PR #17091 set the VERSION of various libraries to 0.0.abcd, where abcd
is the LLAMA_BUILD_NUMBER. That build number is too large to fit in the
Mach-O 'current version' field's 'micro' part, which only goes up to
255. This just sets the Mach-O current version to 0 to get it building
properly again.
Fixes#17258.
* Make graph_max_nodes vary by ubatch size for models where chunking might explode the graph
* Update src/llama-context.h
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add missing const
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : remove quantization sanity check
This commit removes the quantization sanity check for attention layers.
The motivation for this is that there are model that are hybrid models
that have recurrent layers, experts layers, and attention layers. For
these models the current check fails as the experts layers are not
taking into account. After consideration, it was decided that this check
is not strictly necessary, and can be removed to allow for more flexible
model architectures.
* llama : remove unused pruned_attention_w and is_clip_model vars
Add nosubs|optimize flags to std::regex constructors to prevent
catastrophic backtracking when processing prompts with repeated
identical characters (e.g., 'A' * 10000).
The nosubs flag disables subgroup capture, significantly reducing
memory usage and backtracking on uniform token sequences
* ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched
Enabled in ggml-ci for testing.
* llama : update worst-case graph for unified cache
* ci : disable op offload in some tests
* fix spelling
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Qwen3 Next - cleaned up version
* Whitespaces and stuff
* Correct minor errors
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Misc. fixes.
* Clean up code, add missing hybrid qualifier
* Did someone transpose the SOLVE_TRI result matrix? Perhaps...
* Whitespace
* Proper tensors for cb calls
* Use llama-graph.h vertical alignment
* BROKEN: chunking
* Set new tensors as inputs.
* Proper chunk logic
* It's the circle of life...
* More shenanigans for n_seq > 1
* Nail in the coffin?
* Fix Windows build
* Eh, one fails on Windows, the other fails on Mac... just use general capture.
* quant : cleanup
* model : cleanup
* qwen3 : cleanup
* cont : cleanup
* cont : cleanup
* ggml : revert change
* qwen3 : cleanup
* cont : cleanup
* Readd cmath
* qwen3 : fix typo
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Usual suspects
* fix my bad suggestion
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit adds a check to skip the output reordering logic when
n_outputs == 1. With a single output token, the data is trivially
sorted and the reordering code is currently doing unnecessary work
(resetting and rebuilding output_ids to the same values).
The motivation for this change is improved code clarity and avoiding
confusion when debugging. While the performance impact is probably
negligible, this unnecessary work happens on every decode call in
llama-server when processing batches with single-token outputs.
* Detect GigaChat3-10-A1.8B as deepseek lite
Hardcodes checking number of layers to detect if lite version of deepseek.
* Add commnent identifying deepseek lite variants
deepseek lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
* Fix DoS / integer overflow
* Remove optional, use INT64_MAX instead as placeholder value (it's technically -1, so it fits :)
* White space
* Actually, since it's unsigned, use UINT64_MAX
Test 'Q4_K_M' quantization on https://huggingface.co/pfnet/plamo-2-translate
The 'suffix_to_score' size is 193510, it needs 19 memory allocation with final
capacity 262144 to hold the value, if not preserve the memory.
Signed-off-by: Haiyue Wang <haiyuewa@163.com>
* fix : Dangling pointer for non-empty trigger words in llama_sampler_init_grammar_impl (#17047)
* Replace 'static' workaround, with keeping variable in scope for longer
* Create std::array directly and pass into llama_grammar_init_impl
* Add back the trigger pattern
* Missed array include
* CUDA: add fused rope
* move k forward_expand up
* create helper function instead of re-using params
* make assert statement more in line with comment
* rope_norm: coalesced writes to global mem
When compiling llama.cpp in Yocto, it fails QA checks because the generated so files aren't versioned. This applies a version to all generated so files, allowing the package to build without errors.
* feat(memory): Only fail partial erasure of recurrent tail
The recurrent state is always assumed to be the state as of the last update
from the final token in the sequence. When doing a partial erasure, if the
range does not include the final token, the erasure can be considered a
success since any memory used for the sequence prior to the final token
(which is no memory) has been successfully removed.
There is one potential case that this doesn't address which is the pruning
of cache to remove sensitive data from the context. This wouldn't work for
attention cache partial removal (in the middle) either since the KV state
is linearly-dependent and states in later sequence positions would still be
based on the state from the sensitive data, even if that data is no longer
cached, so I don't think this is relevant, but it is worth noting that the
semantics of this change for a partial erasure in the middle of the cache
are essentially "my context is already compressed" and not "all trace of
the removed tokens has been removed."
https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(main): Check the output of seq_rm for prefix matching
This prefix matching is explicitly attempting to remove the tokens at the
end of the sequence that don't match. This is the operation that can't be
performed on a recurrent cache due to the state being updated in place, so
if this removal fails, we need to clear the whole cache.
https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(memory): Fix condition for partial erasure failure if p0 > pos
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: compilade <git@compilade.net>
* style: Fix extra parens
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix(main.cpp): Set n_matching_session_tokens to 0 on cache clear
https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* kv-cache : pad the size of the small SWA cache for performance
* context : pad the total context to 256
* cont : future-proof the swa pad
* server : adjust test params to new logic
* server : support unified context across slots
* cont : fix speculative decoding initialization
* context : fix n_ctx_per_seq computation
* server : purge slots one by one
* tests : add unified cache server tests
* llama : update per-seq context computation
* test-thread-safety : handle tiny training context of the input model
* server : fix server_tokens clear()
* server : use 4 slots + unified KV by default
* llama : add note about context size queries
* cont : update todos [no ci]
* context : do not cap the size of the context
* tests : adjust parameters to be CI friendlier
* context : add warning