Use this to query register count for shader compiles on NVIDIA. Currently
this is only for performance debug, but it could eventually be used in some
heuristics like split_k.
* metal : refactor bin kernels loading
ggml-ci
* metal : refactor rms kernel loading
ggml-ci
* ci : try to add memory leaks check
ggml-ci
* ci : try to enable memory leak detection for Mac
* cont : seems to be working
* ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type
ggml-backend : add device id to device props
llama : only use iGPU devices if there are no GPU devices
llama : do not use multiple devices from different backends with the same device id
This commit adds a check for GGML_MACHINE_SUPPORTS_i8mm when enabling
MATMUL_INT8 features, ensuring that i8mm intrinsics are only used when
the target hardware actually supports them.
The motivation for this is to fix ggml CI build failures where the
feature detection correctly identifies that i8mm is not supported,
adding the +noi8mm flag, but MATMUL_INT8 preprocessor definitions are
still enabled, causing the compiler to attempt to use vmmlaq_s32
intrinsics without i8mm support.
Refs: https://github.com/ggml-org/ggml/actions/runs/17525174120/job/49909199499
Since the prefill length is not fixed, graphs constructed for the
prefill stage cannot be reused. For this reason, ACL graph
execution is disabled by default during prefill.
* Add fastdiv and fastmodulo to k_bin_bcast kernel
* Address review comments
* `prod_` instead of `prod` suffix
* Add test case for `k_bin_bcast_unravel` in CUDA backend
This commit fixes the zero padding for odd dimensions in
ggml_compute_forward_timestep_embedding_f32.
The motivation for this is that currently if an odd dimension is used,
the padding check incorrectly uses the dimension value for indexing.
For example, with dim=15:
Elements 0-6 are set to cosine values
Elements 7-13 are set to sine values
Element 14 is left uninitialized (contains garbage)
Element 15 is correctly set to zero
This fix changes embed_data[dim] to embed_data[2 * half] so that
element 14 (the first unused element) is properly set to zero as well
as the last element.
Resolves: https://github.com/ggml-org/ggml/issues/1324
* metal : make the backend async
ggml-ci
* cont : add comments, extend op offload, clean up
ggml-ci
* metal : fix batch size for MUL_MAT_ID
* metal : remove deprecated ggml_backend_metal_buffer_from_ptr
* metal : create only metal buffers, no wrapping of host memory
ggml-ci
* metal : restore .alloc_buffer for buffer_from_ptr_type
ggml-ci
* metal : remove broken implementation of GGML_OP_SET
ggml-ci
* metal : clean-up loose ends, ready for tests
ggml-ci
* metal : support both private and shared buffers
ggml-ci
* metal : enable private buffers + add global device queue
* metal : disable host buffer to prevent races
ggml-ci
* metal : avoid extra copy during set_tensor
ggml-ci
* metal : use separate buffer types for shread and private Metal buffers
ggml-ci
* metal : simplify synchronization logic
ggml-ci
* metal : fix build
ggml-ci
* metal : do not implement cpy_tensor
ggml-ci
* metal : separate implementations for shared and private buffers
ggml-ci
* CANN: Add ROPE sin/cos cache for reuse
Introduce sin/cos caching mechanism in ROPE to avoid redundant
computation across layers. The cache is built on the first layer
per device and reused by subsequent layers if parameters match.
- Added sin_cache / cos_cache pointers and position_length tracking
- Introduced cache validity flags and properties:
(ext_factor, theta_scale, freq_scale, attn_factor, is_neox)
- Accelerates ROPE by eliminating repeated sin/cos generation
This change reduces overhead in multi-layer scenarios while
preserving correctness by verifying parameter consistency.
Co-authored-by: hipudding <huafengchun@gmail.com>
* fix typo
Signed-off-by: noemotiovon <757486878@qq.com>
---------
Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
* CANN: implement LRU cache for ACL graphs in CANN backend
- Introduce ggml_cann_graph_lru_cache to store multiple ggml_cann_graph objects.
- Graphs are loaded on demand and evicted using LRU policy when capacity is exceeded.
- Updated push, move_to_front, and clear methods to manage cached graphs efficiently.
- Ensures reuse of graphs, reducing graph reconstruction overhead in CANN backend.
