_SIMDWIDTH/2) * QK_MXFP4;
}
global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
float sum_all = sub_group_reduce_add(sumf[row]);
if (get_sub_group_local_id() == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_id_mxfp4_f32(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * src2,
ulong offset2,
global char * dst,
ulong offsetd,
int ne00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne11,
int ne12,
ulong nb11,
ulong nb12,
ulong nb13,
int ne20,
int ne21,
ulong nb21,
int ne0,
int ne1,
int r2,
int r3,
local char * shmem
) {
src0 = (global char *)((global char *)src0 + offset0);
src1 = (global char *)((global char *)src1 + offset1);
src2 = (global char *)((global char *)src2 + offset2);
dst = (global char *)((global char *)dst + offsetd);
const int iid1 = get_group_id(2)/ne20;
const int idx = get_group_id(2)%ne20;
int i02 = ((global int *) (src2 + iid1*nb21))[idx];
int i11 = idx % ne11;
int i12 = iid1;
int i1 = idx;
int i2 = i12;
global char * src0_cur = src0 + i02*nb02;
global char * src1_cur = src1 + i11*nb11 + i12*nb12;
global char * dst_cur = dst + (i1*ne0 + i2*ne1*ne0)*sizeof(float);
mul_mv_mxfp4_f32(src0_cur, src1_cur, dst_cur,
ne00, nb01, nb02, nb03, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shmem);
}

View File

@ -0,0 +1,144 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK_MXFP4 32
typedef struct {
uchar e; // E8M0
uchar qs[QK_MXFP4/2];
} block_mxfp4;
constant static float kvalues_mxfp4_f[16] = {
0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
};
static inline float e8m0_to_fp32(uchar x) {
int bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint) x << 23;
}
return as_float(bits);
}
#ifdef INTEL_GPU
#define N_R0_MXFP4 2 // number of rows each subgroup works on
#define N_SG_MXFP4 2 // number of subgroups in a work group
#define N_SIMDWIDTH 16 // subgroup size
#elif defined (ADRENO_GPU)
#define N_R0_MXFP4 2
#define N_SG_MXFP4 2
#define N_SIMDWIDTH 64
#endif
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_mxfp4_f32(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
int ne00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne12,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
int ne1,
int r2,
int r3,
local char * shmem
) {
src0 = (global char*)((global char*)src0 + offset0);
src1 = (global char*)((global char*)src1 + offset1);
dst = (global char*)((global char*)dst + offsetd);
local float * shmem_f32 = (local float *) shmem;
int nb = ne00/QK_MXFP4;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = get_group_id(2);
int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
uint i12 = im%ne12;
uint i13 = im/ne12;
ulong offset_src0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
global block_mxfp4 * x = (global block_mxfp4 *) (src0 + offset_src0);
global float * y = (global float *) (src1 + offset_src1);
const short ix = get_sub_group_local_id()/2; // 0...15
const short it = get_sub_group_local_id()%2; // 0 or 1
shmem_f32[get_sub_group_local_id()] = kvalues_mxfp4_f[get_sub_group_local_id()%16];
barrier(CLK_LOCAL_MEM_FENCE);
float4 yl[4];
float sumf[N_R0_MXFP4] = {0.f};
global float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
global float4 * y4 = (global float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
for (short row = 0; row < N_R0_MXFP4; row++) {
global block_mxfp4 * xb = x + row*nb + ib;
global uchar * q2 = (global uchar *)(xb->qs + 8*it);
float4 acc1 = yl[0]*(float4)(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
float4 acc2 = yl[1]*(float4)(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
float4 acc3 = yl[2]*(float4)(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
float4 acc4 = yl[3]*(float4)(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
acc1 = (acc1 + acc3) + (acc2 + acc4);
sumf[row] += e8m0_to_fp32(xb->e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
}
yb += (N_SIMDWIDTH/2) * QK_MXFP4;
}
global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
float sum_all = sub_group_reduce_add(sumf[row]);
if (get_sub_group_local_id() == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}

View File

@ -24,6 +24,26 @@ kernel void kernel_transpose_16(
write_imageh(output, (i_2+3)*rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
}
// Padded kernel for irregular shape
kernel void kernel_transpose_16_4x1(
__read_only image1d_buffer_t input,
__write_only image1d_buffer_t output,
const uint rows,
const uint cols
) {
const int i = get_global_id(0);
const int j = get_global_id(1);
const int j_2 = j << 2;
half temp0 = read_imageh(input, (j_2 + 0) * cols + i).x;
half temp1 = read_imageh(input, (j_2 + 1) * cols + i).x;
half temp2 = read_imageh(input, (j_2 + 2) * cols + i).x;
half temp3 = read_imageh(input, (j_2 + 3) * cols + i).x;
write_imageh(output, i * rows + j, (half4)(temp0, temp1, temp2, temp3));
}
// 32-bit transpose, loading/storing a 4x4 tile of elements
kernel void kernel_transpose_32(
__read_only image1d_buffer_t input,

View File

@ -64,9 +64,11 @@ struct ggml_opt_context {
int32_t opt_i = 0;
bool loss_per_datapoint = false;
ggml_opt_get_optimizer_params get_opt_pars = nullptr;
void * get_opt_pars_ud = nullptr;
struct ggml_tensor * adamw_params = nullptr;
ggml_opt_get_optimizer_params get_opt_pars = nullptr;
void * get_opt_pars_ud = nullptr;
struct ggml_tensor * opt_step_params = nullptr; // Stores output of get_opt_pars.
enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
};
struct ggml_opt_result {
@ -229,9 +231,13 @@ struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * us
result.adamw.eps = 1e-8f;
result.adamw.wd = 0.0f;
result.sgd.alpha = 1e-3f;
result.sgd.wd = 0.0f;
return result;
}
struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata) {
return *((struct ggml_opt_optimizer_params *) userdata);
}
@ -249,6 +255,7 @@ struct ggml_opt_params ggml_opt_default_params(
/*opt_period =*/ 1,
/*get_opt_pars =*/ ggml_opt_get_default_optimizer_params,
/*get_opt_pars_ud =*/ nullptr,
/*optimizer =*/ GGML_OPT_OPTIMIZER_TYPE_ADAMW,
};
}
@ -316,9 +323,14 @@ static void ggml_opt_build(ggml_opt_context_t opt_ctx) {
GGML_ASSERT(opt_ctx->ctx_compute && "no compute context set, either use static graphs or set one with ggml_opt_prepare_alloc");
GGML_ASSERT((!opt_ctx->static_graphs || opt_ctx->inputs->data) && "when using static graphs the inputs must be allocated statically");
const enum ggml_opt_optimizer_type optimizer = opt_ctx->optimizer;
const bool accumulate = opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD &&
!(opt_ctx->static_graphs && opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period == 1);
const bool need_momenta = opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT &&
opt_ctx->optimizer == GGML_OPT_OPTIMIZER_TYPE_ADAMW;
ggml_set_input(opt_ctx->inputs);
ggml_set_output(opt_ctx->outputs);
@ -340,8 +352,7 @@ static void ggml_opt_build(ggml_opt_context_t opt_ctx) {
// - pred (if using static graphs)
// - ncorrect (if using static graphs, 2 tensors).
constexpr size_t n_loss = 1;
const size_t tensors_per_param = (accumulate ? 1 : 0) +
(opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0);
const size_t tensors_per_param = (accumulate ? 1 : 0) + (need_momenta ? 2 : 0);
const size_t tensors_const = opt_ctx->static_graphs ? 9 : 0;
const size_t size_meta = (n_loss + tensors_per_param*n_param + tensors_const) * ggml_tensor_overhead();
struct ggml_init_params params = {
@ -458,7 +469,7 @@ static void ggml_opt_build(ggml_opt_context_t opt_ctx) {
}
}
if (opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_OPT) {
if (need_momenta && opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_OPT) {
opt_ctx->grad_m.resize(n_nodes);
opt_ctx->grad_v.resize(n_nodes);
for (int i = 0; i < n_nodes; ++i) {
@ -492,23 +503,36 @@ static void ggml_opt_build(ggml_opt_context_t opt_ctx) {
// gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step.
opt_ctx->gb_opt = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gb_grad, /*force_grads =*/ true);
opt_ctx->adamw_params = ggml_new_tensor_1d(opt_ctx->ctx_cpu, GGML_TYPE_F32, 7);
ggml_set_input(opt_ctx->adamw_params);
ggml_set_name(opt_ctx->adamw_params, "adamw_params");
opt_ctx->opt_step_params = ggml_new_tensor_1d(opt_ctx->ctx_cpu, GGML_TYPE_F32, need_momenta ? 7 : 2);
ggml_tensor * adamw_params = opt_ctx->opt_step_params;
ggml_set_input(adamw_params);
const char * optimizer_name = ggml_opt_optimizer_name(opt_ctx->optimizer);
ggml_format_name(adamw_params, "%s_params", optimizer_name);
for (int i = opt_ctx->gf->n_nodes-1; i >= 0; --i) {
struct ggml_tensor * node = opt_ctx->gb_opt->nodes[i];
struct ggml_tensor * grad = ggml_graph_get_grad(opt_ctx->gb_opt, node);
if (grad && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
struct ggml_tensor * m = opt_ctx->grad_m[i];
struct ggml_tensor * v = opt_ctx->grad_v[i];
struct ggml_tensor * opt_step = ggml_opt_step_adamw(opt_ctx->ctx_compute, node, grad, m, v, opt_ctx->adamw_params);
ggml_set_name(m, (std::string("AdamW m for ") + std::string(node->name)).c_str());
ggml_set_name(v, (std::string("AdamW v for ") + std::string(node->name)).c_str());
ggml_set_name(opt_step, (std::string("AdamW step for ") + std::string(node->name)).c_str());
struct ggml_tensor * m = nullptr;
struct ggml_tensor * v = nullptr;
if (need_momenta) {
m = opt_ctx->grad_m[i];
v = opt_ctx->grad_v[i];
ggml_format_name(m, "AdamW m for %s", node->name);
ggml_format_name(v, "AdamW v for %s", node->name);
}
struct ggml_tensor * opt_step;
switch (optimizer) {
case GGML_OPT_OPTIMIZER_TYPE_ADAMW:
opt_step = ggml_opt_step_adamw(opt_ctx->ctx_compute, node, grad, m, v, adamw_params);
break;
case GGML_OPT_OPTIMIZER_TYPE_SGD:
opt_step = ggml_opt_step_sgd(opt_ctx->ctx_compute, node, grad, adamw_params);
break;
default:
GGML_ABORT("fatal error");
}
ggml_format_name(opt_step, "%s step for %s", optimizer_name, node->name);
ggml_build_forward_expand(opt_ctx->gb_opt, opt_step);
}
}
@ -534,6 +558,7 @@ ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
result->opt_period = params.opt_period;
result->get_opt_pars = params.get_opt_pars;
result->get_opt_pars_ud = params.get_opt_pars_ud;
result->optimizer = params.optimizer;
GGML_ASSERT(result->opt_period >= 1);
@ -756,29 +781,43 @@ void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward) {
void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result) {
GGML_ASSERT(opt_ctx->eval_ready);
if (opt_ctx->allocated_graph == opt_ctx->gb_opt) {
struct ggml_opt_optimizer_params opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud);
const ggml_opt_optimizer_params & opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud);
GGML_ASSERT(opt_pars.adamw.alpha > 0.0f);
GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f);
GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f);
GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f);
GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f);
GGML_ASSERT(opt_pars.adamw.eps >= 0.0f);
GGML_ASSERT(opt_pars.adamw.wd >= 0.0f);
GGML_ASSERT(opt_pars.adamw.wd <= 1.0f);
switch (opt_ctx->optimizer) {
case GGML_OPT_OPTIMIZER_TYPE_ADAMW: {
GGML_ASSERT(opt_pars.adamw.alpha > 0.0f);
GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f);
GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f);
GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f);
GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f);
GGML_ASSERT(opt_pars.adamw.eps >= 0.0f);
GGML_ASSERT(opt_pars.adamw.wd >= 0.0f);
GGML_ASSERT(opt_pars.adamw.wd <= 1.0f);
// beta1, beta2 after applying warmup
const float beta1h = 1.0f/(1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter));
const float beta2h = 1.0f/(1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter));
// beta1, beta2 after applying warmup
const float beta1h = 1.0f / (1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter));
const float beta2h = 1.0f / (1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter));
float * adamw_par_data = ggml_get_data_f32(opt_ctx->adamw_params);
adamw_par_data[0] = opt_pars.adamw.alpha;
adamw_par_data[1] = opt_pars.adamw.beta1;
adamw_par_data[2] = opt_pars.adamw.beta2;
adamw_par_data[3] = opt_pars.adamw.eps;
adamw_par_data[4] = opt_pars.adamw.wd;
adamw_par_data[5] = beta1h;
adamw_par_data[6] = beta2h;
float * adamw_par_data = ggml_get_data_f32(opt_ctx->opt_step_params);
adamw_par_data[0] = opt_pars.adamw.alpha;
adamw_par_data[1] = opt_pars.adamw.beta1;
adamw_par_data[2] = opt_pars.adamw.beta2;
adamw_par_data[3] = opt_pars.adamw.eps;
adamw_par_data[4] = opt_pars.adamw.wd;
adamw_par_data[5] = beta1h;
adamw_par_data[6] = beta2h;
} break;
case GGML_OPT_OPTIMIZER_TYPE_SGD: {
GGML_ASSERT(opt_pars.sgd.alpha > 0.0f);
GGML_ASSERT(opt_pars.sgd.wd >= 0.0f);
GGML_ASSERT(opt_pars.sgd.wd <= 1.0f);
float * sgd = ggml_get_data_f32(opt_ctx->opt_step_params);
sgd[0] = opt_pars.sgd.alpha;
sgd[1] = opt_pars.sgd.wd;
} break;
default:
GGML_ABORT("fatal error");
}
}
ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
@ -963,6 +1002,7 @@ void ggml_opt_fit(
ggml_tensor * outputs,
ggml_opt_dataset_t dataset,
enum ggml_opt_loss_type loss_type,
enum ggml_opt_optimizer_type optimizer,
ggml_opt_get_optimizer_params get_opt_pars,
int64_t nepoch,
int64_t nbatch_logical,
@ -993,6 +1033,7 @@ void ggml_opt_fit(
params.opt_period = opt_period;
params.get_opt_pars = get_opt_pars;
params.get_opt_pars_ud = &epoch;
params.optimizer = optimizer;
ggml_opt_context_t opt_ctx = ggml_opt_init(params);
// Shuffling the data is generally useful but there is only a point if not all data is used in a single batch.
@ -1035,3 +1076,18 @@ void ggml_opt_fit(
ggml_opt_result_free(result_train);
ggml_opt_result_free(result_val);
}
enum ggml_opt_optimizer_type ggml_opt_context_optimizer_type(ggml_opt_context_t c) {
return c->optimizer;
}
GGML_API const char * ggml_opt_optimizer_name(enum ggml_opt_optimizer_type o) {
switch (o) {
case GGML_OPT_OPTIMIZER_TYPE_ADAMW:
return "adamw";
case GGML_OPT_OPTIMIZER_TYPE_SGD:
return "sgd";
default:
return "undefined";
};
}

View File

@ -566,7 +566,7 @@ static float make_q3_quants(int n, int nmax, const float * GGML_RESTRICT x, int8
for (int i = 0; i < n; ++i) {
L[i] += nmax;
}
return sumlx / suml2;
return suml2 > 0.0f ? sumlx / suml2 : 0.0f;
}
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
@ -901,7 +901,7 @@ static float make_qp_quants(int n, int nmax, const float * GGML_RESTRICT x, uint
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
}
if (!max) { // all zero
if (max < GROUP_MAX_EPS) { // all zero
for (int i = 0; i < n; ++i) { L[i] = 0; }
return 0.f;
}
@ -966,7 +966,7 @@ static float make_qp_quants(int n, int nmax, const float * GGML_RESTRICT x, uint
break;
}
}
return sumlx/suml2;
return suml2 > 0.0f ? sumlx / suml2 : 0.0f;
}
static void quantize_row_q2_K_impl(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int k, const float * GGML_RESTRICT quant_weights) {
@ -4266,7 +4266,7 @@ static void quantize_row_iq1_s_impl(const float * GGML_RESTRICT x, void * GGML_R
sumw[j+1] = sumw[j] + weight[i];
}
}
float best_score = -FLT_MIN, scale = max;
float best_score = -FLT_MAX, scale = max;
int besti1 = -1, besti2 = -1, best_shift = 0;
for (int i1 = 0; i1 <= block_size; ++i1) {
for (int i2 = i1; i2 <= block_size; ++i2) {
@ -4442,7 +4442,7 @@ static void quantize_row_iq1_m_impl(const float * GGML_RESTRICT x, void * GGML_R
idx[2*j] = j;
}
qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
float best_score = -FLT_MIN, scale = max;
float best_score = -FLT_MAX, scale = max;
int besti1 = -1, besti2 = -1, best_k = -1;
// 0: +, +
// 1: +, -