* fix typo
* The LRU cache capacity can be configured via an env variable
Signed-off-by: noemotiovon <757486878@qq.com>
* refactory acl graph
* refactory && fix review comments
Signed-off-by: noemotiovon <757486878@qq.com>
---------
Signed-off-by: noemotiovon <757486878@qq.com>
* CUDA: Add mul_mat_id support the mmf
Add support for mul_mat_id for bs < 16
* Review: use warp_size, fix should_use_mmf condition
* Launch one block per expert, stride along n_expert_used
* templatize mul_mat_id
* Pad shmem to 16 bytes, add helper function mul_mat_f_switch_ids
* Reduce compile times by dividing mmf into f16, bf16 and f32 variants
* Divide mmf by ncols_dst
* Add missing files
* Fix MUSA/HIP builds
* vulkan: sort graph to allow more parallel execution
Add a backend proc to allow the backend to modify the graph. The
vulkan implementation looks at which nodes depend on each other
and greedily reorders them to group together nodes that don't
depend on each other. It only reorders the nodes, doesn't change
the contents of any of them.
With #15489, this reduces the number of synchronizations needed.
* call optimize_graph per-split
* cuda : fix supports_op condition for get_rows when src1->ne2 > 1
ggml-ci
* ggml : add comment about ggml_get_rows
ggml-ci
* cuda : add FIXME [no ci]
* cuda : update support condition
ggml-ci
* ggml: allow casting between f32 and i32
* fix cuda
* add vulkan
* fix CPU non-cont
* add non-cont test case
* add note
* extend test number range
* correct note
* add cont version for vulkan
I think glslang will translate an access like x[i][1].z to
OpAccessChain ... x, i, 1, 2
OpLoad float16_t ...
rather than loading all of x[i] in a single OpLoad. Change the
code to explicitly load the vector/matrix.
* ggml WebGPU: remove userdata from request adapter callback
This commit removes the `userdata` parameter from the WebGPU request
adapter callback in `ggml-webgpu.cpp`. Instead, the lambda function
captures the `webgpu_context` directly.
The motivation for this change is to simplify the code and improve
readability.
* inline the callback lambda into the RequestAdapter call
This commit removes the callback lambda variable and inlines it directly
into the RequestAdapter call.
* gguf: split gguf writer into base and buf impl
* gguf: templated gguf write out
* gguf: file based writer (avoid writing everything to memory first!)
* examples(llama2c): fix log not being the same level and compiler nits
Fixes#15330
Adjust the allocation size of acl_rstd. The parameter `dims` is set to 3 according to the CANN documentation.
Co-authored-by: Yuchuan <yuchuan-cao@users.noreply.github.com>
* vulkan : update ggml_vk_instance_validation_ext_available
This commit updates ggml_vk_instance_validation_ext_available() to
check for VK_EXT_validation_features instead of
VK_KHR_portability_enumeration.
Based on how the returned boolean is used later in the code (to enable
both the validation layer and the VK_EXT_validation_features extension),
it appears the function may have been intended to check for the
validation layer features extension.
* remove try/catch
This was a left over from a previous iteration where I was explicitly
quering for a specific validation layer first, which would throw.
* update warning message about validation layers
* Add fastdiv, use it in modulo and use modulo in rms_norm_f32
Fastdiv is much faster way to do integer division, which was identified
as bottleneck in rms_norm_f32
* Support more `block_size` values in `rms_norm_f32`
This makes us more flexible in selecting the optimal threads w.r.t
paralellizing across a col vs. launch-overheads of threads and mio
throttles
* Update ggml/src/ggml-cuda/common.cuh
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Replace modulo with fastmodulo in `rms_norm_f32`
* Use `BinPackArguments=true` for formating function calls
Will file a separate PR to adjust .clang-format file
* Update ggml/src/ggml-cuda/common.cuh
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Use uint3 for both `fastdiv` and `fastmodulo`
The compiler seems to reliably optimize away the unused .z component in
the fastdiv use-case, see https://godbolt.org/z/rx8KPrKr3
* More constrained type declarations
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Rename fastdiv and fastmodulo variables to shared variable name
As suggest by JohannesGaessler, this increases clarity of the intended
use
* Pack fastdiv/fastmodulo constants into uint2/uint3 objects
By packing constants to be used together into a struct, we are less
likely to make errors.
* Rename function parameter of fastmodulo
`modulo_consts` is more fitting/descriptive
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Previously, the slope tensor was set to fp16 to improve efficiency.
While this worked correctly in FA, it caused precision issues in soft_max.
This change applies different data types for different operators
to balance both accuracy and performance.
* [CANN] Support eager execution mode under ACL graph compilation
Add support for running operators in eager mode while ACL graph
compilation is enabled. This allows bypassing graph execution
and directly submitting ops, which is useful for debugging and
reducing graph build overhead in certain scenarios.