View File

@ -29,9 +29,12 @@
#include <cstring>
#include <fstream>
#include <filesystem>
#include <algorithm>
namespace fs = std::filesystem;
static constexpr size_t MAX_CHUNK_SIZE = 1024ull * 1024ull * 1024ull; // 1 GiB
#ifdef _WIN32
typedef SOCKET sockfd_t;
using ssize_t = __int64;
@ -323,11 +326,14 @@ static std::shared_ptr<socket_t> create_server_socket(const char * host, int por
static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
size_t bytes_sent = 0;
while (bytes_sent < size) {
ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
size_t size_to_send = std::min(size - bytes_sent, MAX_CHUNK_SIZE);
ssize_t n = send(sockfd, (const char *)data + bytes_sent, size_to_send, 0);
if (n < 0) {
GGML_LOG_ERROR("send failed (bytes_sent=%zu, size_to_send=%zu)\n",
bytes_sent, size_to_send);
return false;
}
bytes_sent += n;
bytes_sent += (size_t)n;
}
return true;
}
@ -335,11 +341,18 @@ static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
size_t bytes_recv = 0;
while (bytes_recv < size) {
ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
if (n <= 0) {
size_t size_to_recv = std::min(size - bytes_recv, MAX_CHUNK_SIZE);
ssize_t n = recv(sockfd, (char *)data + bytes_recv, size_to_recv, 0);
if (n < 0) {
GGML_LOG_ERROR("recv failed (bytes_recv=%zu, size_to_recv=%zu)\n",
bytes_recv, size_to_recv);
return false;
}
bytes_recv += n;
if (n == 0) {
GGML_LOG_ERROR("recv returned 0 (peer closed?)\n");
return false;
}
bytes_recv += (size_t)n;
}
return true;
}

View File

@ -2705,9 +2705,9 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
" : converting src1 to fp16");
// iterate tensor dims and find the slowest moving dim and stride
int64_t last_dim=0;
int64_t last_str=0;
int64_t largest_str=0;
int last_dim=0;
int last_str=0;
size_t largest_str=0;
for(int i = 0; i< 4; i++){
// last stride is always the largest
if(src1->nb[i] == largest_str){
@ -2783,7 +2783,7 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
auto launch_gemm_for_batches = [&ctx, queue](const sycl::half *src0,
const sycl::half *src1, float *dst,
int64_t a0, int64_t a1, int64_t batcha,
int64_t b0, int64_t b1, int64_t batchb,
int64_t /*b0*/, int64_t b1, int64_t batchb,
int64_t sa0, int64_t sa1, int64_t sa2,
int64_t sb0, int64_t sb1, int64_t sb2,
int64_t sd2) {
@ -2832,14 +2832,26 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
}
};
bool cont_batches_a = nb02 * ne02 == nb03;
bool cont_batches_b = nb12 * ne12 == nb13;
if (cont_batches_a && cont_batches_b) {
const bool cont_batches_dim2_a = nb02 * ne02 == nb03;
const bool cont_batches_dim2_b = nb12 * ne12 == nb13;
const bool cont_batches_dim3_a = ne02 == 1 && nb02 * ne01 == nb03;
const bool cont_batches_dim3_b = ne12 == 1 && nb12 * ne11 == nb13;
if (cont_batches_dim2_a && cont_batches_dim2_b) {
// A batch is considered contiguous if the dimension 2 is not strided
int64_t batches0 = ne02 * ne03;
int64_t batches1 = ne12 * ne13;
launch_gemm_for_batches(src0_f16, src1_f16, dst_ddf, ne00, ne01, batches0,
ne10, ne11, batches1, str_a0, str_a1, str_a2, str_b0, str_b1,
str_b2, nb2 / sizeof(float));
} else if (cont_batches_dim3_a && cont_batches_dim3_b) {
// This case is similar to the one above with the difference that only the batch in dimension 3 is used and the dimension 2 is of size 1.
int64_t batches0 = ne02 * ne03;
int64_t batches1 = ne12 * ne13;
int64_t str_a3 = nb03 / type_size_src0;
int64_t str_b3 = nb13 / type_size_src1;
launch_gemm_for_batches(src0_f16, src1_f16, dst_ddf, ne00, ne01, batches0,
ne10, ne11, batches1, str_a0, str_a1, str_a3, str_b0, str_b1,
str_b3, nb2 / sizeof(float));
} else {
for (int64_t b_a = 0; b_a < ne03; b_a++) {
const sycl::half *src0_f16_shifted
@ -4215,6 +4227,15 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
// FIXME: keep a list of supported types to avoid breaking the backend when a new type is added
return false;
}
// TODO: The configuration below needs more work to be supported with oneDNN
if (ggml_is_permuted(a) && !ggml_is_contiguous(a) && a->ne[2] > 1 && a->ne[3] > 1) {
return false;
}
// TODO: This specific configuration can fail with oneDNN and needs more debugging
if (!ggml_is_permuted(a) && ggml_is_permuted(b) && b->ne[2] > 1 && b->ne[3] > 1 &&
a->ne[0] > 128 && a->ne[2] == 1 && src0_type == GGML_TYPE_F16) {
return false;
}
return true;
}
case GGML_OP_OUT_PROD:

File diff suppressed because it is too large Load Diff

View File

@ -5,6 +5,8 @@
#extension GL_EXT_control_flow_attributes : enable
#define FLT_MAX 3.402823466e+38F
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
@ -19,19 +21,26 @@ void main() {
const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
const uint col = gl_LocalInvocationID.x;
if (col >= p.KX) {
if (row >= p.KY) {
return;
}
A_TYPE amax = data_a[row*p.KX + col];
tmp[col] = col;
A_TYPE amax = -FLT_MAX;
uint acol = col;
if (col < p.KX) {
amax = data_a[row*p.KX + col];
}
for (uint i = col + BLOCK_SIZE; i < p.KX; i += BLOCK_SIZE) {
A_TYPE val = data_a[row*p.KX + i];
if (val > amax) {
amax = val;
tmp[col] = i;
acol = i;
}
}
tmp[col] = acol;
tmpmax[col] = amax;
barrier();

View File

@ -1,22 +1,24 @@
#version 450
#extension GL_EXT_control_flow_attributes : enable
#include "types.comp"
#define BLOCK_SIZE 1024
layout(constant_id = 0) const int BLOCK_SIZE = 1024;
layout(constant_id = 1) const int BLOCK_SIZE_LOG2 = 10;
#define ASC 0
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) buffer D {int data_d[];};
layout (push_constant) uniform parameter {
uint ncols;
uint ncols_pad;
uint order;
} p;
shared int dst_row[BLOCK_SIZE];
shared A_TYPE a_sh[BLOCK_SIZE];
void swap(uint idx0, uint idx1) {
int tmp = dst_row[idx0];
@ -24,7 +26,7 @@ void swap(uint idx0, uint idx1) {
dst_row[idx1] = tmp;
}
void main() {
void argsort(bool needs_bounds_check) {
// bitonic sort
const int col = int(gl_LocalInvocationID.x);
const uint row = gl_WorkGroupID.y;
@ -32,38 +34,46 @@ void main() {
const uint row_offset = row * p.ncols;
// initialize indices
if (col < p.ncols_pad) {
dst_row[col] = col;
}
dst_row[col] = col;
a_sh[col] = data_a[row_offset + col];
barrier();
for (uint k = 2; k <= p.ncols_pad; k *= 2) {
for (uint j = k / 2; j > 0; j /= 2) {
const uint ixj = col ^ j;
if (col < p.ncols_pad && ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= p.ncols ||
(dst_row[ixj] < p.ncols && (p.order == ASC ?
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]] :
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]]))
) {
swap(col, ixj);
}
} else {
if (dst_row[ixj] >= p.ncols ||
(dst_row[col] < p.ncols && (p.order == ASC ?
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]] :
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]]))
) {
swap(col, ixj);
}
}
uint num_outer_loop_iters = BLOCK_SIZE_LOG2;
[[unroll]] for (uint k = 2, outer_idx = 0; outer_idx < num_outer_loop_iters; k *= 2, outer_idx++) {
uint num_inner_loop_iters = outer_idx + 1;
[[unroll]] for (uint j = k / 2, inner_idx = 0; inner_idx < num_inner_loop_iters; j /= 2, inner_idx++) {
const int ixj = int(col ^ j);
int idx_0 = (col & k) == 0 ? col : ixj;
int idx_1 = (col & k) == 0 ? ixj : col;
int sh_idx_0 = dst_row[idx_0];
int sh_idx_1 = dst_row[idx_1];
bool idx_0_oob = needs_bounds_check ? sh_idx_0 >= p.ncols : false;
bool idx_1_oob = needs_bounds_check ? sh_idx_1 >= p.ncols : false;
if ((idx_0_oob ||
(!idx_1_oob && a_sh[sh_idx_0] > a_sh[sh_idx_1])) && (ixj > col)) {
swap(idx_0, idx_1);
}
barrier();
}
}
if (col < p.ncols) {
data_d[row_offset + col] = dst_row[col];
if (p.order == ASC) {
data_d[row_offset + col] = dst_row[col];
} else {
data_d[row_offset + p.ncols - col - 1] = dst_row[col];
}
}
}
void main() {
if (p.ncols == BLOCK_SIZE) {
argsort(false);
} else {
argsort(true);
}
}

View File

@ -210,7 +210,7 @@ void main() {
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
Of[r][d] = float16_t(eMf[r]) * Of[r][d];
Of[r][d] = ACC_TYPE(eMf[r]) * Of[r][d];
}
}
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
@ -233,7 +233,7 @@ void main() {
vec4 Vf = vec4(data_vv4[v_offset / 4 + (j * Bc + c * cols_per_iter + col_tid) * v_stride / 4 + d * D_split + d_tid]);
#endif
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
Of[r][d] += float16_t(Pf[r]) * ACC_TYPEV4(Vf);
Of[r][d] += ACC_TYPE(Pf[r]) * ACC_TYPEV4(Vf);
}
}
}
@ -288,7 +288,7 @@ void main() {
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
Of[r][d] = float16_t(eMf[r]) * Of[r][d];
Of[r][d] = ACC_TYPE(eMf[r]) * Of[r][d];
tmpshv4[tid] = Of[r][d];
barrier();
@ -357,7 +357,7 @@ void main() {
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
Of[r][d] *= float16_t(Lfrcp[r]);
Of[r][d] *= ACC_TYPE(Lfrcp[r]);
}
}

View File

@ -2,6 +2,7 @@
#extension GL_EXT_control_flow_attributes : require
#include "rte.comp"
#include "utils.comp"
layout (push_constant) uniform parameter
{
@ -28,25 +29,9 @@ uint get_aoffset() { return p.misalign_offsets >> 16; }
uint get_boffset() { return (p.misalign_offsets >> 8) & 0xFF; }
uint get_doffset() { return p.misalign_offsets & 0xFF; }
// mod and div are expensive and coordinates/dimensions are often power of 2 or equal to 1
uint fastmod(uint a, uint b) {
if ((b & (b-1)) == 0) {
return a & (b-1);
}
return a % b;
}
uint fastdiv(uint a, uint b) {
return (a < b) ? 0 : (a / b);
}
void get_indices(uint idx, out uint i00, out uint i01, out uint i02, out uint i03) {
i03 = fastdiv(idx, (p.ne02*p.ne01*p.ne00));
const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
i02 = fastdiv((idx - i03_offset), (p.ne01*p.ne00));
const uint i02_offset = i02*p.ne01*p.ne00;
i01 = (idx - i03_offset - i02_offset) / p.ne00;
i00 = idx - i03_offset - i02_offset - i01*p.ne00;
get_indices(idx, i00, i01, i02, i03, p.ne00, p.ne01, p.ne02, p.ne03);
}
uint src0_idx(uint i00, uint i01, uint i02, uint i03) {

View File

@ -1,6 +1,10 @@
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_8bit_storage : require
#if USE_SUBGROUP_ADD
#extension GL_KHR_shader_subgroup_basic : require
#extension GL_KHR_shader_subgroup_arithmetic : require
#endif
#ifdef MUL_MAT_ID
#define EXPERT_COUNT 8
@ -90,7 +94,38 @@ layout (constant_id = 2) const uint NUM_COLS = 1;
shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE];
void reduce_result(const in FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) {
void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) {
// subgroupAdd is probably faster on devices that support it,
// particularly when the workgroup has more than one subgroup
#if USE_SUBGROUP_ADD
// sum up partial sums within a subgroup
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
temp[j][n] = subgroupAdd(temp[j][n]);
}
}
// Go through shared memory to sum partials across subgroups
if (gl_SubgroupInvocationID == 0) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[j][n][gl_SubgroupID] = temp[j][n];
}
}
}
barrier();
if (tid == 0) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
temp[j][n] = FLOAT_TYPE(0);
[[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) {
temp[j][n] += tmpsh[j][n][s];
}
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]);
}
}
}
#else
// sum up partial sums and write back result
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
@ -115,4 +150,5 @@ void reduce_result(const in FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32
}
}
}
#endif
}

View File

@ -801,7 +801,7 @@ void main() {
}
#else
const uint row_i = ic * BN + loadc_b + l;
if (row_i < _ne1) {
if (row_i < _ne1 && block + loadr_b < end_k) {
const u16vec2 row_idx = row_ids[row_i];
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
} else {
@ -875,7 +875,9 @@ void main() {
const u16vec2 row_idx = row_ids[row_i];
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]);
if (dr + cm_row * TM + store_r < p.M) {
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr + cm_row * TM + store_r] = D_TYPE(coopmat_stage[warp_i * TM * TN + (col + store_c) * TM + store_r]);
}
}
}
}
@ -925,7 +927,9 @@ void main() {
#endif // MUL_MAT_ID
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
#ifdef MUL_MAT_ID
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
if (dr_warp + cr < p.M) {
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
}
#else
if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);

View File

@ -0,0 +1,68 @@
#version 450
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_control_flow_attributes : require
#include "rte.comp"
#include "types.comp"
#include "utils.comp"
layout (push_constant) uniform parameter2
{
// shape for dst
uint ne20; uint ne21; uint ne22; uint ne23;
// strides for srcs+dst
uint nb[8][4];
} p;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];} a[];
layout (binding = 0) writeonly buffer D {D_TYPE data_d[];} d[];
layout(constant_id = 0) const uint num_srcs = 2;
uint src_idx(uint s, uint i00, uint i01, uint i02, uint i03) {
return i03*p.nb[s][3] + i02*p.nb[s][2] + i01*p.nb[s][1] + i00*p.nb[s][0];
}
uint dst_idx(uint i00, uint i01, uint i02, uint i03) {
uint nb20 = p.nb[num_srcs][0];
uint nb21 = p.nb[num_srcs][1];
uint nb22 = p.nb[num_srcs][2];
uint nb23 = p.nb[num_srcs][3];
return i03*nb23 + i02*nb22 + i01*nb21 + i00*nb20;
}
uint get_idx() {
return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
}
const uint num_threads = 256;
layout(local_size_x = num_threads, local_size_y = 1, local_size_z = 1) in;
void main() {
uint idx = get_idx();
uint ne = p.ne20 * p.ne21 * p.ne22 * p.ne23;
// num_threads * num_iter must equal 512, to match the wg_denoms and get_idx calculation
const uint num_iter = 2;
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
if (idx >= ne) {
continue;
}
uint i00, i01, i02, i03;
get_indices(idx, i00, i01, i02, i03, p.ne20, p.ne21, p.ne22, p.ne23);
FLOAT_TYPE sum = FLOAT_TYPE(0);
[[unroll]] for (uint s = 0; s < num_srcs; ++s) {
sum += FLOAT_TYPE(a[s].data_a[src_idx(s, i00, i01, i02, i03)]);
}
d[num_srcs].data_d[dst_idx(i00, i01, i02, i03)] = D_TYPE(sum);
idx += num_threads;
}
}

View File

@ -0,0 +1,22 @@
#version 450
#include "generic_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) buffer X {A_TYPE data_x[];};
layout (binding = 1) readonly buffer G {A_TYPE data_grad[];};
layout (binding = 2) readonly buffer P {float data_params[2];};
void main() {
const uint i = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
if (i >= p.KX) {
return;
}
const float alpha = data_params[0];
const float keep = 1.f - alpha * data_params[1];
data_x[i] = data_x[i] * keep - alpha * data_grad[i];
}

View File

@ -0,0 +1,17 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = get_idx();
if (idx >= p.ne) {
return;
}
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(sqrt(val));
}

View File

@ -0,0 +1,25 @@
#ifndef UTILS_COMP
#define UTILS_COMP
// mod and div are expensive and coordinates/dimensions are often power of 2 or equal to 1
uint fastmod(uint a, uint b) {
if ((b & (b-1)) == 0) {
return a & (b-1);
}
return a % b;
}
uint fastdiv(uint a, uint b) {
return (a < b) ? 0 : (a / b);
}
void get_indices(uint idx, out uint i00, out uint i01, out uint i02, out uint i03, uint ne00, uint ne01, uint ne02, uint ne03) {
i03 = fastdiv(idx, (ne02*ne01*ne00));
const uint i03_offset = i03 * ne02*ne01*ne00;
i02 = fastdiv((idx - i03_offset), (ne01*ne00));
const uint i02_offset = i02*ne01*ne00;
i01 = (idx - i03_offset - i02_offset) / ne00;
i00 = idx - i03_offset - i02_offset - i01*ne00;
}
#endif // UTILS_COMP