Signed-off-by: noemotiovon <757486878@qq.com>
* fix typo
Signed-off-by: noemotiovon <757486878@qq.com>
* rename to acl_graph_mode
Signed-off-by: noemotiovon <757486878@qq.com>
---------
Signed-off-by: noemotiovon <757486878@qq.com>
* vulkan: use memory budget extension to read memory usage
* fix: formatting and names
* formatting
* fix: detect and cache memory budget extension availability on init
* fix: read `budgetprops.heapBudget` instead of `heap.size` when memory budget extension is available
* style: lints
* SVE support for exponential functions
Add const notation to variable pg
* Update ggml/src/ggml-cpu/vec.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add const
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants
* vulkan: use subgroup operations for quantize_q8_1 shader
* vulkan: add q8_1_x4 type with 128-bit alignment, use in mul_mat_vecq shader
* vulkan: use q8_1_x4 blocks in mul_mmq shader
* vulkan: do 8 calculations per invocation instead of 32 in mul_mat_vecq, similar to mul_mat_vec
* vulkan: tune mul_mat_vecq performance for Intel
* vulkan: fix quantizing issue when tensor is not divisible by 128
* vulkan: adapt integer dot mmv to mmv small m optimization (#15355)
* vulkan: allow all subgroup modes for mmv and mmvq
* vulkan: use prealloc intermediate reuse for mmvq path
* vulkan: tune mmvq for Intel, AMD GCN and Nvidia RTX 3090
* vulkan: adapt mmv quantize_y path to conditional sync logic
* vulkan: disable q8_0 mmvq on Nvidia
* vulkan: enable q8_0 on Nvidia pre-turing
* fix prealloc sync condition
* fix llvmpipe subgroup 8 issue
* ggml : WebGPU add TRANSPOSE and RESHAPE to supported ops
This commit adds support for the TRANSPOSE and RESHAPE operations in the
ggml webgpu backend.
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* CUDA: fix build error from ambiguous __half conversions in conv2d
Building conv2d with half precision failed because `__half` defines
multiple implicit conversion operators (to float, int, short, etc.),
causing ambiguous overload resolution when multiplying with float.
Introduce a templated `to_float` helper that explicitly converts
`__half` via `__half2float`, while passing through float unchanged.
Use this helper in conv2d accumulation to ensure unambiguous and
correct promotion to float.
Fixes some build errors with half-precision kernels on CUDA.
ggml-ci
* CUDA: Replace custom to_float helper with unified ggml_cuda_cast and add half‑>float conversion
* CUDA: Add missing convert.cuh header
* CUDA: remove unnecessary extension in ggml_cuda_cast
* CUDA: Address review comment, remove second type template argument
* CANN: fix RoPE cache issue on multi-device
RoPE cache only needs to be computed once per token.
However, in multi-device scenarios, not every device starts
computation from layer 0, which may lead to unallocated memory
issues and precision errors.
This commit records the first layer of each device to avoid
the above issues.
* CANN: Optimize first-layer detection method
* CANN: Remove trailing whitespace
* CANN: Only cache the data that can be determined as unchanged through the parameters.
* CANN: Update function comment
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
* vulkan: mul_mat_id coopmat2 optimizations
Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.
Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.
* Also add a path for BN/4 - worth a couple more percent
This commit removes the portability_enumeration_ext variable from the
ggml_vk_instance_portability_enumeration_ext_available function as it
is initialized to false but never modified, making it redundant.
Prior to this change, we faced undefined cublasLt references when
attempting to compile 'llama-cli' with GGML_STATIC=ON on Linux.
We add linking with CUDA::cublasLt_static when CUDA version is greater
than 10.1.
* CANN(flash-attn): refactor mask handling and improve performance
1. Refactored the mask computation in Flash Attention, unified the logic without separating prefill and decode.
2. Optimized performance in non-alibi scenarios by reducing one repeat operation.
3. Updated operator management to explicitly mark unsupported cases on 310P devices and when dim is not divisible by 16.
Signed-off-by: noemotiovon <757486878@qq.com>
* [CANN]: fix review
Signed-off-by: noemotiovon <757486878@qq.com>
* [CANN]: Optimization FA BNSD to BSND
Signed-off-by: noemotiovon <757486878@qq.com>
---------
Signed-off-by: noemotiovon <757486878@qq.com>
The original implementation unconditionally returned true for this operation, leading to a failure when the tensor's first dimension (ne[0]) was not a multiple of WARP_SIZE. This caused an GGML_ASSERT(ncols % WARP_SIZE == 0) failure in ggml-sycl/norm.cpp.
This change updates the ggml_backend_sycl_device_supports_op check to correctly return true for GGML_OP_RMS_NORM only when the first dimension of the tensor is a multiple of WARP_SIZE, ensuring the operation can be performed without error.