View File

@ -223,7 +223,8 @@ void string_to_spv_func(const std::string& _name, const std::string& in_fname, c
std::string target_env = (name.find("_cm2") != std::string::npos) ? "--target-env=vulkan1.3" : "--target-env=vulkan1.2";
// disable spirv-opt for coopmat shaders for https://github.com/ggerganov/llama.cpp/issues/10734
std::string opt_level = coopmat ? "" : "-O";
// disable spirv-opt for bf16 shaders for https://github.com/ggml-org/llama.cpp/issues/15344
std::string opt_level = (coopmat || name.find("bf16") != std::string::npos) ? "" : "-O";
#ifdef _WIN32
std::vector<std::string> cmd = {GLSLC, "-fshader-stage=compute", target_env, opt_level, "\"" + in_path + "\"", "-o", "\"" + out_fname + "\""};
@ -472,6 +473,9 @@ void process_shaders() {
string_to_spv("mul_mat_vec_" + tname + "_f32_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
string_to_spv("mul_mat_vec_" + tname + "_f16_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}}));
string_to_spv("mul_mat_vec_" + tname + "_f32_f32_subgroup", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}}));
string_to_spv("mul_mat_vec_" + tname + "_f16_f32_subgroup", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}}));
string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
// Dequant shaders
@ -566,6 +570,8 @@ void process_shaders() {
string_to_spv("sqr_f32", "square.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("sqrt_f32", "sqrt.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("sin_f32", "sin.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("cos_f32", "cos.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
@ -657,6 +663,7 @@ void process_shaders() {
string_to_spv("rwkv_wkv7_f32", "wkv7.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
string_to_spv("opt_step_sgd_f32", "opt_step_sgd.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
string_to_spv("conv2d_f32_unroll", "conv2d_mm.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}, {"UNROLL", "[[unroll]]"}});
string_to_spv("conv2d_f16_f32_unroll", "conv2d_mm.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}, {"UNROLL", "[[unroll]]"}});
@ -676,6 +683,8 @@ void process_shaders() {
string_to_spv("add_id_f32", "add_id.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("multi_add_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}});
for (auto &c : compiles) {
c.wait();
}
@ -784,6 +793,18 @@ void write_output_files() {
fputs(data.c_str(), src);
fputs(len.c_str(), src);
}
for (const std::string& btype : {"f16", "f32"}) {
for (const auto& tname : type_names) {
fprintf(hdr, "extern unsigned char *arr_dmmv_%s_%s_f32_data[2];\n", tname.c_str(), btype.c_str());
fprintf(hdr, "extern uint64_t arr_dmmv_%s_%s_f32_len[2];\n", tname.c_str(), btype.c_str());
std::string data = "unsigned char *arr_dmmv_" + tname + "_" + btype + "_f32_data[2] = {mul_mat_vec_" + tname + "_" + btype + "_f32_data, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_data};\n";
std::string len = "uint64_t arr_dmmv_" + tname + "_" + btype + "_f32_len[2] = {mul_mat_vec_" + tname + "_" + btype + "_f32_len, mul_mat_vec_" + tname + "_" + btype + "_f32_subgroup_len};\n";
fputs(data.c_str(), src);
fputs(len.c_str(), src);
}
}
fclose(hdr);
fclose(src);
}

View File

@ -0,0 +1,36 @@
if (DEFINED ZDNN_ROOT)
message(STATUS "zdnn: using ZDNN_ROOT override: ${ZDNN_ROOT}")
set(ZDNN_HINT "${ZDNN_ROOT}")
else()
set(ZDNN_HINT "")
endif()
find_path(ZDNN_INCLUDE
NAMES zdnn.h
HINTS ${ZDNN_HINT} /usr /usr/local
PATH_SUFFIXES include)
if (ZDNN_INCLUDE)
message(STATUS "zdnn: found include: ${ZDNN_INCLUDE}")
else()
message(FATAL_ERROR "zdnn: include directory not found, please set ZDNN_ROOT to the proper path if necessary")
endif()
find_library(ZDNN_LIB
NAMES zdnn
HINTS ${ZDNN_HINT} /usr /usr/local
PATH_SUFFIXES lib lib64)
if (ZDNN_LIB)
message(STATUS "zdnn: found library: ${ZDNN_LIB}")
else()
message(FATAL_ERROR "zdnn: library not found, please set ZDNN_ROOT to the proper path if necessary")
endif()
file(GLOB GGML_SOURCES_ZDNN "*.c" "*.cpp")
file(GLOB GGML_HEADERS_ZDNN "*.h" "*.hpp")
ggml_add_backend_library(ggml-zdnn ${GGML_HEADERS_ZDNN} ${GGML_SOURCES_ZDNN})
target_link_libraries(ggml-zdnn PRIVATE ${ZDNN_LIB})
target_include_directories(ggml-zdnn PRIVATE ${ZDNN_INCLUDE})
target_link_directories(ggml-zdnn PRIVATE ${ZDNN_LIB})
target_compile_definitions(ggml-zdnn PRIVATE GGML_USE_ZDNN)

View File

@ -0,0 +1,97 @@
#ifndef GGML_ZDNN_IMPL
#define GGML_ZDNN_IMPL
#include "zdnn.h"
#include "ggml.h"
#include "ggml-zdnn.h"
#include <vector>
#include <memory>
#include <vecintrin.h>
#define GGML_ZDNN_NAME "zDNN"
#define GGML_ZDNN_VERSION ZDNN_VERNUM
#define vec_neg(a) (-(a)) // Vector Negate
#define vec_add(a, b) ((a) + (b)) // Vector Add
#define vec_sub(a, b) ((a) - (b)) // Vector Subtract
#define vec_mul(a, b) ((a) * (b)) // Vector Multiply
#define vec_div(a, b) ((a) / (b)) // Vector Divide
#define vec_sl(a, b) ((a) << (b)) // Vector Shift Left
#define vec_sra(a, b) ((a) >> (b)) // Vector Shift Right
#define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right Algebraic
#define vec_slo(a, b) vec_slb(a, (b) << 64) // Vector Shift Left by Octet
#define vec_sro(a, b) vec_srb(a, (b) << 64) // Vector Shift Right by Octet
#ifndef vec_and
#define vec_and(a, b) ((a) & (b)) // Vector AND
#endif
#ifndef vec_or
#define vec_or(a, b) ((a) | (b)) // Vector OR
#endif
#ifndef vec_xor
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
#endif
typedef signed char char8x16_t __attribute__((vector_size(16)));
typedef unsigned char uchar8x16_t __attribute__((vector_size(16)));
typedef int8_t int8x16_t __attribute__((vector_size(16)));
typedef int16_t int16x8_t __attribute__((vector_size(16)));
typedef int32_t int32x4_t __attribute__((vector_size(16)));
typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
typedef uint16_t uint16x8_t __attribute__((vector_size(16)));
typedef uint32_t uint32x4_t __attribute__((vector_size(16)));
typedef float float32x4_t __attribute__((vector_size(16)));
typedef double double64x2_t __attribute__((vector_size(16)));
typedef signed long long long64x2_t __attribute__((vector_size(16)));
typedef unsigned long long ulong64x2_t __attribute__((vector_size(16)));
#define ZDNN_CHECK(stmt) \
do { \
zdnn_status status = (stmt); \
GGML_ASSERT(status == ZDNN_OK); \
} while (0);
struct ggml_backend_zdnn_device_context {
int zdnn_device;
int zdnn_device_ref_count;
bool has_parmblkformat_0;
bool has_parmblkformat_1;
size_t max_size;
char name[128];
};
struct ggml_backend_zdnn_context {
int device;
ggml_cgraph * gf;
};
struct ggml_backend_zdnn_buffer {
void * data;
size_t size;
zdnn_tensor_desc pre_tfm_desc;
zdnn_tensor_desc tfm_desc;
zdnn_ztensor ztensor;
char name[GGML_MAX_NAME];
};
struct ggml_backend_zdnn_buffer_context {
void * all_data;
size_t all_size;
bool owned;
int n_buffers;
std::vector<std::unique_ptr<ggml_backend_zdnn_buffer>> buffers;
};
#endif // GGML_ZDNN_IMPL

View File

@ -0,0 +1,846 @@
#include "zdnn.h"
#include "ggml-zdnn.h"
#include "ggml-zdnn-impl.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include <vector>
#include <memory>
#include <csignal>
#include <unistd.h>
inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return FP32;
case GGML_TYPE_F16:
return FP16;
case GGML_TYPE_BF16:
return BFLOAT;
case GGML_TYPE_I8:
return INT8;
case GGML_TYPE_I32:
return INT32;
case GGML_TYPE_Q8_0:
return INT8;
default:
GGML_ABORT("%s: fatal: unable to determine zTensor data type",
__func__);
break;
}
}
inline void ggml_zdnn_create_tensor(zdnn_tensor_desc & pre_tfm_desc,
zdnn_tensor_desc & tfm_desc,
zdnn_ztensor & ztensor,
const ggml_tensor * src,
const int64_t * ne,
const zdnn_data_layouts layout) {
zdnn_init_pre_transformed_desc(
layout,
ggml_zdnn_type_mapping(src->type),
&pre_tfm_desc,
ne[3], ne[2], ne[1], ne[0]
);
ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor));
}
inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor,
void * buffer) {
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer));
}
inline void ggml_zdnn_init_tensor(ggml_backend_zdnn_buffer * buffer, const ggml_tensor * tensor) {
switch (tensor->op) {
case GGML_OP_MUL_MAT:
{
zdnn_init_pre_transformed_desc(
ZDNN_2D,
ggml_zdnn_type_mapping(tensor->type),
&buffer->pre_tfm_desc,
tensor->ne[1], tensor->ne[0]
);
} break;
default:
{
// For 4D tensors, GGML uses NCHW layout. However, because zDNN
// automatically transforms everything to NHWC, we will use it
// directly to avoid the performance penalty changing the
// layout and reshaping the tensor.
zdnn_init_pre_transformed_desc(
ZDNN_NHWC,
ggml_zdnn_type_mapping(tensor->type),
&buffer->pre_tfm_desc,
tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0]
);
// TODO: Consider adding a ggml check.
// TODO: If tensor = 4D, use ZDNN_NCHW by default.
// TODO: If tensor = 2D, use ZDNN_NHWC by default.
} break;
}
ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
}
static void ggml_zdnn_mul_mat_op(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_TENSOR_BINARY_OP_LOCALS;
const enum ggml_type type = src0->type;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
const ggml_tensor * weights = src0;
const ggml_tensor * inputs = src1;
ggml_tensor * output = dst;
ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra;
ggml_backend_zdnn_buffer * inputs_extra = (ggml_backend_zdnn_buffer *)inputs->extra;
ggml_backend_zdnn_buffer * output_extra = (ggml_backend_zdnn_buffer *)output->extra;
zdnn_tensor_desc ptd_bias, td_bias;
zdnn_ztensor zt_bias;
const int64_t weights_rows = ne01;
const int64_t weights_cols = ne00;
const int64_t inputs_rows = ne11;
const int64_t inputs_cols = ne10;
assert(inputs_cols == weights_cols);
const int64_t output_rows = ne1;
const int64_t output_cols = ne0;
const int64_t bias_dim [GGML_MAX_DIMS] = { 1, 1, 1, output_cols };
ggml_zdnn_create_tensor(ptd_bias, td_bias, zt_bias, output, bias_dim, ZDNN_1D);
void * bias_data = (void *)calloc(ne0, ggml_element_size(output));
if (weights_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(weights_extra->ztensor, weights->data);
if (inputs_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(inputs_extra->ztensor, inputs->data);
ggml_zdnn_load_tensor(zt_bias, bias_data);
// GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
// __func__, weights_extra->name,
// weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0],
// weights_extra->pre_tfm_desc.dim1,
// weights_extra->pre_tfm_desc.dim2,
// weights_extra->pre_tfm_desc.dim3,
// weights_extra->pre_tfm_desc.dim4);
// GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
// __func__, inputs_extra->name,
// inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0],
// inputs_extra->pre_tfm_desc.dim1,
// inputs_extra->pre_tfm_desc.dim2,
// inputs_extra->pre_tfm_desc.dim3,
// inputs_extra->pre_tfm_desc.dim4);
GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]");
GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]");
GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1 == inputs->ne[0] && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]");
GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2 == inputs->ne[1] && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]");
ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &zt_bias,
false, true, MATMUL_OP_ADDITION, &output_extra->ztensor));
// TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient.
ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data));
ZDNN_CHECK(zdnn_free_ztensor_buffer(&zt_bias));
free(bias_data);
}
static void ggml_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
bool use_mul_mat_vec =
(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q =
ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
bool use_mul_mat_q =
ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
// debug helpers
// GGML_LOG_INFO("%s: use_mul_mat_vec = %d\n", __func__, use_mul_mat_vec);
// GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q);
// GGML_LOG_INFO("%s: use_mul_mat_q = %d\n", __func__, use_mul_mat_q);
// GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
// GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
// GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
// GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
// GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
// GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1)
&& src1->ne[2] * src1->ne[3] > 1) {
// general KQ + KQV multi-batch
GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__);
// ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst);
} else if (use_mul_mat_vec) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr);
} else if (use_mul_mat_vec_q) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1);
} else if (use_mul_mat_q) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1);
} else {
// GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__);
ggml_zdnn_mul_mat_op(ctx, src0, src1, dst);
}
}
static bool ggml_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) {
switch (dst->op) {
case GGML_OP_MUL_MAT:
ggml_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst);
break;
default:
return false;
}
return true;
}
static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * gf) {
ggml_backend_zdnn_context * ctx = ( ggml_backend_zdnn_context *)backend->context;
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)backend->device->context;
ctx->gf = gf;
for (int i = 0; i < gf->n_nodes; i++) {
ggml_tensor * node = gf->nodes[i];
if (ggml_is_empty(node)
|| node->op == GGML_OP_NONE
|| node->op == GGML_OP_RESHAPE
|| node->op == GGML_OP_VIEW
|| node->op == GGML_OP_PERMUTE
|| node->op == GGML_OP_TRANSPOSE) {
continue;
}
bool ok = ggml_zdnn_compute_forward(ctx, node);
if (!ok) {
GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
__func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
}
return GGML_STATUS_SUCCESS;
}
static bool ggml_zdnn_supports_op(const ggml_backend_zdnn_device_context * ctx_dev, const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
return true;
case GGML_OP_MUL_MAT:
{
const ggml_tensor * src0 = op->src[0];
const ggml_tensor * src1 = op->src[1];
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = op->ne[0];
const int64_t ne1 = op->ne[1];
const int64_t max_batch = ctx_dev->max_size;
return ggml_is_matrix(src0) &&
ggml_is_matrix(src1) &&
ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
src0->view_src == nullptr && src1->view_src == nullptr &&
src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 &&
(ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch);
} break;
default:
return false;
}
}
////////////////////////////////////////////////////////////////////////////////
//
// globals
//
// initialised in ggml_backend_zdnn_reg
static ggml_backend_reg g_ggml_backend_zdnn_reg;
static ggml_backend_device g_ggml_backend_zdnn_device;
static ggml_backend_zdnn_device_context g_ggml_ctx_dev_main = {
/* .zdnn_device = */ 0,
/* .zdnn_device_ref_count = */ 0,
/* .has_parmblkformat_0 = */ false,
/* .has_parmblkformat_1 = */ false,
/* .max_size = */ 0,
/* .name = */ "",
};
static int ggml_backend_zdnn_device_acq(ggml_backend_zdnn_device_context * ctx) {
assert(ctx != NULL);
if (ctx->zdnn_device == 0) {
ctx->zdnn_device = 1;
}
if (ctx->zdnn_device >= 1) {
ctx->has_parmblkformat_0 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0);
ctx->has_parmblkformat_1 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1);
ctx->max_size = zdnn_get_nnpa_max_dim_idx_size();
strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1);
}
ctx->zdnn_device_ref_count++;
return ctx->zdnn_device;
}
static void ggml_backend_zdnn_device_rel(ggml_backend_zdnn_device_context * ctx) {
assert(ctx != NULL);
assert(ctx->zdnn_device_ref_count > 0);
ctx->zdnn_device_ref_count--;
if (ctx->zdnn_device_ref_count == 0) {
if (ctx->zdnn_device >= 0) {
ctx->zdnn_device = 0;
}
}
}
static ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) {
GGML_LOG_INFO("%s: allocating\n", __func__);
GGML_LOG_INFO("%s: found 1 device\n", __func__);
#ifdef STATIC_LIB
zdnn_init();
#endif
ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context();
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
int device = 1;
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, ctx_dev->name);
ctx->device = device;
GGML_LOG_INFO("%s: NNPA name: %s\n", __func__, ctx_dev->name);
GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_0 = %s\n", __func__, ctx_dev->has_parmblkformat_0 ? "true" : "false");
GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_parmblkformat_1 ? "true" : "false");
ctx->gf = nullptr;
return ctx;
}
static void ggml_zdnn_free(ggml_backend_zdnn_context * ctx) {
GGML_LOG_INFO("%s: deallocating\n", __func__);
delete ctx;
}
//
// backend interface
//
static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
for (int i = 0; i < ctx->n_buffers; i++) {
if (ctx->buffers[i]->ztensor.buffer != NULL && ctx->buffers[i]->ztensor.is_transformed) {
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ctx->buffers[i]->ztensor));
}
}
delete ctx;
}
static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
return ctx->all_data;
}
static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
return GGML_STATUS_SUCCESS;
}
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
const int64_t tsize = ggml_nbytes(tensor);
int buffer_idx = ctx->n_buffers;
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
zdnn_buffer->data = tensor->data;
zdnn_buffer->size = tsize;
strncpy(zdnn_buffer->name, tensor->name, GGML_MAX_NAME - 1);
ggml_zdnn_init_tensor(zdnn_buffer.get(), tensor);
tensor->extra = zdnn_buffer.get();
ctx->buffers.push_back(std::move(zdnn_buffer));
ctx->n_buffers++;
// GGML_LOG_INFO("%s: initialised tensor '%s' in buffer %d, size = %8.2f MiB\n",
// __func__, tensor->name, buffer_idx, tsize);
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
}
static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
/* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer,
/* .get_base = */ ggml_backend_zdnn_buffer_get_base,
/* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_zdnn_buffer_clear,
/* .reset = */ NULL,
};
//
// default buffer type
//
static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_ZDNN_NAME;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += size_page - (size_aligned % size_page);
}
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)buft->device->context;
GGML_ASSERT(ctx_dev->zdnn_device >= 0);
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
ctx->all_data = ggml_aligned_malloc(size_aligned);
ctx->all_size = size_aligned;
ctx->owned = true;
ctx->n_buffers = 1;
if (ctx->all_data != NULL) {
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
zdnn_buffer->data = ctx->all_data;
zdnn_buffer->size = size_aligned;
ctx->buffers.push_back(std::move(zdnn_buffer));
}
if (size_aligned > 0 && (ctx->all_data == NULL)) {
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f\n",
__func__, size_aligned / 1024.0 / 1024.0);
delete ctx;
return NULL;
}
return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size);
}
static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 256;
GGML_UNUSED(buft);
}
static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) {
static ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = {
/* .iface = */ {
/* .get_name = */ ggml_backend_zdnn_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
/* .get_max_size = */ NULL,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
},
/* .device = */ &g_ggml_backend_zdnn_device,
/* .context = */ NULL,
};
return &ggml_backend_buffer_type_zdnn;
}
static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_ZDNN_NAME "_Mapped";
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) {
static ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = {
/* .iface = */ {
/* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name,
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
/* .get_max_size = */ NULL,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
},
/* .device = */ &g_ggml_backend_zdnn_device,
/* .context = */ NULL,
};
return &ggml_backend_buffer_from_ptr_type_zdnn;
}
//
// backend
//
static const char * ggml_backend_zdnn_name(ggml_backend_t backend) {
return GGML_ZDNN_NAME;
GGML_UNUSED(backend);
}
static void ggml_backend_zdnn_free(ggml_backend_t backend) {
ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context;
ggml_zdnn_free(ctx);
free(backend);
}
static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
return ggml_zdnn_graph_compute(backend, cgraph);
}
static ggml_backend_i ggml_backend_zdnn_i = {
/* .get_name = */ ggml_backend_zdnn_name,
/* .free = */ ggml_backend_zdnn_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_zdnn_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
static ggml_guid_t ggml_backend_zdnn_guid(void) {
static const char * guid_str = "IBM-ZDNN-ACCELER";
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
}
// TODO: remove in the future
ggml_backend_t ggml_backend_zdnn_init(void) {
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0);
ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
if (ctx == NULL) {
GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
return NULL;
}
ggml_backend_t backend = (ggml_backend_t)malloc(sizeof(ggml_backend));
*backend = (ggml_backend) {
/* .guid = */ ggml_backend_zdnn_guid(),
/* .iface = */ ggml_backend_zdnn_i,
/* .device = */ dev,
/* .context = */ ctx,
};
return backend;
}
bool ggml_backend_is_zdnn(ggml_backend_t backend) {
return backend != NULL &&
ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid());
GGML_UNUSED(backend);
}
//
// backend device
//
static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) {
return GGML_ZDNN_NAME;
GGML_UNUSED(dev);
}
static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) {
return "IBM Z Neural Network Processing Assist (NNPA)";
}
static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
*free = 0;
*total = 0;
}
static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
GGML_UNUSED(dev);
}
static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_zdnn_device_get_name(dev);
props->description = ggml_backend_zdnn_device_get_description(dev);
props->type = ggml_backend_zdnn_device_get_type(dev);
ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = (ggml_backend_dev_caps) {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ false,
};
}
static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) {
ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
if (ctx == NULL) {
GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
return NULL;
}
ggml_backend_t backend = (ggml_backend *)malloc(sizeof(ggml_backend));
*backend = (ggml_backend) {
/* .guid = */ ggml_backend_zdnn_guid(),
/* .iface = */ ggml_backend_zdnn_i,
/* .device = */ dev,
/* .context = */ ctx,
};
return backend;
GGML_UNUSED(params);
}
static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) {
return ggml_backend_zdnn_buffer_type();
GGML_UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();
ctx->all_data = ptr;
ctx->all_size = size;
ctx->owned = false;
ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE);
// page-align the data ptr
{
const uintptr_t offs = (uintptr_t) ptr % size_page;
ptr = (void *)((char *)ptr - offs);
size += offs;
}
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += size_page - (size_aligned % size_page);
}
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
GGML_ASSERT(ctx_dev->zdnn_device >= 0);
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
zdnn_buffer->data = ptr;
zdnn_buffer->size = size;
ctx->buffers.push_back(std::move(zdnn_buffer));
GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n",
__func__, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size);
}
static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *) dev->context;
return ggml_zdnn_supports_op(ctx_dev, op);
}
static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return
buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name ||
buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name;
GGML_UNUSED(dev);
}
static ggml_backend_device_i ggml_backend_zdnn_device_i = {
/* .get_name = */ ggml_backend_zdnn_device_get_name,
/* .get_description = */ ggml_backend_zdnn_device_get_description,
/* .get_memory = */ ggml_backend_zdnn_device_get_memory,
/* .get_type = */ ggml_backend_zdnn_device_get_type,
/* .get_props = */ ggml_backend_zdnn_device_get_props,
/* .init_backend = */ ggml_backend_zdnn_device_init,
/* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr,
/* .supports_op = */ ggml_backend_zdnn_device_supports_op,
/* .supports_buft = */ ggml_backend_zdnn_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
//
// backend registry
//
static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) {
return GGML_ZDNN_NAME;
GGML_UNUSED(reg);
}
static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) {
if (!zdnn_is_nnpa_installed()) {
return 0;
}
return 1;
GGML_UNUSED(reg);
}
static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
return &g_ggml_backend_zdnn_device;
GGML_UNUSED(reg);
GGML_UNUSED(index);
}
static ggml_backend_feature g_ggml_backend_zdnn_features[] = {
{ "NNPA", zdnn_is_nnpa_installed() ? "1" : "0" },
{ "NNPA_PARMBLKFORMAT_0", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0) ? "1" : "0" },
{ "NNPA_PARMBLKFORMAT_1", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1) ? "1" : "0" },
{ NULL, NULL },
};
static ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) {
return g_ggml_backend_zdnn_features;
GGML_UNUSED(reg);
}
static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (strcmp(name, "ggml_backend_get_features") == 0) {
return (void *) ggml_backend_zdnn_get_features;
}
return NULL;
GGML_UNUSED(reg);
}
static ggml_backend_reg_i ggml_backend_zdnn_reg_i = {
/* .get_name = */ ggml_backend_zdnn_reg_get_name,
/* .get_device_count = */ ggml_backend_zdnn_reg_device_count,
/* .get_device = */ ggml_backend_zdnn_reg_device_get,
/* .get_proc_address = */ ggml_backend_zdnn_get_proc_address,
};
static void ggml_zdnn_cleanup(void) {
ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main);
}
// TODO: make thread-safe
ggml_backend_reg_t ggml_backend_zdnn_reg(void) {
ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main);
// register cleanup callback
atexit(ggml_zdnn_cleanup);
{
g_ggml_backend_zdnn_reg = (ggml_backend_reg) {
/* .api_version = */ GGML_ZDNN_VERSION,
/* .iface = */ ggml_backend_zdnn_reg_i,
/* .context = */ NULL,
};
g_ggml_backend_zdnn_device = (ggml_backend_device) {
/* .iface = */ ggml_backend_zdnn_device_i,
/* .reg = */ &g_ggml_backend_zdnn_reg,
/* .context = */ &g_ggml_ctx_dev_main,
};
return &g_ggml_backend_zdnn_reg;
}
}
GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)

View File

@ -1012,11 +1012,12 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK",
"OPT_STEP_ADAMW",
"OPT_STEP_SGD",
"GLU",
};
static_assert(GGML_OP_COUNT == 87, "GGML_OP_COUNT != 87");
static_assert(GGML_OP_COUNT == 88, "GGML_OP_COUNT != 88");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -1113,15 +1114,15 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)",
"adamw(x)",
"sgd(x)",
"glu(x)",
};
static_assert(GGML_OP_COUNT == 87, "GGML_OP_COUNT != 87");
static_assert(GGML_OP_COUNT == 88, "GGML_OP_COUNT != 88");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"ABS",
"SGN",
@ -3885,6 +3886,7 @@ static struct ggml_tensor * ggml_rope_impl(
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int sections[GGML_MROPE_SECTIONS],
int mode,
int n_ctx_orig,
float freq_base,
@ -3898,15 +3900,19 @@ static struct ggml_tensor * ggml_rope_impl(
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] == b->ne[0]);
bool mrope_used = mode & GGML_ROPE_TYPE_MROPE;
if (mrope_used) {
GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); // mrope expecting 4 position ids per token
} else {
GGML_ASSERT(a->ne[2] == b->ne[0]);
}
if (c) {
GGML_ASSERT(c->type == GGML_TYPE_F32);
GGML_ASSERT(c->ne[0] >= n_dims / 2);
}
int sections[4] = {0, 0, 0, 0};
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[15] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
@ -3916,7 +3922,11 @@ static struct ggml_tensor * ggml_rope_impl(
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(params + 11, &sections, sizeof(int)*4);
if (mrope_used) {
memcpy(params + 11, sections, sizeof(int32_t) * GGML_MROPE_SECTIONS);
} else {
memset(params + 11, 0, sizeof(int32_t) * GGML_MROPE_SECTIONS);
}
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE;
@ -3934,7 +3944,7 @@ struct ggml_tensor * ggml_rope(
int n_dims,
int mode) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
ctx, a, b, NULL, n_dims, NULL, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
);
}
@ -3944,7 +3954,7 @@ struct ggml_tensor * ggml_rope_multi(
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int sections[4],
int sections[GGML_MROPE_SECTIONS],
int mode,
int n_ctx_orig,
float freq_base,
@ -3953,36 +3963,31 @@ struct ggml_tensor * ggml_rope_multi(
float attn_factor,
float beta_fast,
float beta_slow) {
// Multimodal Rotary Position Embedding
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
return ggml_rope_impl(
ctx, a, b, c, n_dims, sections, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, false
);
}
GGML_ASSERT(ggml_is_vector(b));
GGML_ASSERT(b->type == GGML_TYPE_I32);
GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); // mrope expecting 4 position ids per token
if (c) {
GGML_ASSERT(c->type == GGML_TYPE_F32);
GGML_ASSERT(c->ne[0] >= n_dims / 2);
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
int32_t params[11 + 4] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
memcpy(params + 5, &freq_base, sizeof(float));
memcpy(params + 6, &freq_scale, sizeof(float));
memcpy(params + 7, &ext_factor, sizeof(float));
memcpy(params + 8, &attn_factor, sizeof(float));
memcpy(params + 9, &beta_fast, sizeof(float));
memcpy(params + 10, &beta_slow, sizeof(float));
memcpy(&params[11], sections, sizeof(int)*4);
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
struct ggml_tensor * ggml_rope_multi_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int sections[GGML_MROPE_SECTIONS],
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, sections, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, true
);
}
struct ggml_tensor * ggml_rope_inplace(
@ -3992,7 +3997,7 @@ struct ggml_tensor * ggml_rope_inplace(
int n_dims,
int mode) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
ctx, a, b, NULL, n_dims, NULL, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
);
}
@ -4011,7 +4016,7 @@ struct ggml_tensor * ggml_rope_ext(
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ctx, a, b, c, n_dims, NULL, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, false
);
}
@ -4031,7 +4036,7 @@ struct ggml_tensor * ggml_rope_ext_inplace(
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ctx, a, b, c, n_dims, NULL, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, true
);
}
@ -4050,7 +4055,7 @@ struct ggml_tensor * ggml_rope_custom(
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ctx, a, b, NULL, n_dims, NULL, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, false
);
}
@ -4069,7 +4074,7 @@ struct ggml_tensor * ggml_rope_custom_inplace(
float beta_fast,
float beta_slow) {
return ggml_rope_impl(
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
ctx, a, b, NULL, n_dims, NULL, mode, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow, true
);
}
@ -4267,14 +4272,13 @@ struct ggml_tensor * ggml_conv_1d_dw(
int s0,
int p0,
int d0) {
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]);
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]);
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16);
struct ggml_tensor * im2col = ggml_im2col(ctx, a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16);
struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a);
result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1);
result = ggml_reshape_3d(ctx, result, result->ne[0], result->ne[2], 1);
return result;
}
@ -5602,6 +5606,28 @@ struct ggml_tensor * ggml_opt_step_adamw(
return result;
}
// opt_step_sgd
struct ggml_tensor * ggml_opt_step_sgd(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * grad,
struct ggml_tensor * params) {
GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
GGML_ASSERT(ggml_are_same_shape(a, grad));
GGML_ASSERT(params->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_nelements(params) == 2);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
result->op = GGML_OP_OPT_STEP_SGD;
result->src[0] = a;
result->src[1] = grad;
result->src[2] = params;
return result;
}
////////////////////////////////////////////////////////////////////////////////
struct ggml_hash_set ggml_hash_set_new(size_t size) {

View File

@ -2832,6 +2832,7 @@ class VisionProjectorType:
QWEN2A = "qwen2a" # audio
QWEN25O = "qwen2.5o" # omni
VOXTRAL = "voxtral"
LFM2 = "lfm2"
# Items here are (block size, type size)

View File

@ -1119,7 +1119,8 @@ class TensorNameMap:
"model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
"vpm.embeddings.patch_embedding",
"model.vision_model.embeddings.patch_embedding", # SmolVLM
"vision_tower.patch_conv", # pixtral
"vision_tower.patch_conv", # pixtral-hf
"vision_encoder.patch_conv", # pixtral
"vision_model.patch_embedding.linear", # llama 4
"visual.patch_embed.proj", # qwen2vl
),
@ -1138,7 +1139,8 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.self_attn.q_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
"vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
"vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
"visual.blocks.{bid}.attn.q", # qwen2vl, generated
),
@ -1153,7 +1155,8 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.self_attn.k_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
"vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
"vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
"visual.blocks.{bid}.attn.k", # qwen2vl, generated
),
@ -1168,7 +1171,8 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.self_attn.v_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
"vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
"vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
"visual.blocks.{bid}.attn.v", # qwen2vl, generated
),
@ -1178,7 +1182,8 @@ class TensorNameMap:
"model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
"vpm.encoder.layers.{bid}.layer_norm1",
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
"vision_model.model.layers.{bid}.input_layernorm", # llama4
"visual.blocks.{bid}.norm1", # qwen2vl
),
@ -1190,7 +1195,8 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.self_attn.out_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
"visual.blocks.{bid}.attn.proj", # qwen2vl
),
@ -1201,7 +1207,8 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.layer_norm2",
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
"vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
"vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
"vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
"visual.blocks.{bid}.norm2", # qwen2vl
),
@ -1210,14 +1217,16 @@ class TensorNameMap:
"model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
"vpm.encoder.layers.{bid}.mlp.fc1",
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
"vision_model.model.layers.{bid}.mlp.fc1", # llama4
"visual.blocks.{bid}.mlp.fc1", # qwen2vl
"visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
),
MODEL_TENSOR.V_ENC_FFN_GATE: (
"vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
"vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
"visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
),
@ -1226,7 +1235,8 @@ class TensorNameMap:
"model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
"vpm.encoder.layers.{bid}.mlp.fc2",
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
"vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
"vision_model.model.layers.{bid}.mlp.fc2", # llama4
"visual.blocks.{bid}.mlp.fc2", # qwen2vl
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
@ -1244,7 +1254,8 @@ class TensorNameMap:
MODEL_TENSOR.V_PRE_NORM: (
"vision_tower.vision_model.pre_layrnorm",
"vision_tower.ln_pre", # pixtral
"vision_tower.ln_pre", # pixtral-hf
"vision_encoder.ln_pre", # pixtral
"vision_model.layernorm_pre", # llama4
),
@ -1261,6 +1272,8 @@ class TensorNameMap:
MODEL_TENSOR.V_MM_INP_NORM: (
"multi_modal_projector.norm",
"multi_modal_projector.layer_norm",
"pre_mm_projector_norm",
),
MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
@ -1316,7 +1329,8 @@ class TensorNameMap:
),
MODEL_TENSOR.V_MM_PATCH_MERGER: (
"multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
"multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
"patch_merger.merging_layer", # mistral
),
# audio (mtmd)

View File

@ -145,7 +145,11 @@ class SafetensorRemote:
tensors[key] = val
return tensors
raise ValueError(f"Model {model_id} does not have any safetensor files")
raise ValueError(
f"No safetensor file has been found for model {model_id}."
"If the repo has safetensor files, make sure the model is public or you have a "
"valid Hugging Face token set in the environment variable HF_TOKEN."
)
@classmethod
def get_list_tensors(cls, url: str) -> dict[str, RemoteTensor]:

Some files were not shown because too many files have changed in this diff Show More